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Abstract. An analytic dynamics model was presented for the three-stage planetary transmission 
in the pitch control reducer for MW wind turbine based on the lumped-parameter method. The 
mechanical characteristic of the contact components was analyzed using the stiffness factor 
method. All the stiffness sub-matrices were combined to form the overall stiffness matrix of the 
three-stage transmission. According to the analytic model and the parameters of the pitch control 
gearbox, the movement differential equations were solved to investigate the natural frequencies 
and the vibration modes. Then, the undamped and damping forced vibration response were 
studied. A test rig was set up to measure the vibration displacement of the ring at the second stage 
and the output shaft under the nominal load condition, the comparison of the analytic forced 
vibration response with the experimental results validates the effectiveness of the 
lumped-parameter dynamics model for the pitch control reducer. This paper provides a reference 
for the dynamics optimization of multistage planetary transmission. 
Keywords: dynamic response, vibration, planetary gear, wind turbine, pitch control reducer. 

1. Introduction 

Planetary gear is an effective power transmission which has high torque-weight ratio, large 
speed reduction in compact volume and co-axial shaft arrangement. They are widely used in the 
automotive transmission, aircraft engine, pitch control and yaw drive in wind turbine. However, 
as the blade of wind turbine suffers load in wide frequency range, the pitch control reducer may 
have undesirable dynamics behavior which lead to unacceptable noise and damage. Therefore, it 
is important to research the vibration of the pitch control reducer. Dynamics analysis of planetary 
gear is essential for the reduction of noise and vibration.  

Many researchers have developed lumped-parameter models and deformable gear models. 
Cunliffe, et al. [1] explored the characteristic of vibration modes of a 13-degree of freedom for 
single stage planetary system, and performed experiments to measure the input torque and planet 
pin load. Kahraman [2, 3] investigated the dynamic property of planet transmission for single 
stage using pure torsion vibration model, which involves translation and rotation degree of 
freedom. Lin and Parker [4-6] also presented a series of papers on planetary dynamics in which 
they examined the effect of support stiffness, mesh stiffness, inertia and operating speed on the 
natural frequency. The sensitivity of natural frequency to operating speed was also analyzed to 
estimate the gyroscopic effect. Yuksel and Kahraman [7] researched the dynamics of gear system 
including wear status, they defined the wear deepness of mesh gear pair in the wear model and 
effectively computed the contact pressure. Wu, et al. [8, 9] removed the rigid ring assumption to 
an elastic one, and the corresponding effects on the modal property were investigated. Sun and 
Shen [10] investigated the nonlinear frequency response characteristic of single stage planet 
system containing the fluctuating mesh stiffness, and the influence of the time-variant mesh 
stiffness, error and gear backlash on the nonlinear dynamics were also studied. Zhang, et al. [11] 
established an integrated dynamics model including time-variant mesh stiffness, gyroscopic effect 
and flexible ring to analyze the effect of flexibility of the ring on the natural performance of the 
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planetary transmission. Xiao, et al. [12] researched the torsion dynamics about the three-stage 
planetary transmission in shield machine. There are three types of vibration modes: rotational 
mode, transnational and planet mode, these modes were associated in a compound planetary gear 
system [13, 14] and a high-speed planetary system with gyroscopic effects [15]. 

Finite Element Method (FEM) was also used to study planetary gear dynamics due to the fact 
that FEM can simulate the flexible components and analyze the contact status. Parker [16, 17] 
proposed finite element contact method to research the vibration of planetary gear, proving that 
the dynamic response is sensitive to the lower order vibration modes, but this finding need further 
experimental validation in order to study other gear system with the sensitive stiffness model. 
Abousleiman and Velex [18] developed a hybrid 3D finite element/lumped-parameter model and 
used it to analyze the planetary gear dynamics with flexible annulus and carrier [19]. Vijayakar 
[20, 21] developed a combined finite element and a contact mechanics model that permits relative 
coarse mesh near the contact region, this program can effectively solve the dynamics problem. 
However, Parker and Ambarisha [22] pointed out that the dynamics accuracy which the  
lumped-parameter model predicted equals that of the FEM model. 

Through the survey of literature, it can be found that most research focuses either on rotational-
transnational model for single stage or purely rotational dynamics for multistage.  But many 
gearboxes are composed by multistage of planetary system in actual engineering, and all the 
components in planetary system have multi-degree of freedom. So, it needs to investigate the 
vibration of multistage planetary transmission including both translation and rotation degree of 
freedom for planet gearbox. Besides, all the aforementioned research has been little experimental 
work directing the various theoretical models since the work of Cunliffe, et al. [1]. In this paper, 
a vibration experiment is accomplished to verify the dynamics model. 

2. Dynamics model of MW wind turbine pitch control reducer 

2.1. Lumped-parameter analytical model 

The lumped-parameter analytic model for single stage is established as shown in Fig. 1. The 
planet gears are equally spaced. All planets at the same stage are assumed to have identical mass, 
rotational inertia, support stiffness and time-invariant gear mesh stiffness. It is worthwhile 
mentioning that the gear backlash, radial bearing clearance, frictional force arising from tooth 
sliding motion, gear tooth spacing error and misalignment of the gears are not considered in this 
study. 

 
Fig. 1. Lumped-parameter analytic model 
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In the model, the gear mesh is treated as a linear time-invariant spring and a damping acting 
along the mesh line [10]. All other supporting bearings are modeled as linear springs. ܭ௦ and ܭ  present the supporting stiffness of the sun and ring at the ݅ stage, ܭ  is the supporting 
stiffness of the ݆ planet at the ݅ stage. ܭ represents the supporting stiffness of the carrier at the ݅ stage. ܭ௨௦, ܭ௨ and ܭ௨ are the rotational stiffness of the sun, ring and carrier respectively, and ܭ௦ and ܭ are the mesh stiffness between the ݆ planet and the sun or the ring, and ܥ௦ and ܥ are the mesh damping. 

The configuration of the wind turbine pitch control reducer which consists of three stages of 
planetary system is shown in Fig. 2. The power is transformed from the sun at the first stage to 
the carrier at the last stage, which is connected to the output shaft of the pitch control reducer. The 
carrier connects the sun at the next stage by involutes spline. The spline connection is treated as a 
torsion spring between the carrier and sun, providing torsion support stiffness ܭ for the sun and 
carrier in the dynamics model. ܭ௭  and ܭ௭  are the supporting stiffness and torsion support 
stiffness of the output shaft respectively in the dynamics model.  

 
Fig. 2. Structure of the wind turbine pitch control reducer 

2.2. Dynamics equations of the system 

There are both three planets at the first and second stage, and four planets at the third stage, 
including the sun, ring and the carrier at all three stages, so the component numbers are 6, 6, 7 
from the first stage to the last stage orderly, and then the output shaft connected to the third carrier 
also be considered, there are totally 20 components in the wind turbine pitch control reducer. 
Three degrees of freedom (DOF) have been considered for each component including one 
rotational DOF and two translational DOF, so 60 DOF for the wind turbine pitch control reducer 
must be researched.  

The differential equations of motion for all the components in three-stage planet gear train are: ݔۻሷ + ሶݔ۱ + ݔ(ݐ)۹ = ۴, (1)

where ۻ is the inertia matrix, ۱ is the damping matrix, ۹ is the stiffness matrix, ۴ is the force 
vector of externally applied torque. ܠ is the vector of 60 degrees of freedom: ܠ = ,௦ଵݔ] ,௦ଵݕ ,௦ଵݑ ,ଵݔ ,ଵݕ ,ଵݑ ߮ଵଵ, ߬ଵଵ, ,ଵଵݑ ߮ଵଶ, ߬ଵଶ, ,ଵଶݑ ߮ଵଷ, ߬ଵଷ, ,ଵଷݑ ,ଵݔ ,ଵݑ     ,ଵݕ ,௦ଶݔ ,௦ଶݕ ,௦ଶݑ ,ଶݔ ,ଶݕ ,ଶݑ ߮ଶଵ, ߬ଶଵ, ,ଶଵݑ ߮ଶଶ, ߬ଶଶ, ,ଶଶݑ ߮ଶଷ, ߬ଶଷ, ,ଶଷݑ ,ଶݔ ,ଶݑ     ,ଶݕ ,௦ଷݔ ,௦ଷݕ ,௦ଷݑ ,ଷݔ ,ଷݕ ,ଷݑ ߮ଷଵ, ߬ଷଵ, ,ଷଵݑ ߮ଷଶ, ߬ଷଶ, ,ଷଶݑ ߮ଷଷ, ߬ଷଷ, ,ଷଷݑ ߮ଷସ,     ߬ଷସ, ,ଷସݑ ,ଷݔ ,ଷݕ ,ଷݑ ,௭ݔ ,௭ݕ ,்[௭ݑ  
where ݔ is the lateral displacement in the fixed ܱܻܺ coordinate, ݕ is the vertical displacement and 
the rotational degree ݑ is replaced by the line displacement along the line of mesh, ݑ =  is the base circle radius for the sun, ring and planets ݎ is the rotation angle of component and ߠ where ,ߠݎ
and center radius for the carrier. ߮  and ߬  represent the radial and tangential displacement 
respectively in the movable ߮߬ coordinate on the planet. 

The degree of freedom (DOF)1-3 are ݔ௦ଵ, ݕ௦ଵ, ݑ௦ଵ for the sun in the first stage, DOF 4-6 are ݔଵ, ݕଵ, ݑଵ for the ring, DOF 7-15 are ߮ଵ, ߬ଵ, ݑଵ for the planets, DOF 16-18 are ݔଵ, ݕଵ, 
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 ,௦ଶ for the sun in the second stageݑ ,௦ଶݕ ,௦ଶݔ ଵ for the carrier in the first stage. DOF 19-21 areݑ
DOF 22-24 are ݔଶ, ݕଶ, ݑଶ for the ring, DOF 25-33 are ߮ଶ, ߬ଶ, ݑଶ for the planets, DOF  
34-36 are ݔଶ, ݕଶ, ݑଶ for the carrier in the second stage, DOF 37-39 are ݔ௦ଷ, ݕ௦ଷ, ݑ௦ଷ for the sun 
in the third stage, DOF 40-42 are ݔଷ, ݕଷ, ݑଷ for the ring, DOF 43-54 are ߮ଷ, ߬ଷ, ݑଷ݂ݎthe 
planets, DOF 55-57 are ݔଷ, ݕଷ, ݑଷ for the carrier in the third stage, DOF 58-60 are ݔ௭, ݕ௭, ݑ௭ 
for the output shaft. 

The inertia matrix ۻ in the differential motion equation is given as: 

ۻ = diag[ۻଵ, ,ଶۻ [ଷۻ = diag ቈ݉௦ଵ, ݉௦ଵ, ௦ଵଶݎ௦ଵܫ , ݉ଵ, ݉ଵ, ଵଶݎଵܫ , ݉ଵଵ, ݉ଵଵ, ଶଵଶݎଶଵܫ , ݉ଵଶ,
      ݉ଵଶ, ଵଶଶݎଵଶܫ , ݉ଵଷ, ݉ଵଷ, ଵଷଶݎଵଷܫ , ݉ଵ, ݉ଵ, ଵଶݎଵܫ , ݉௦ଶ, ݉௦ଶ, ௦ଶଶݎ௦ଶܫ , ݉ଶ, ݉ଶ, ଶଶݎଶܫ , ݉ଶଵ, ݉ଶଵ, ଶଶଶݎଶଶܫ ,
      ݉ଶଶ, ݉ଶଶ, ଶଶଶݎଶଶܫ , ݉ଶଷ, ݉ଶଷ, ଶଷଶݎଶଷܫ , ݉ଶ, ݉ଶ, ଶଶݎଶܫ , ݉௦ଷ, ݉௦ଷ, ௦ଷଶݎ௦ଷܫ , ݉ଷ, ݉ଷ, ଷଶݎଷܫ , ݉ଷଵ,
      ݉ଷଵ, ଷଵଶݎଷଵܫ , ݉ଷଶ, ݉ଷଶ, ଷଶଶݎଷଶܫ , ݉ଷଷ, ݉ଷଷ, ଷଷଶݎଷଷܫ , ݉ଷସ, ݉ଷସ, ଷସଶݎଷସܫ , ݉ଷ, ݉ଷ, ଷଶݎଷܫ , ݉௭, ݉௭, ௭ଶݎ௭ܫ ,
where ܫ௦, ܫ, ܫ and ܫ (݅ = 1, 2, 3; ݆ = 1, …, ݊) present the rotational inertia for the sun, ring, 
planet and the carrier, ݉௦, ݉, ݉ and ݉ present the mass for the sun, ring, planet and the 
carrier. 

The stiffness factor method is suitable to model stiffness matrix ۹ for the problem containing 
plenty of complex coupled elements among these components. Each stiffness element in the 
stiffness matrix associates with the translational force and rotational moment in corresponding 
DOF. The stiffness is defined to be the force inducing one unit deformation. Mesh conditions of 
the sun and planet at all stages are treated identical. All the force, mesh stiffness and support 
stiffness for the sun and a planet are shown in Fig. 3. 

 
Fig. 3. The mesh between the sun and planet 

The mesh stiffness ܭ௦ along the line of action between the sun and every planet can be 
transformed to ݕ ,ݔ and ݑ directions in the fixed coordinate. Assuming that the sun deforms one 
unit in the ݔ direction, the support force ܨ௫௦ and the mesh force of all planets will be applied on 
it, the decomposed components for all planets in the ݔ direction and the support stiffness ܭ௦ are 
superimposed to compose the first element in the stiffness sub-matrix ۹௦ of the sun. There is no 
coupled element in ݕ and ݖ directions for the deformation of the sun in the ݔ direction, so the 
corresponding elements are 0 in the sub-matrix. The other stiffness elements can be obtained by 
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the same method. The three order stiffness sub-matrix ۹௦ of the sun at single stage is: 

۹௦ =
ێێۏ
ێێێ
௦ܭۍێێ +  ௦sin(߮ܭ − ௦)ߙ

ୀଵ 0 0
0 ௦ܭ +  ௦cos(߮ܭ − ௦)ߙ

ୀଵ 0
0 0 ௨௦ܭ +  ௦ܭ + ܭ

ୀଵ ۑۑے
ۑۑۑ
 ,ېۑۑ

where ܭ௦ is the mesh stiffness between the sun and the ݆ planet at the ݅ stage, ߮ is phase angle 
of the ݆ planet, ߙ௦ is external gearing angle. ܭ is torsion spring between the carrier and sun, ܭଵ 
is zero because there is no spline connected the first sun. 

The force and mesh status between the planet and ring is shown in Fig.4 (a), the support spring, 
mesh spring, and the force of the planet are represented in the movable ߮߬ coordinate, while that 
of the ring are represented in the ܱܻܺ fixed coordinate. The force status of the carrier and planet 
is shown in Fig. 4(b). 

 
a) The ring and planet 

 
b) The carrier and planet 

Fig. 4. The applied force status of mesh between components 

The stiffness submatrix ۹ for the ring at the ݅-stage is obtained by the stiffness coefficient 
method: 

۹ =
ێێۏ
ێێێ
ܭۍێێ +  sin(߮ܭ + )ߙ

ୀଵ 0 0
0 ܭ +  cos(߮ܭ + )ߙ

ୀଵ 0
0 0 ௨ܭ +  ܭ

ୀଵ ۑۑے
ۑۑۑ
 ,ېۑۑ

where ܭ is the mesh stiffness of the ring and the ݆ planet at the ݅ stage, ߙ is the internal mesh 
angle, ߙ =   .௦ߙ

The stiffness sub-matrix for the carrier at the ݅ stage ۹ can be obtained as follows: 
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۹ = ܭ + ܭ݊ 0 00 ܭ + ܭ݊ 00 0 ௨ܭ + ܭ݊ +   .ܭ

Based on the applied force of the sun, ring and carrier on the planet in three directions in the 
movable ߮߬ coordinate, the sub-matrix ۹ for the ݆ planet is: 

ܒܑܘ۹ = ܭ + ௦ߙଶ݊݅ݏ௦ܭ + ߙଶ݊݅ݏܭ ௦ߙ௦cosߙ௦sinܭ − ߙcosߙsinܭ ௦ߙ௦sinܭ− − ௦ߙ௦cosߙ௦sinܭߙsinܭ − ߙcosߙsinܭ ܭ + ௦ߙଶݏ௦ܿܭ + ߙଶݏܿܭ ௦ߙ௦cosܭ− + ௦ߙ௦sinܭ−ߙcosܭ − ߙsinܭ ௦ߙ௦cosܭ− + ߙcosܭ ௦ܭ + ܭ . 
The other coupled stiffness elements between the sun and planet, the ring and planet, the carrier 

and planet in the whole matrix are also modeled, the stiffness sub-matrix ۹௦ coupled between 
the ݆ planet and sun at the ݅ stage is shown as follows: 

۹௦ = ܭ௦݊݅ݏ(߮ − ௦ߙ݊݅ݏ(௦ߙ ߮)݊݅ݏ௦ܭ − ௦ߙݏܿ(௦ߙ ߮)݊݅ݏ௦ܭ− − ߮)ݏ௦ܿܭ−(௦ߙ − ௦ߙ݊݅ݏ(௦ߙ ߮)ݏ௦ܿܭ− − ௦ߙݏܿ(௦ߙ ߮)ݏ௦ܿܭ − ௦ߙ݊݅ݏ௦ܭ−(௦ߙ ௦ߙݏ௦ܿܭ− ௦ܭ . 
The stiffness sub-matrix ۹ coupled between the ݆ planet and ring at the ݅ stage is: 

۹ = −ܭsin(߮ + ߙ)sinߙ sin(߮ܭ + ߙ)cosߙ sin(߮ܭ + cos(߮ܭ(ߙ + ߙ)sinߙ cos(߮ܭ− + ߙ)cosߙ cos(߮ܭ− + ߙsinܭ(ߙ ߙcosܭ− ܭ− . 
The stiffness sub-matrix ۹ coupled between the ݆ planet and carrier at the ݅ stage is: 

۹ = −ܭcos߮ଷ sin߮ଷܭ sin߮ଷܭ−0 cos߮ଷܭ− 00 0   .ܭ−

All the stiffness sub-matrices at the same stage are concentrated to form the whole stiffness 
matrix for each stage, which is 18×18 orders for the first and second stage and 21×21 orders for 
the third stage. The three subsystems of stiffness matrix are integrated as follows, where the 
uncoupled parts are replaced by sub-matrix 0: 

۹ =
ێێۏ
ێێێ
௦ܭۍ 0 ௦ଵܭ ௦ଶܭ ௦ଷܭ 00 ܭ ଵܭ ଶܭ ଷܭ ௦ଵܭ0 ଵܭ ଵܭ 0 0 ௦ଶܭଵܭ ଶܭ 0 ଶܭ 0 ௦ଷܭଶܭ ଷܭ 0 0 ଷܭ ଷ0ܭ 0 ଵܭ ଶܭ ଷܭ ܭ ۑۑے

ۑۑۑ
݅)   ,ې = 1,2),  

۹ଷ =
ێێۏ
ێێێ
௦ଷܭۍێ 0 ௦ଷଵܭ ௦ଷଶܭ ௦ଷଷܭ ௦ଷସܭ 00 ଷܭ ଷଵܭ ଷଶܭ ଷଷܭ ଷସܭ ௦ଷଵܭ0 ଷଵܭ ଷଵܭ 0 0 0 ௦ଷଶܭଷଵܭ ଷଶܭ 0 ଷଶܭ 0 0 ௦ଷଷܭଷଶܭ ଷଷܭ 0 0 ଷଷܭ 0 ௦ଷସܭଷଷܭ ଷସܭ 0 0 0 ଷସܭ ଷସ0ܭ 0 ଷଵܭ ଷଶܭ ଷଷܭ ଷସܭ ଷܭ ۑۑے

ۑۑۑ
݅)   ,ېۑ = 3).  
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According to the force status of the output shaft, the stiffness sub-matrix ۹௭ is: 

۹௭ = ܭ௭ 0 00 ௭ܭ 00 0  .௭൩ܭ
The overall system stiffness matrix concentrating the three subsystems and the output shaft for 

the wind turbine pitch control reducer is: 

۹ = ൦ܭଵ 0 0 00 ଶܭ 0 00 0 ଷܭ 00 0 0  .௭൪ܭ
Rayleigh damping ܥ is used in the dynamics equation which is proportion to the stiffness and 

inertia [6]: ܥ = ܯߙ + (2) .ܭߚ

Rayleigh damping coefficients ߙ  and ߚ  are defined by the method [23] shown in Eq. (3) 
according to the damping ratio ߦ: ߦ = 12 ൬ ߙ߱ + ൰. (3)߱ߚ

There is a damping ratio ߦ corresponding to every order natural frequency ߱. The first and 
second order damping ratios are treated as the same, which are 0.007 for the steel material here 
[22]. So, based on Eq. (6) and the first and second order natural frequencies, ߙ and ߚ can be 
obtained. 

The applied force consisting of the input and output parts is referred to Eq. (4): ۴ = ۴ + ۴௨௧. (4)

The external torque applies rotational force, so the force matrix for the three stages is referred as: ܨ = 0,0, ௦ܶଵݎ௦ଵ , 0,0,0,0,0,0,0,0,0,0,0,0,0,0, ܶଵݎଵ , 0,0, ௦ܶଶݎ௦ଶ , 0,0,0,0,0,0,0,0,0,0,0,0,0,0,      ܶଶݎଶ , 0,0, ௦ܶଷݎ௦ଷ , 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, ௭ܶݎ௭ ൨ .  
2.3. Structure parameters of the pitch control reducer 

The structure parameters of the pitch control reducer are listed in Table 1. The module is 2 mm 
for the first and second stages, 4 mm for the third stage. The external and internal mesh angle is 
23.7°, 22.8° and 20° from the first to the third stage. 

The mesh stiffness for all contact gears is calculated by the Ishikawa method [24] according 
to the structure parameters in Table 1, and the rotation stiffness and support stiffness for each stage 
are calculated by static finite element method. The rotation stiffness and support stiffness 
calculated with the applied force and displacement in the FEM models are displayed in Table 2. 
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Table 1. System parameters of the pitch control reducer 
Stage Part Tooth number Mass (kg) Radius of base circle (mm) 

The first ݉ = 2 mm ߙ௪ = ߙ = 23.7° 

Sun 13 0.273 12.2 
Ring 83 4.227 78 

Planet 34 0.835 32 
Carrier  1.6 47 

The second ݉ = 2 mm ߙ௪ = ߙ = 22. 8° 

Sun 16 0.644 15.04 
Ring 98 3.804 92.09 

Planet 40 0.797 37.6 
Carrier  2.74 56 

The third ݉ = 4 mm ߙ௪ = ߙ = 20° 

Sun 13 1.405 24.43 
Ring 51 12.192 95.84 

Planet 19 2.096 35.7 
Carrier  7.747 64 

 Output shaft 17.747 45 

Table 2. Stiffness in the model (N/mm) 
Stiffness The first stage The second stage The third stage 

Support stiffness ܭ௦ 3.16×104 5.4×104 7.19×104 
Support stiffness ܭ 7.32×105 8.63×105 1.05×106 
Support stiffness ܭ 8.34×105 9.51×105 1.35×106 
Support stiffness ܭ 8.1×104 3.72×105 8.4×105 
Rotation stiffness ܭ௨௦ 7.06×105 1.12×106 1.3×106 
Rotation stiffness ܭ௨ 9.04×105 1.23×106 1.52×106 
Rotation stiffness ܭ௨ 4.08×105 7.55×105 1.12×106 
Rotation stiffness ܭ 5.2×105 7.41×105 9.46×105 
Mesh stiffness ܭ௦ 8.16×105 2.09×106 3.17×106 
Mesh stiffness ܭ 1.11×106 2.52×106 3.91×106 

3. Model analysis of the pitch control reducer 

The natural frequencies and vibration modes provide important information of a system for 
avoiding away from resonance, minimizing response and optimizing the structural designing 
industry. Therefore, it is necessary to analyze the vibration modal. There are a large number of 
dynamic and static couple elements in the stiffness matrix in the dynamics equation, when solving 
the differential equations, they need decoupling with the Modal Summation Technique [25] to 
obtain the displacement vector. The responses for free vibration and forced vibration are 
calculated. The eigenvalues of the undamped linear time-invariant equations for free vibration 
satisfy the relationship [12] as follows: ߮ܭ = ߱ଶ߮ܯ, (5) 

where ߱ is the ݅ order natural frequency, ߮ is the ݅ order vibration mode for the corresponding 
component. 

All system natural frequencies are listed in table 3 by solving Eq. (5). The first order natural 
frequency is 675 Hz and the 60 order frequency is 34906 Hz. The input rotational speed of the 
pitch control reducer is 1600 rpm, corresponding forced vibration frequency 26.67 Hz, which is 
less than the first order natural frequency, so the system is far away from the resonance. 

A natural vibration mode is the vibration shape of the system at the corresponding order natural 
frequency, there are 3 basic kinds of vibration mode for planet transmission: rotational mode, 
transnational mode and planet mode, which are shown in Fig. 5(a), (b) and (c) respectively. The 
natural frequency in rotational mode is single root for the dynamics equation, all planets move in 
the same phase, the carrier, ring and sun rotate without transverse motion. The natural frequency 



2712. DYNAMICS ANALYSIS OF THE PITCH CONTROL REDUCER FOR MW WIND TURBINE.  
CONGFANG HU, CHENG’GONG SHEN, RUITAO PENG, RUI CHEN 

5850 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. DEC 2017, VOL. 19, ISSUE 8. ISSN 1392-8716  

in transnational mode is double roots for the dynamics equation, the carrier, ring and 
suntranslation have pure translation movement without rotation. The natural frequency in planet 
mode is multiple roots for the dynamics equation, the number of multiple roots is N-3 (N is planet 
number), the characteristic of the planet mode is that both translation and rotation motion of the 
carrier, ring and sun are zero, and only planet motion occurs. 

Table 3. Natural frequency for system vibration 
Order Frequency Order Frequency Order Frequency 

1 675 21 1849 41 6707 
2 729 22 1897 42 6707 
3 729 23 1897 43 7162 
4 780 24 1975 44 7162 
5 827 25 1988 45 7344 
6 827 26 2251 46 7462 
7 1114 27 2251 47 7462 
8 1222 28 2355 48 8061 
9 1243 29 3950 49 12011 
10 1312 30 3961 50 12011 
11 1312 31 4411 51 23406 
12 1432 32 4411 52 23809 
13 1432 33 4775 53 24697 
14 1459 34 4924 54 24697 
15 1615 35 4924 55 24991 
16 1684 36 5758 56 26115 
17 1684 37 5891 57 28305 
18 1829 38 6096 58 24697 
19 1829 39 6096 59 33863 
20 1849 40 6404 60 34906 

 

 
a) Rotational mode 

 
b) Transnational mode 

 
c) Planet mode 

Fig. 5. System vibration modes under mean gear mesh stiffness 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Fig. 6. System vibration modes under mean gear mesh stiffness 
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There are 60 order frequencies and vibration modes, in order to avoid long space displaying 
all 60 order vibration modes, partial vibration modes are shown in Fig. 6. Most components vibrate 
at the first three orders of natural frequency, the vibration modes of the first frequency 675 Hz and 
second frequency 729 Hz are shown in Fig. 6(a) and (b) respectively. ݂(݊) is the ݊ order natural 
frequency, the ordinate is vibration mode for all 60 DOFs under the ݊  order natural  
frequency ݂(݊). 

The rotational mode is independent of the transverse support of the carrier, ring and sun, the 
modes at the frequency 780 Hz and 1243 Hz are shown in Fig. 6(c) and (e) respectively. The 
translation mode is independent of the rotational support stiffness of the carrier, ring and sun, such 
as the mode at the frequency 1114 Hz shown in Fig. 6(d). The planet mode is insensitive to all the 
support stiffness for carrier, ring and sun, this mode occurs at the 3950 Hz as shown in Fig. 6(f). 

4. Dynamic response of the pitch control reducer 

4.1. Decoupling of system vibration model 

There are a large number of coupled elements in the stiffness matrix, so it is necessary to 
decouple the vibration formulation when computing the dynamic response. The linear coordinate 
transformation method [12] transforms displacement vector ܠ  for all DOFs from physical 
coordinate to modal coordinate, the transformation process will uncouple the matrix. The 
uncoupled equation is as follows: ܠ = િ, (6) 

where  is main vibration mode matrix, િ is modal coordinate array. 
Substituting Eq. (6) to dynamics Eq. (1), the vibration formulation of the undamped dynamic 

response is transformed as: ۻ܂િሷ + ۹܂િ = (7) .۴܂ 

Assuming ۻ܂ = ۹܂ ,܌ۻ =  ௗ. The system suffers external harmonic force, Eq. (7)ࡷ
will be transformed as: ۻௗિሷ + ۹ௗિ = ۴ + ۴sin߱(8) ,ݐ 

where ۴ is basic force of the harmonic excitation, ۴ is the amplitude of the harmonic force, ߱ 
is harmonic angular frequency. 

The vibration displacement in the modal coordinate of the three-stage planet can be calculated 
as: 

(ݐ)ߟ = ,݅)ௗࡹ(݅)ࡲ ݅)߱ଶ + ۴(݅)ݐ߱݊݅ݏ − ۴(݅)(߱/߱(݅))sin (߱(݅)ݐ)[1 − (߱/߱(݅))ଶ]۹ௗ(݅, ݅) , (9) 

where ߟ(ݐ) is vibration displacement in the ݅ modal coordinates. 
Analytical solution of the vibration differential formulation in physical coordinate can be 

obtained by transformation with Modal Summation technique [25]. 

4.2. Undamped dynamic response 

The input parameters of the pitch control reducer are rotational speed 1600 r/min and torque 
38.2 Nm for the first stage, and the speed and torque at the other stages can be computed by the 
transmission ratio. Based on the above mentioned parameters of the pitch control reducer and the 
uncoupled process, the undamped dynamic response of the planet system can be solved. Partial 
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results are given in Fig. 7(a)-(f) which present vibration displacement for some DOFs. The 
minimum vibration amplitude 0.113 mm belongs to the sun at the first stage in the rotation 
direction as in Fig. 7(a), the maximum displacement amplitude of the system is 0.589 mm which 
is related to the output shaft in the rotational direction. 

 
a) Rotational displacement ݑ௦ଵ 

 
b) Radial displacement ߮ଵଵ 

 
c) Lateral displacement ݔଶ 

 
d) Rotational displacement ݑଶ 

 
e) Lateral displacement ݔ௭ 

 
f) Rotational displacement ݑ௭ 

Fig. 7. Undamped displacement for part of response 

4.3. Damping dynamic response 

The Rayleigh damping coefficients ߙ and ߚ are 4.906 and 9.96×10-6 respectively [6]. Based 
on the calculated frequencies, Eq. (3) and the linear modal coordinate transformation in Eq. (6), 
substituting the proportion damping ܥ  in Eq. (2) to dynamics Eq. (1), the damping dynamic 
response of the pitch control reducer under the nominal load condition is solved with the above 
Modal Summation Technique, part of the results is illustrated in Fig. 8(a)-(f). Compared to the 
undamped vibration system, dynamic response of damping vibration obviously decreases. The 
displacement amplitudes of the ring at the second stage illustrated in Fig. 8(c) and (d) are 0.092 
mm in the ݔ direction and 0.283 mm in rotational direction. The peak-peak values are 0.193 mm 
and 0.621 mm in the ݔ and rotational directions respectively. As illustrated in Fig. 8(e) and (f), 
the displacement amplitudes of the output shaft are 0.304 mm in the lateral direction and  
0.197 mm in rotational direction. The peak-peak value is 0.575 mm and 0.401 mm in the lateral 
and rotational direction respectively. 
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5. Experiment of dynamic response of pitch control 

5.1. Testing rig 

A testing rig is set up to measure the vibration performance of the pitch control reducer under 
the input speed 1600 r/min and input power 6.4 KW. A tested gearbox of wind turbine pitch 
control is tested with another accompanied gearbox on the rig as shown in Fig. 9(a). The power is 
supplied by a direct current motor equipped with electronic speed control, and then transmitted 
from the torque speed sensor, the tested gearbox, idler and the accompanied gearbox to the direct 
current generator. The rotational speed decreases through the tested gearbox and then increases 
through the accompanied gearbox. The vibration sensors, pressure sensors and temperature 
sensors are all powered and fastened on the tested gearbox. The PLC and a data acquisition card 
are equipped on the control cabinet orderly. The data collected by the sensors is tackled with the 
LabView software, and then displayed on the screen as shown in Fig. 9(b). 

On the tested gearbox, two vibration sensors were located at the ring at the second stage and 
output shaft as shown in Fig. 10, three-dimension vibration acceleration in the radial, tangential 
and axis direction can be tested. The type of vibration sensor is CA-YD-141 in the two positions 
with 1-6000 Hz frequency response. The tangential displacement of the pitch control reducer in 
test rig is the rotational displacement in analytic model. 

 
a) Rotational displacement ݑ௦ଵ 

 
b) Radial displacement ߮ଵଵ 

 
c) Lateral displacement ݔଶ 

 
d) Rotational displacement ݑଶ 

 
e) Lateral displacement ݔ௭ 

 
f) Rotational displacement ݑ௭ 

Fig. 8. Damping displacement for part of response 
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a) Testing part 

 
b) Operating and display part 

Fig. 9. Test rig of the pitch control reducer 

 
Fig. 10. Tested positions of the pitch reducer 

5.2. Experiment data analysis 

The vibration signal collected from the sensors is integrated to obtain the vibration 
displacement. The radial displacement ݎଶ  and tangential displacement ݑଶ  for the ring at the 
second stage are shown in Fig. 11(a) and (b) respectively. The peak displacement ݎଶ  and 
peak-peak value for the ring is 0.104 mm and 0.210 mm respectively, the vibration amplitude of 
tangential displacement ݑଶ is 0.311 mm, while the peak-peak value is 0.632 mm. The radial 
displacement ݎ௭ and tangential displacement ݑ௭ for the output shaft are shown in Fig. 11(c) and 
(d). The radial peak vibration ݎ௭ for the output shaft is 0.293 mm, while the peak-peak value is 
0.597 mm, the peak tangential vibration and the peak-peak value of ݑ௭ for the output shaft are 
0.223 mm and 0.413 mm respectively. 

 
a) Vertical vibration ݔଶ of the ring at second stage 

 
b) Rotational vibration ݑଶ of the ring at second stage 

 
c) Vertical vibration ݔ௭ of the output shaft 

 
d) Rotational vibration ݑ௭ of the output shaft 

Fig. 11. Tested vibration displacement 
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5.3. Validation of the theoretical model 

The calculated damping displacement and tested vibration of the ring and the output shaft are 
illustrated in Table 4. The result shows that the amplitudes for the computation and test are 
generally similar. The tested tangential displacement amplitude and peak-peak value are close to 
the analytic rotational amplitude and peak-peak value. 

Table 4. Vibration comparison of computation and testing 
Vibration displacement Method The second ring Output shaft 

Amplitude (mm) Analytic 0.283 0.197 
Test 0.311 0.223 

Peak-peak amplitude (mm) Analytic 0.621 0.401 
Test 0.632 0.413 

The small deviation of the amplitude for the ring exists between the computation and test 
because the rigid ring in the analytic model is flexible component in the tested gearbox and that 
the damping of stirring lubrication oil is not considered in the model. The vibration of the output 
shaft is influenced by other connected components, the vibration of the test rig and the operating 
of generator also affect the test vibration, so the tested vibration of the output shaft is little larger 
than the analytic result. 

The experimental result generally agrees well with the theoretical computation and validates 
the effectiveness of the theoretical model. The lumped-parameter dynamics model for the MW 
wind turbine gearbox pitch control is fairly precise, and can provide theoretical basis for the 
research of the dynamics of the planet gearbox. 

6. Conclusions 

An analytic lumped-parameter dynamics model was established for the gearbox of MW wind 
turbine pitch control. The natural frequencies and the vibration modes of the gearbox were 
analyzed and three types of vibration modes were observed. It is found that the pitch control 
reducer is far away from resonance though calculation. Moreover, the undamped and damping 
forced vibration response were studied, it is shown that the undamped vibration is more severe 
than the damping vibration. Finally, the proportion damping forced response was compared 
against the physical experimental vibration result. The little deviation validates the effectiveness 
of the analytic model. This paper provides a reference of designing the dynamics characteristics 
of planetary gears. 
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