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Abstract. The paper presents the proposed methodology of crankshaft stiffness matrix modeling. 
Geometry and linear-elastic shaft properties are one of common occurrences of torsionally rigid 
vibration coupling in crank systems. Model and experimental studies require the stiffness of the 
object in question. In the case of linear-elastic systems it is identical with the definition of its 
stiffness matrix. In the introduction, the current state of knowledge in the field of identification 
and modeling of crankshaft dynamics was reviewed. The next chapter presents the research stand 
for the study of dynamic properties of crank systems. The measurement path was described, its 
parameters and preliminary results were presented. The next part concerns the dynamic model of 
the crank system used by the authors and the need for a methodology to determine the stiffness of 
the shaft in question. The following chapters describe the mathematical description of the 
proposed methodology and the results of the calculations. The article was finalized with a 
summary of conclusions drawn from the work carried out. 
Keywords: stiffness matrix, crankshaft, mechanical vibrations, piston engine. 

1. Introduction 

In the combustion engine, the crankshaft torsional vibration reduction is the most effective. 
This is dictated by fatigue strength of the shaft itself and care about the viability of the remaining 
components of the drive system. At the design stage of the structure with rotating elements, the 
problem of the bending and torsional vibration is very often overlooked and the vibrations are 
independently analyzed [1]. This is caused by a large complexity of the problem. Previous studies 
(also conducted by the authors) indicate that this is an important simplification [2]. Matrices of 
stiffness in commonly used models of uncoupled bending and torsional vibrations have a different 
form than those derived from numerical analysis. Qualitatively, other results are obtained for the 
linear-elastic crankshaft model [3]. The geometry of the object under consideration and its 
material properties are responsible for the coupling of its angular and transverse movements. 
Consequently, it was necessary to develop an effective methodology for determining the 
components of the crankshaft rigidity matrix. In addition, the analysis of the model proposed in 
[2] makes it possible to claim that the coupling phenomenon is useful for the purpose of diagnostic 
and structural rotor devices, in which the measurement of torsional vibrations is hindered by the 
use of coupling to induce torsional vibrations based on transverse vibrations which are easier to 
measure. 

2. Test stand 

The considered object is the crankshaft of the turbocharged twin-cylinder FIAT TwinAir with 
a displacement of 875 cm3 and a power of 63 kW (Fig. 1). The construction uses a balancer shaft 
driven by the crankshaft with a gear. The shaft is supported on three plain bearings. 

The shaft was made of steel with forging technology. It is unified, has four counterbalance, 
flywheel attachment pins, oil pump drive, camshaft sprocket, and crankshaft that drive the rest of 
the engine. 

The measuring system consists of a National Instruments measurement card, a computer with 
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LabView software installed (analyzer and data logger), two triaxial piezoelectric accelerometers 
Brüel & Kjær, and one-axis piezoelectric accelerometer Brüel & Kjær for measuring the angle of 
the flywheel. The setup of the measurement system and the location of the transducers are shown 
in the diagram (Fig. 2). 

 
Fig. 1. Test stand – TwinAir two-cylinder engine with 875 cm3 displacement 

 
Fig. 2. Diagram of test stand. 1. Sensor, 

2. Flywheel, 3. Crankshaft,  
4. Measure card, 5, PC Fig. 3. Results of experiments 

3. Dynamic model of the crankshaft system 

Based on the results of the previous work of the authors, a discreet linear-spring crankshaft 
model was taken. This is an important simplification for a continuous model characterized by 
infinite number of oscillation frequencies and vibration forms. In addition, the continuous model 
does not neglect vibration coupling. Despite the simplicity, the used model can be effective. The 
proposed approach allows for accurate mapping of important vibration frequencies and keeping 
of the torsion-bending coupling. The mathematical model in the matrix form is as follows: ݔܯሷ + ሶݔܥ + ݔܭ + ,ሺ߮ଵܨ ߮ଶ, ߮ଷ, ,ଵݑ ,ଶݑ ,ఛଵݑ ఛଵሻݑ = , (1)ܨ

here: ݔ  – generalized coordinate matrix, ܯ  – mass matrix, ܥ  – damping matrix, ܭ  – stiffness 
matrix, ܨሺ ሻ – nonlinear forces matrix, ܨ – forced forces. 

The following six generalized coordinates are assumed for calculations: the angle of twisting 
of the shaft origin ߟଵ, the tangential displacement ݖ and normal ݑ of the shaft axis on both crank 
pins and the angle of twist of the shaft end ߟହ. Based on the accepted data, the mass and gyroscopic 
forces were determined. The stiffness matrix ܭ of the general form remains to be determined: 
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ܭ = ێێۏ
ଵଵ݇ۍێ ݇ଵଶ 0 0 0݇ଵଶ ݇ଶଶ 0 0 00 0 ݇௧ଵ௧ଵ ݇௧ଵ௧ଶ ݇௧ଵఏ0 0 ݇௧ଶ௧ଵ ݇௧ଶ௧ଶ ݇௧ଶఏ0 0 ݇௧ଵఏ ݇௧ଶఏ ݇௧ଷఏۑۑے

(2) .ېۑ

As already noted in the introduction to the article, the model used in practice does not produce 
satisfactory results, which results in the occurrence of significant phenomena in the results of the 
simulation. 

4. Mathematical model of crankshaft stiffness 

Determination of the stiffness matrix for linear-elastic systems is reduced to defining the 
significant nodes of an object in the directions of generalized forces. For simplicity of the model, 
it was decided to replace the complex geometry of the shaft with the simple beam diagram shown 
in Fig. 4. The diagram shows the directions of forces and moments operating on the shaft during 
operation. 

 
Fig. 4. Scheme of generalized coordinates  

and load distribution 

 
Fig. 5. Finite element load diagram 

 

In order to determine the stiffness matrix, an approach was proposed to determine the stiffness 
matrix ܭ fixed at one end (easy to experimentally verify) and transform it into a global stiffness 
matrix. Mathematical log of the algorithm is as follows: ܨ௫௧ = ܭ ⋅ ෩ܷ, (3)෩ܷ = ܷ − ܷ, (4)ܷ = ܩ ⋅ ܷଵ, (5)ܨ௫௧ = ܭ ⋅ ܷ − ܭ ⋅ ܷ = ܭ ⋅ ܷ − ܭ ⋅ ܩ ⋅ ܷଵ, (6)ܨ௫௧ = ሾܭ ܭ ⋅ ሿܩ ⋅ ܷܷଵ൨, (7)ܨ௫௧ = ஊܭ ⋅ ோܨ(8) ,ܷ = ܪ ⋅ ௫௧ܨ = ܪ ⋅ ஊܭ ⋅ ௦௨ܨ(9) ,ܷ = ܨ௫௧ܨோ ൨  ܪஊܭ ⋅ ஊ൨ܭ ⋅ ܷ, (10)

where: ܨ௫௧ – vector of the external forces, ܨோ – vector of the reaction forces, ܭ – stiffness matrix 
of the walled element, ෩ܷ  – fixed system deflection vector, ܩ  – matrix of node displacement 
geometry, ܭஊ  – stiffness matrix in a global coordinate system, ܷ  – vector of generalized 
displacements, ܪ – reaction force matrix depends on reaction force vector, ܨ௦௨ – vector of the 
nodal forces. 

In order to increase the generality of the proposed method of determining the crankshaft 
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stiffness matrix, it was decided to build a specialized beam element in the form of a flat frame 
loaded with forces and moments as in the Fig. 5. 

For the frame of Fig. 5, the stiffness matrix ܭ is determined: 

ܭ =
ێێۏ
ێێێ
ێێێ
ۍێ 12 ⋅ ଷ݈ܫܧ − 6 ⋅ ଶ݈ܫܧ 0 0 0− 6 ⋅ ଶ݈ܫܧ 12 ⋅ ଷ݈ܫܧ 0 0 00 0 2,5 ⋅ ଷ݈ܫܧ − 1,06 ⋅ ଶ݈ܫܧ − 0,54 ⋅ ଶ0݈ܫܧ 0 − 1,06 ⋅ ଶ݈ܫܧ 0,87 ⋅ ݈ܫܧ 0,25 ⋅ 0݈ܫܧ 0 − 0,54 ⋅ ଶ݈ܫܧ 0,25 ⋅ ݈ܫܧ 0,55 ⋅ ଶ݈ܫܧ ۑۑے

ۑۑۑ
ۑۑۑ
ېۑ
. (11)

After applying the dependence Eqs. (3-10) for matrix ܭ of the given Eq. (11), the stiffness 
matrix of the proposed finite element is obtained: 

ێێۏ
ێێێ
ێێێ
ێێێ
ێێێ
ێێێ
ێێێ
ۍ 12 ⋅ ଷ݈ܫܧ 6 ⋅ ଶ݈ܫܧ − 12 ⋅ ଷ݈ܫܧ 6 ⋅ ଶ݈ܫܧ 0 0 0 0 0 06 ⋅ ଶ݈ܫܧ 7 ⋅ 2ܫܧ ⋅ ݈ − 6 ⋅ ଶ݈ܫܧ 5 ⋅ 2ܫܧ ⋅ ݈ 0 0 0 0 0 0− 12 ⋅ ଷ݈ܫܧ − 6 ⋅ ଶ݈ܫܧ 12 ⋅ ଷ݈ܫܧ − 6 ⋅ ଶ݈ܫܧ 0 0 0 0 0 06 ⋅ ଶ݈ܫܧ 5 ⋅ 2ܫܧ ⋅ ݈ − 6 ⋅ ଶ݈ܫܧ 7 ⋅ 2ܫܧ ⋅ ݈ 0 0 0 0 0 00 0 0 0 2,52 ⋅ ଷ݈ܫܧ 2,72 ⋅ ଶ݈ܫܧ 1,97 ⋅ ଶ݈ܫܧ − 2,52 ⋅ ଷ݈ܫܧ 1,05 ⋅ ଶ݈ܫܧ 0,54 ⋅ ଶ0݈ܫܧ 0 0 0 2,72 ⋅ ଶ݈ܫܧ 3,37 ⋅ ݈ܫܧ 2,13 ⋅ ݈ܫܧ − 2,72 ⋅ ଶ݈ܫܧ 0,71 ⋅ ݈ܫܧ 0,59 ⋅ 0݈ܫܧ 0 0 0 1,97 ⋅ ଶ݈ܫܧ 2,13 ⋅ ݈ܫܧ 1,98 ⋅ ݈ܫܧ − 1,97 ⋅ ଶ݈ܫܧ 0,83 ⋅ ݈ܫܧ − 0,006 ⋅ 0݈ܫܧ 0 0 0 − 2,52 ⋅ ଷ݈ܫܧ − 2,72 ⋅ ଶ݈ܫܧ − 1,97 ⋅ ଶ݈ܫܧ 2,52 ⋅ ଷ݈ܫܧ − 1,05 ⋅ ଶ݈ܫܧ − 0,54 ⋅ ଶ0݈ܫܧ 0 0 0 1,05 ⋅ ଶ݈ܫܧ 0,71 ⋅ ݈ܫܧ 0,83 ⋅ ݈ܫܧ − 1,05 ⋅ ଶ݈ܫܧ 0,87 ⋅ ݈ܫܧ 0,23 ⋅ ଶ0݈ܫܧ 0 0 0 0,54 ⋅ ଶ݈ܫܧ 0,59 ⋅ ݈ܫܧ − 0,006 ⋅ ݈ܫܧ − 0,54 ⋅ ଶ݈ܫܧ 0,23 ⋅ ଶ݈ܫܧ 0,55 ⋅ ଶ݈ܫܧ ۑۑے

ۑۑۑ
ۑۑۑ
ۑۑۑ
ۑۑۑ
ۑۑۑ
ۑۑۑ
ې

. (12)

Taking into account the boundary conditions corresponding to the crankshaft support 
conditions, it is possible to determine the desired crankshaft rigidity matrix: 

ܭ = ݈ܫܧ ⋅
ێێۏ
ێێێ
ێێێ
ۍێ 3,84݈ଶ − 1,24݈ 0 0 0− 1,24݈ 3,84݈ଶ 0 0 00 0 2,2݈ଶ − 0,22݈ଶ 0,078݈0 0 − 0,22݈ଶ 0,044݈ଶ − 0,028݈ଶ0 0 0,078݈ − 0,028݈ଶ 0,13 ۑۑے

ۑۑۑ
ۑۑۑ
ېۑ
. (13)

As can be seen, the stiffness matrix Eq. (13) determined with the use of the proposed 
methodology corresponds to the structure of the postulated general form of the crankshaft stiffness 
matrix Eq. (2). 
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Fig. 6. Results of simulations 

Fig. 6 shows the amplitude spectrum of: 
– torsional vibrations of the shaft outset – fi1, 
– torsional vibrations of the shaft end – fi2, 
– bending vibrations of the first crank – un1, 
– torsional vibrations of the first crank – ut1, 
– bending vibrations of the second crank – un2, 
– torsional vibrations of the first crank – ut2. 
On the Fig. 6 torsional vibrations can be observed below 1000 Hz. Above 1000 Hz there are 

bending vibrations. 

5. Conclusions 

The paper presents the proposed methodology of crankshaft stiffness matrix modeling. In the 
first chapter, the problem of the dynamics of the crank systems and their vibration modeling was 
briefly characterized. The second chapter presents a test stand and gives relevant information. The 
next part presents the dynamic model used by the authors. In addition, the problem of determining 
the stiffness of the crankshaft matrix was formulated. Next, the proposed methodology for 
stiffness matrix determination is described. Calculations were made for a crankshaft case with 
relatively simple geometry. The fifth chapter presents the preliminary results of the simulation 
and experimental research. 

Studies have shown that it is possible to determine an effective method for modeling crankshaft 
stiffness. Dynamic simulations show the influence of torsional vibration on the crankshaft 
frequency structure. In the obtained results, the bands of torsional and bending vibrations were 
found. Normal vibration frequencies are greater than torsional vibrations. This confirms the 
correctness of the proposed approach to modeling the stiffness of the crank system. In addition, 
the results obtained qualitatively agree with the models presented in the literature on the 
simplifications used there. This means that the proposed method may be a generalization of the 
previous approach to the problem of the modeling of the crankshaft and the crankshaft vibrations. 
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