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Abstract. To solve the multivariable multi-step prediction problem in chaotic complex systems, 
this paper proposes a local Volterra model based on phase points clustering. Firstly, reconstruct 
the phase space of the data and calculate the similarity of the evolution trajectories. According to 
the similarity, the initial clustering center of the observation point is calculated and the clustering 
is carried out by means of K mean. We find the cluster class nearest to the prediction phase, 
compare the predicted phase point with the evolutionary trajectory similarity of all the observed 
points in the cluster, select the optimal neighboring phase point, and the optimal neighboring phase 
point is used for training and multi-step prediction of the multivariable local Volterra model. The 
proposed model method can greatly reduce the time of multi-step prediction and improve the 
efficiency of prediction. Finally, by experimenting with the data of Beijing PM2.5 acquired from 
UCI machine learning database, the experimental results show that this model method has better 
predictive performance. 
Keywords: local Volterra, multi-step prediction, phase points clustering, comprehensive criterion. 

1. Introduction 

Chaotic time series prediction is an important application field and research hotspot of chaos 
theory [1]. In recent years, with the development of nonlinear science, multivariable chaotic time 
series prediction shows a greater advantage than univariate chaotic time series prediction, 
Multivariable chaotic time series prediction has wide application prospect in many aspects such 
as weather forecasting, runoff forecasting, economic forecasting, wind and electricity load 
forecast [2], stock forecasting [3] and target trajectory prediction. The research object of this paper 
is air pollutant PM 2.5. In general, air pollutant emissions are important indicators for evaluating 
environmental management and implementing new strategies. Fine particles (PM2.5 or PM10) 
contain particles no larger than 2.5 μm or 10 μm [4]. These particles are an important part of air 
pollution and are mainly caused by the combustion of fossil fuels and air pollutants such as NO2, 
CO, and SO2. High concentrations of PM2.5 can cause serious air pollution, causing a series of 
respiratory and pulmonary diseases, and have a serious impact on public health [5]. PM2.5 is 
influenced by multivariable factors such as NO2, CO, humidity, wind speed and wind direction, 
and has non-linear relationship with air quality and meteorological data. In order to obtain higher 
prediction accuracy, researchers in recent years have made a lot of researches on the methods of 
predicting the concentration of PM2.5, PM10 and other air pollutants [6]. For the linear prediction 
method, Jian et al. used the ARIMA model to study the influence of meteorological factors on 
ultrafine particulate matter (UFP) and PM10 concentrations under heavy traffic conditions in 
Hangzhou [7]. Vlachogianni et al. using multivariate linear regression model to predict the NOx 
and PM10 concentrations in Athens, the NO, NO2, CO and PM 2.5 concentrations were used as 
predictive variables [8]. The prediction models such as Arima and MLR have been widely used 
to predict PM concentration, but the linear method can provide reliable prediction result only when 
the time series data is linear or near linear, however, this kind of method still has wide application 
scope in the Prediction field [9]. For nonlinear predictive methods, for example, Cobourn, a 
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nonlinear regression model is proposed to predict PM 2.5 air quality in Kentucky State Louisville 
metropolitan Area [10]. Artificial neural Network (ANN) model has the ability of detecting 
response and complex non-linear relationship between predictive factors, and can be trained by 
many effective training algorithms, therefore, artificial neural network model has aroused more 
and more attention in the field of air quality prediction [11]. For example, Pérez et al. uses the 
artificial neural network model to predict PM2.5 concentration and humidity by using wind speed 
and wind direction and PM2.5 concentration as predictive variables [12]. Fernando et al. show 
that the artificial neural network shows the advantages of fast calculation and high precision, can 
be used for the rapid development of air quality early-warning system, ANN prediction error 
changes according to the predicted range and different input variables. Although artificial neural 
network can produce better prediction results, the disadvantage of this method is that it requires a 
large number of training samples and results in unstable training results [13]. 

In recent years, with the progress and development of functional theory, Volterra filter has 
gained wide attention with its advantages of fast training speed, strong nonlinear approximation 
ability and high prediction accuracy [14]. At present, domestic and foreign scholars have 
conducted a series of researches on the multi-step prediction of high dimensional chaotic time 
series by Volterra functional technology, and its application is continuously deepening and 
refining. Literature [15] proposed the wind power prediction genetic algorithm-Volterra neural 
network (GA-VNN) model. This method combines the structural characteristics of the Volterra 
functional model and the BP neural network model, and uses the genetic algorithm to improve the 
combination model. In terms of global optimization capability, the predictive performance of wind 
power super short-term multi-step prediction is significantly higher than that of Volterra model 
and BP neural network model. However, this combination model has short prediction steps, large 
application limitations, and complex structures. Larger, less predictive efficiency. The above 
method only improves multi-step prediction performance from a single point of view, and does 
not fully consider the comprehensive factors such as prediction accuracy, prediction efficiency, 
multivariate information, and applicability. The literature [16] proposed a Volterra-based 
multivariate chaotic time series multi-step prediction model. This method expands the univariate 
Volterra filter into a multivariate, taking into account the effect of multivariate information on the 
performance of multi-step predictions. When the number is small, its multi-step prediction 
performance is better than that of the univariate Volterra model and the multivariable local 
polynomial model. However, because the model is based on global prediction and multi-step 
prediction, when the data volume is large, its multi-step prediction efficiency needs further 
improvement. It is one of the most efficient and common methods to predict high-dimensional 
chaotic complex systems through local modeling. The key to improving local multi-step prediction 
accuracy is to select a reasonable neighboring phase point. The current major criteria are: Distance, 
direction and distance comprehensive criteria, vector similarity and so on [17]. According to the 
theory of complex systems, the correlation information between multi-dimensional variables and 
observational data are all involved in the evolution of the system. The above criteria do not fully 
consider the association information between variables and multi-steps when selecting the optimal 
neighboring phase points. Comprehensive factors such as the evolutionary rule after the 
retrogression and the acting forces at different locations. At the same time, for the selection of the 
optimal neighboring phase points, the traditional local area prediction method compares the 
predicted phase points with all observed phase points in the phase space, and the amount of 
calculation is large. In particular, selecting the optimal neighboring phase point in observation 
points with a large amount of data has a long operation time, which greatly reduces the multi-step 
prediction efficiency. Currently, there is no effective solution to the related literature.  

PM2.5 concentration chaotic time series data is affected by multiple variables such as 
temperature and wind speed in the prediction. To improve the prediction accuracy, a multi-step 
local model Volterra multivariable chaotic time series prediction model based on phase clustering 
is proposed. The experimental data was collected from UCI Machine Learning Repository’s US 
Embassy in Beijing within five years of weather reporting and pollution levels. Modeling the 
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PM2.5 concentration, based on the multi-variable local Volterra multi-step prediction model, 
combined with the evolution law of multi-step backtracking of adjacent phase points and the 
influence of the correlation information between variables on the evolution trajectory of phase 
points, A new multivariate evolution trajectory similarity synthetical criterion is used to improve 
the precision of multi-step prediction of PM2.5 concentration by selecting a reasonable 
neighboring phase point. According to the characteristics of the similarity between observation 
points in phase space, the observation phase points are first clustered, and then the similarity 
degree is compared between the phase points and the nearest cluster phase point to select the 
optimal neighboring phase point. Reduce the number of calculation iterations and reduce multi-
step prediction time. The idea of phase cluster analysis is used to improve the multi-step prediction 
efficiency of PM2.5 concentration, and ultimately achieve the purpose of comprehensively 
improving multi-step prediction performance of multi-variable local Volterra model. It has broad 
application prospect and value in air quality prediction. 

2. Local Volterra multivariable chaotic time series prediction 

2.1. Multivariate phase space reconstruction 

The phase space reconstruction is the basis of studying and analyzing the chaotic dynamical 
system. According to Takens’s theorem, as long as choosing the appropriate embedding 
dimension, that is 𝑚 ≥ 2𝐷 + 1, the reconstruction of the phase space will have the same geometry 
as the original power system, and it’s equivalent to the original power system, where 𝑚 is the 
embedded dimension and 𝐷 is the singular attractor dimension of the chaotic system [18]. 

For the multi-variable phase space reconstruction technique, given the chaotic time series 𝑥(1), 𝑥(2), . . . , 𝑥(𝑁) of 𝑀 dimension multivariable: 𝑥(𝑖) = ൫𝑥ଵ(𝑖), 𝑥ଶ(𝑖), … , 𝑥ெ(𝑖)൯,   𝑖 = 1,2, … , 𝑁. (1) 

The multi-variable chaotic time series is reconstructed as follows:  𝑋 = ሼ𝑥ଵ(𝑛), 𝑥ଵ(𝑛 − 𝜏ଵ), … , 𝑥ଵ(𝑛 − (𝑚ଵ − 1)𝜏ଵ), 𝑥ଶ(𝑛), 𝑥ଶ(𝑛 − 𝜏ଶ), … ,       𝑥ଶ(𝑛 − (𝑚ଶ − 1)𝜏ଶ), … , 𝑥ெ(𝑛), 𝑥ெ(𝑛 − 𝜏ெ), … , 𝑥ெ(𝑛 − (𝑚ெ − 1)𝜏ெ)ሽ், (2)

where 𝜏  and 𝑚  represent the delay time and embedding dimension of the 𝑖 th variable, 
respectively, and 𝑛 = 𝐽, 𝐽 + 1, … , 𝑁, and  𝐽 = maxଵஸஸெ(𝑚 − 1)𝜏 + 1. 

2.2. Multivariable local Volterra prediction model 

The Volterra model of a single variable is extended to be a multivariable Volterra model [19], 
because the Volterra functional is very difficult to apply to the actual situation by the infinite series 
expansion. In general, the sum of 𝑀 is usually used and the second order truncation is performed. 
The form is as follows: 

𝑥ො(𝑛 + 1) = 𝑀ℎ +  ℎଵଵ(𝑖ଵ)𝑥ଵ(𝑛 − 𝑖ଵ𝜏ଵ) +ேିଵ
భୀ  ℎଵଶ(𝑖ଵ, 𝑖ଶ)𝑥ଵ(𝑛 − 𝑖ଵ𝜏ଵ)𝑥ଵ(𝑛 − 𝑖ଶ𝜏ଵ)ேିଵ

భ,మୀ  

     + ⋅⋅⋅ +  ℎெଵ(𝑖ଵ)𝑥ெ(𝑛 − 𝑖ଵ𝜏ெ) +ேିଵ
భୀ  ℎெଶ(𝑖ଵ, 𝑖ଶ)𝑥ெ(𝑛 − 𝑖ଵ𝜏ெ)𝑥ெ(𝑛 − 𝑖ଶ𝜏ெ)ேିଵ

భ,మୀ + 𝑒(𝑛). (3)

After the state is expanded, the total number of coefficients is: 
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ℎ =  1 + 𝑚 + 𝑚ெ
ୀଵ (𝑚 + 1)/2.  

The input vector of the multivariable Volterra filter is: 𝑈(𝑛) = [𝑈ଵ(𝑛), 𝑈ଶ(𝑛),⋅⋅⋅, 𝑈ெ(𝑛)] (4) 𝑈(𝑛) = [1 , 𝑥(𝑛), 𝑥(𝑛 − 𝜏), … , 𝑥(𝑛 − (𝑚 − 1)𝜏),       𝑥ଶ(𝑛), 𝑥(𝑛)𝑥(𝑛 − 𝜏),⋅⋅⋅, 𝑥ଶ(𝑛 − (𝑚 − 1)𝜏)], (5) 

where 𝑖 is the input vector of the 𝑖th variable, 𝑖 = 1, 2, ..., 𝑀, and the filter coefficient vector is: 𝐻(𝑛) = [𝐻ଵ(𝑛), 𝐻ଶ(𝑛), … , 𝐻ெ(𝑛)], (6) 𝐻(𝑛) = [ℎ, ℎଵ(0), ℎଵ(1), … , ℎଵ(𝑚୧ − 1), ℎଶ(0,0), ℎଶ(0,1), … , ℎଶ(𝑚 − 1, 𝑚 − 1)]. (7) 

The multivariable Volterra filter output (3) can be written as: 𝑥ො(𝑛 + 1) = 𝐻்(𝑛)𝑈(𝑛). (8) 

Multivariable Volterra filter prediction error is: 𝑒(𝑛) = 𝑥(𝑛 + 1) − 𝑥ො(𝑛 + 1). (9) 

3. Select the optimal adjacent phase point 

The selection of traditional adjacent phase points is mostly based on the similarity of the one-
step evolution of the chaotic orbit, which lacks the consideration of the overall evolution of the 
system, and ignores the influence of the correlation information between variables on the 
evolutionary trajectory. When the prediction step is longer, the prediction trajectory and the 
original trajectory deviate greatly. In order to improve the learning performance of the model, 
avoid increasing the complexity of the model, while avoiding the influence of the relative weak 
phase point on the model precision, the selection of the adjacent phase point should not only select 
the phase points similar to the prediction point evolution trajectory in many phase points, but also 
control the number of adjacent points. Therefore, by defining the mutual information relative 
contribution rate, the multi-step evolution distance similarity and multi-step evolution direction to 
measure the similarity of the multivariate evolutionary trajectory, this paper proposes a selecting 
optimal adjacent phase points synthesis criterion.  

Mutual information can better reflect the statistical dependence of variables, and mutual 
information can be used for multivariate correlation analysis [20]. In order to avoid the direct 
estimate of high dimensional probability density function, based on the estimation of 𝑘 adjacent 
mutual information [21], the relative contribution rate of the input variable to the nearest neighbor 
information value is used to represent the correlation information between variables. The basic 
method of 𝑘 adjacent mutual information estimation is: if 𝜀(𝑖)/2 represents point 𝑒 = (𝑥, 𝑦) to 
its 𝑘th neighbor distance, the distance between the 𝑋-axis and the 𝑌-axis is respectively, and the 
mutual information estimation of variables 𝑋 and 𝑌 is: 𝑀𝐼(𝑋, 𝑌) = 𝜓(𝑘) − ൻ𝜓(𝑛௫) + 𝜓൫𝑛௬൯ൿ + 𝜓(𝑁), (10) 

where 𝜓(𝑥)is the digamma function, which is generally written as 𝜓(𝑥) = Γᇱ(𝑥)/Γ(𝑥); 𝑛௫ and 𝑛௬  are the number of data points of the conditions of ฮ𝑥 − 𝑥ฮ ≤ 𝜀௫(𝑖)/2 and ฮ𝑦 − 𝑦ฮ ≤ 𝜀௬(𝑖)/2   ; ⟨⋅⋅⋅⟩ represents the average of all of these variables. 
For multivariate, the mutual information can be extended by Eq. (10) to: 
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𝑀𝐼(𝑋ଵ, 𝑋ଶ,⋅⋅⋅, 𝑋ெ) =  𝜓(𝑘) + (𝑀 − 1)𝜓(𝑁) − ൻ𝜓൫𝑛௫భ൯ + 𝜓൫𝑛௫మ൯ +⋅⋅⋅ +𝜓൫𝑛௫ಾ൯ൿ, (11) 

where 𝑀 is the dimension of the variable. Based on the relative contribution of different input 
variables to the overall mutual information value, the correlation between multivariate variables 
is analyzed. Let 𝑆 = ሼ𝑋ଵ, 𝑋ଶ, … , 𝑋ெሽ be the subset of input variables, 𝑆 means to remove a subset 
of 𝑋 variables in the  𝑆 set (𝑖 = 1,2, … , 𝑀), and 𝑌 is the output variable. 

The relative contribution rate of the variable 𝑋 to the mutual information is defined as: 

𝑉௱ெூ(𝑋) = 𝑀𝐼(𝑆, 𝑌) − 𝑀𝐼(𝑆, 𝑌)𝑀𝐼(𝑆, 𝑌) × 100%. (12) 

Criterion 1: The distance similarity between the predicted point 𝑋(𝑝) and the phase point 𝑋(𝑡) 
is as follows: 

𝛿(𝑝, 𝑡, 𝑞) = 1 − max൫ห𝑑 − 𝑑௧ห൯ − ห𝑑 − 𝑑௧หmax൫ห𝑑 − 𝑑௧ห൯ − min൫ห𝑑 − 𝑑௧ห൯, (13) 

where 𝑑 = ‖𝑋(𝑝) − 𝑋(𝑝 − 𝑞)‖,  𝑑௧ = ‖𝑋(𝑡) − 𝑋(𝑡 − 𝑞)‖, 𝛿(𝑝, 𝑡, 𝑞) ∈ [0,1], and 𝛿(𝑝, 𝑡, 𝑞) is 
smaller, the closer the evolution distance of the 𝑞 step of the adjacent phase point 𝑋(𝑡) is to the 𝑞 
step evolution of 𝑋(𝑝). Considering the smaller phases of the backtracking step, the greater the 
role of the prediction point, the weighted processing of the action of the multi-step backtracking 
point. Define the back step distance weight vector 𝛾(𝑗), (𝑗 = 1,2, … , 𝑞), and satisfy the condition: 𝛾(1) ≥ 𝛾(2) ≥⋅⋅⋅≥ 𝛾(𝑞), 𝛾(𝑗) = 2(𝑞 − 𝑗 + 1)/𝑞(𝑞 + 1). 

The weighted treatment of the similarity of multi-step evolution distance is: 

𝛿(𝑝, 𝑡) =  𝑟(𝑗)𝛿(𝑝, 𝑡, 𝑞)
ୀଵ . (14) 

2) Criterion 2: The direction distance similarity between the predicted point 𝑋(𝑝) and the 
phase point 𝑋(𝑡) is as follows: 

cos𝜃(𝑝, 𝑡, 𝑞) = 1 − ቤ [𝐹(𝑝, 𝑞), 𝐹(𝑡, 𝑞)]‖𝐹(𝑝, 𝑞)‖ ⋅ ‖𝐹(𝑡, 𝑞)‖ቤ, (15) 

where 𝐹(𝑝, 𝑞) = 𝑋(𝑝) − 𝑋(𝑝 − 𝑞), 𝐹(𝑡, 𝑞) = 𝑋(𝑡) − 𝑋(𝑡 − 𝑞), [ ] represents the inner product 
of vectors, ‖ ‖ represents the distance norm of the vector, | | represents the absolute value, and the 
smaller the value of cos𝜃(𝑝, 𝑡, 𝑞), the closer the 𝑞 step evolution direction of the adjacent phase 
point 𝑋(𝑡) is to the 𝑞 step of 𝑋(𝑝). Define backward step weight vector 𝜑(𝑗)(𝑗 = 1,2, … , 𝑞), meet 
the condition: 𝜑(1) ≥ 𝜑(2) ≥⋅⋅⋅≥ 𝜑(𝑞) , take 𝜑(𝑗) = 2(𝑞 − 𝑗 + 2)/𝑞(𝑞 + 3) . The weighted 
processing of the similarity of multi-step evolution direction is:  

cos𝜃(𝑝, 𝑡) =  𝜑(𝑗)cos𝜃(𝑝, 𝑡, 𝑞).
ୀଵ  (16) 

3) Comprehensive criterion multivariate evolutionary trajectory similarity. 
The evolutionary trajectory similarity between the prediction point 𝑋(𝑝) and the phase point 𝑋(𝑡) of the single variable 𝑋 is: 𝜆(𝑝, 𝑡) = 𝜇ଵ𝛿(𝑝, 𝑡) + 𝜇ଶcos𝜃(𝑝, 𝑡), (17) 
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where 𝜇ଵ, 𝜇ଶ are the weight values of the distance index and the direction index, respectively, and 𝜇ଵ + 𝜇ଶ = 1, 𝑖 = 1, 2, …, 𝑀 represents the number of variables. The value of 𝜆(𝑝, 𝑡) is smaller, 
indicating that the prediction point 𝑋(𝑝) of a single variable 𝑋 is similar to that of phase point 𝑋(𝑡). Based on the relative contribution of input variables to the mutual information value, the 
similarity of the single variable evolution trajectory are extended to the multivariable, and the 
similarity of the evolution trajectory of the predicted point 𝑆(𝑝) and the phase point 𝑆(𝑡) of the 
input variable set 𝑆 = ሼ𝑋ଵ, 𝑋ଶ, … , 𝑋ெሽ is as follows: 

𝜉 =  𝑉௱ெூ(𝑋)ெ
ୀଵ 𝜆(𝑝, 𝑡). (18) 

Finally, according to the multivariate evolution similarity index selected the optimal point data, 
carrying on the training model. 

4. Adjacent points clustering analysis 

For the selection of the optimal adjacent point, the traditional local prediction method is to 
compare the predicted phase point with the global observation point, the calculation time is longer 
and the prediction efficiency is lower. For this reason, based on the 𝐾-means clustering algorithm, 
this paper proposes a new scheme based on adjacent phase point clustering analysis. Firstly, the 
observation phase points are analyzed by clustering, and then the predicted phase points are 
compared with the nearest cluster phase points, and the optimal adjacent phase points are selected 
to reduce the prediction time. 

Due to the complexity of multi-variable observation point, the cluster with different sizes and 
densities may be formed. The 𝐾-means algorithm is not very good for the data clustering of 
heterogeneous distribution. In order to prevent the density of the cluster from being too high and 
influence the prediction accuracy, the weighted processing of the sum of the errors in the cluster 
is carried out, and the criterion function of the clustering is defined as: 

𝐽 =  𝑛𝑁 ቌ  ቛ𝑋 − 𝑋ത௪ೕቛଶ
∈௪ೕ ቍ

ୀଵ , (19) 

where 𝐾 is the number of cluster centers, 𝑁 represents the total number of elements of the data 
set, 𝑊 stands for category 𝑗, 𝑁 represents the number of elements in the 𝑗th class, 𝑋ത௪ೕ represents 
the clustering center vector of class 𝑗, and 𝑋 represents the element vector belonging to class 𝑗. 

The clustering analysis of adjacent phase points takes the predicted phase points as the 
reference standard of the evolutionary trajectory similarity, and then clustering the evolutionary 
trajectory similarity of all the observation points. By the Eq. (17), the similarity vector of the 
multivariate evolution trajectory is defined as: 𝜆 = [𝜆ଵ(𝑝, 𝑡), 𝜆ଶ(𝑝, 𝑡),⋅⋅⋅, 𝜆ெ(𝑝, 𝑡)]. (20) 

By Eq. (18), the similarity value of multi-variable evolution trajectory of 𝑙 observation phase 
points is calculated, which is ranked as [𝜉ଵ, 𝜉ଶ,⋅⋅⋅, 𝜉] (𝜉ଵ ≤ 𝜉ଶ ≤⋅⋅⋅≤ 𝜉) in ascending order and [𝑙/𝐾] (integer) as the interval. In turn, the evolution path similarity vector �̅�(1), �̅�(2), … , �̅�(𝐾) of 𝐾 corresponding phase point is selected as the initial cluster center, and the initial cluster center 
can be dispersed as far as possible to close to the final clustering center and reduce the time of 
clustering. 

The update formula of clustering center is: 
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�̅�(𝑗) = 1𝑛  𝜆ఒ∈௪ೕ . (21) 

Based on the relative contribution rate of input variables to the mutual information value, by 
Eq. (12), the vector of the multi-variable mutual information contribution rate is: 𝑟 = [𝑉௱ெூ(𝑋ଵ), 𝑉௱ெூ(𝑋ଶ),⋅⋅⋅, 𝑉௱ெூ(𝑋ெ)]. (22) 

Define a new operator symbol: 𝐴 ⊗ 𝐵 = [𝑎ଵ, 𝑎ଶ,⋅⋅⋅, 𝑎ெ] ⊗ [𝑏ଵ, 𝑏ଶ,⋅⋅⋅, 𝑏ெ] = [𝑎ଵ𝑏ଵ, 𝑎ଶ𝑏ଶ,⋅⋅⋅, 𝑎ெ𝑏ெ]. (23) 

According to the multidimensional evolutionary trajectory similarity clustering feature of the 
phase point, from Eqs. (20-23), (19) can be expressed as: 

𝐽 =  𝑛𝑁
ୀଵ ቌ  ฮ𝑟 ⊗ ൣ𝜆 − �̅�(𝑗)൧ฮଶఒ∈௪ೕ ቍ. (24) 

5. The implementation step of multivariable multi-step prediction 

For the multi-step prediction problem of high-dimensional chaotic system, a lot of practice 
shows that most nonlinear dynamical systems can be characterized by Volterra series [22-24], so 
we can construct multi-step chaotic time series multi-step prediction model with Volterra series 
expansion. Therefore, in order to make the multivariate adjacent phase points selection more 
reasonable and more efficient, this paper proposes a local Volterra multivariable chaotic time 
series multi-step prediction based on phase points clustering. The concrete steps are as follows: 

Selection of input variables and multivariate phase space reconstruction; 
Taking the predicted phase points as the reference standard of evolution trajectory similarity, 

the multi variable trajectory similarity vector 𝜆 of all observation points is calculated, which is 
used as the data set to be clustered, and determined the number of clustering centers 𝑘; 

The prediction phase point is used as the reference standard for the similarity of evolutionary 
trajectory. In order to form 𝐾  clusters, we calculate the similarity value 𝜉  of multivariate 
evolutionary trajectory of all the observed phase points, and take the value of ascending 
arrangement and equal interval, then select 𝐾 corresponding phase point's evolution trajectory 
similarity vector �̅�(1), �̅�(2), … , �̅�(𝐾) as the initial cluster center. 

By redistributing the phase point, the value of the criterion function is minimized, and 𝑘 new 
clusters are formed and the cluster centers are updated. 

Cycle step 4, until the cluster centers are not changed, clustering is completed; 
The evolution trajectory similarity vector 𝜆 of the predicted phase point is calculated, and 

calculate the distance to each cluster center �̅�(𝑗), choose the nearest cluster, and the prediction 
phase point is compared with the similarity of the evolution trajectory of all the observation points 
in the cluster, and the d optimal adjacent phase points are selected from this. 

The optimal adjacent phase points are used to train the multivariable Volterra model. and the 
multivariable coefficient vector 𝐻(𝑛) is obtained, and the input vector 𝑈(𝑛) is generated by the 
prediction phase point, and the one-step prediction value 𝑥ො(𝑛 + 1) is given. 

The predictive value is entered into the observational data, then iterated, and the function of 
multi-step prediction is finally realized. 

The multi-step prediction performance of this model depends on the rationality and efficiency 
of the selection of the optimal adjacent phase points. 

The realization step of multi-step prediction. According to the local Volterra prediction model 
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proposed in this paper, we can get the first step prediction value. In the second step prediction, the 
first step prediction value is added as the known value to the historical data to calculate the second 
step Prediction value, when calculating the prediction value of the third step, the prediction value 
of the second step of the first step is added as the known value to the historical data to calculate 
the prediction value of the third step. According to this method, according to the model Continuous 
iteration for multi-step prediction. 

6. Simulation and result analysis 

6.1. Experimental data 

Experimental Data from the UCI machine learning database for the five-year weather report 
and pollution levels of the U.S. embassy in Beijing. 𝑋, 𝑌, 𝑍 three components as input variables, 
where 𝑋, 𝑌, 𝑍, respectively, PM2.5 concentration, temperature, wind speed. 𝑋 component as a 
predictor of the proposed model to verify. Each component received 5050 data points, of which 
the first 5000 data points as training data, the remaining 50 data points as the test data, and the 
data normalized. By means of saturation correlation dimension method and mutual information 
method, the embedded dimension of input variables is determined as 3, and the delay time is 12 
respectively. The weight values u1 and u2 of the distance and direction in the comprehensive 
criterion are respectively 0.58 and 0.42. The relative contribution rates of the 𝑌 and 𝑍 variables to 
the mutual information value are 32.5 % and 27.6 % respectively. Experimental hardware 
conditions: Inter (R) Core (TM) i7-6700 CPU@3.40GHz, 16GB memory. The software 
environment: MATLAB2016a.  

6.2. The judgment of chaotic characteristics 

In this paper, the chaotic characteristics of PM2.5 concentration, temperature and wind speed 
are identified by the saturation correlation dimension method. Crassberger and Procaccia [25, 26] 
proposed the correlation dimension method to investigate the chaotic characteristics of time series. 
For random sequences, the correlation dimension increases with the increase of embedding 
dimension, and does not reach saturation. For the chaotic sequence, correlation dimension tends 
to saturation gradually along with the increase of the embedding dimension. Therefore, we can 
distinguish the chaotic sequence from the random sequence according to whether the correlation 
dimension is saturated or not.  

Consider the vector set near the attractor ሼ𝑌 = 1,2, … , 𝑁ሽ, the associated integral 𝐶(𝑟) is 
defined as the number of points that are less than r for any given r, and the ratio of the number of 
points ൫𝑌, 𝑌൯ to all possible points, that is: 

𝐶(𝑟) = 2𝑁(𝑁 − 1)   Θ൫𝑟 − |𝑌 −|𝑌൯,ே
ୀାଵ

ே
ୀଵ  (25) 

where: Θ(𝑥) = ቄ0,    𝑥 ≤ 0,1,    𝑥 > 0,  

when 𝑁 → ∞, for any small 𝑟, we can follow the law of the exponential power change of 𝐶, which 
is 𝐶(𝑟) ⊂ 𝑟 , and we can calculate 𝐷 = 𝑑(ln[𝐶(𝑟)])/𝑑(ln(𝑟)) by the derivative of ln(𝐶(𝑟)) 
with ln(𝑟). In this paper, the G-P algorithm [27] is used to calculate the saturation correlation 
dimension of the time series. Figs. 1-3 respectively show the ln(𝐶(𝑟)) and ln(𝑟) curves of PM2.5, 
temperature and wind speed time series, where 𝐶(𝑟) is the correlation function and 𝑟 is the radius. 
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Fig. 1. PM2.5 time series ln𝐶(𝑟) − ln𝑟 graph 

 
Fig. 2. temperature time series ln𝐶(𝑟) − ln𝑟 graph 

 
Fig. 3. wind time series ln𝐶(𝑟) − ln𝑟 graph 

As shown in Figs. 1-3, the ln(𝐶(𝑟))  and ln(𝑟)  curves gradually become parallel with the 
embedding dimension increasing, that is, the correlation dimension gradually reaches saturation. 
According to Eq. (8), the attractor dimension of PM2.5 in temperature and wind speed time series 
is respectively 𝐷(𝑝) = 2.3576, 𝐷(𝑡) = 0.7144 and 𝐷(𝑤) = 1.2835. The attractor dimension is 
fractional Form, indicating that there are chaos characteristics in time series of PM2.5, temperature 
and wind speed. 

6.3. Select the number of the optimal adjacent phase point 

In order to verify the influence of the number of the nearest neighbor points on the prediction 
accuracy, the optimal adjacent points with different numbers are selected for comparison 
experiment. Using the comprehensive criterion of multivariate evolution trajectory and prediction 
model presented in this paper, and take the root mean square error (RMSE) as the evaluation 
criterion as shown in Eq. (26), where 𝑥ො(𝑖) represents the observation value, 𝑥(𝑖) represents the 
true value, 𝑁 represents the number of data points, the comprehensive criterion of multivariate 
evolution trajectory and prediction model proposed in this paper are used. The comparison results 
are shown in Table 1: 

𝑅𝑀𝑆𝐸 = ඨ∑ (𝑥ො(𝑖) − 𝑥(𝑖))ଶேୀଵ 𝑁ଶ . (26) 

As can be seen from Table 1, using the comprehensive criterion of multivariate evolution 
trajectory and prediction model presented in this paper, in the one-step, five-step and ten-step 
prediction, when the number of the nearest neighbor points increases from 2 to 12, the prediction 
error decreases gradually. When the number of the nearest neighbor points is more than 12, The 
error increases gradually, so when the number of nearest neighbor points is 12, the overall 
prediction error is the smallest.  
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Table 1. The effect of adopting different number of  
nearest neighbor points on multi-step prediction performance 

The optimal number of 
adjacent points 

One step prediction 
error

Five-step prediction 
error

Ten-step prediction 
error

2 6.425×10-2 4.417×10-1 7.836×10-1

4 3.794×10-2 2.109×10-1 5.791×10-1

6 1.681×10-2 1.365×10-1 4.217×10-1

8 7.175×10-3 8.712×10-2 1.054×10-1

10 4.103×10-3 3.538×10-2 3.319×10-2

12 2.394×10-3 1.627×10-2 2.476×10-2

14 5.217×10-3 5.194×10-2 6.245×10-2

16 3.106×10-2 1.328×10-1 2.207×10-1

18 1.329×10-2 3.619×10-1 5.758×10-1

6.4. Verify the validity of the comprehensive criteria 

In order to validate the validity of the similarity criterion of evolutionary trajectories proposed 
in this paper, comparison experiments with other commonly used criteria are carried out. The 
number of the nearest neighbor points is set as 12. The prediction model uses the model proposed 
in this paper and the root mean square error (RMSE) as the evaluation criterion as shown in 
Eq. (26), the results shown in Table 2. 

Table 2. The effect of different criteria on multi-step prediction performance 
Criterion One step prediction Five-step prediction Ten-step prediction

Euclidean criterion 5.08×10-2 8.74×10-2 6.65×10-1

Comprehensive criterion of  
direction and distance 7.15×10-3 4.73×10-2 2.26×10-1 

Vector similarity 9.53×10-2 6.63×10-2 5.94×10-1

The comprehensive criteria  
proposed in this paper 2.25×10-3 1.85×10-2 9.71×10-2 

From Table 2, it can be seen that the prediction error of the optimal adjacent phase point is 
large and the prediction performance is poor according to Euclidean distance in one step, five 
steps and ten steps prediction. Although the prediction results obtained by using the vector 
similarity, direction and distance criterion to select the optimal adjacent phase point are improved, 
the multi-step prediction accuracy of both is lower than that of the comprehensive criterion 
presented in this paper. It is clear that the comprehensive criterion proposed in this paper can select 
more reasonable adjacent points to improve the multi-step prediction accuracy of the model. 

6.5. Select the number of cluster centers 

The 5000 groups of training data produced by the Lorenz model for multivariate phase space 
reconstruction, and a total of 4976 phase points are generated, the 4976th phase point as the 
prediction phase point, the first 4975 phase points as the observation phase point, and the 
prediction phase point as the reference standard of the multivariate evolution trajectory similarity, 
The multivariate evolutionary trajectory similarity vectors of all the observed phase points are 
calculated as data sets for clustering. The evolution trajectory similarity vector of the first 4975 
observation points is shown in Table 3. 

In order to study the influence of the number of clustering centers on the prediction time and 
precision, the root mean square error of the ten-step prediction is used as the evaluation criterion, 
and the time of consumption is calculated by the 50-step prediction range. The prediction model 
uses the model proposed in this paper. the experimental results are shown in Table 4. 
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Table 3. The evolution trajectory similarity vector of the observation point 
X component Y component Z component

0.0574 0.0613 0.2837
0.0385 0.0572 0.2635
0.0176 0.0245 0.1439⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
0.0016 0.0047 0.0075

Table 4. The influence of the number of clustering centers on predicting time and accuracy 
Number of cluster centers Prediction error Total time-consuming/s

2 4.123×10-1 7.153 
4 1.734×10-1 5.306 
6 5.167×10-2 2.527 
8 8.109×10-3 1.128 
10 3.285×10-2 2.637 
12 6.497×10-2 4.417 
14 8.536×10-2 6.973 

As can be seen from Table 4, with the increasing number of clustering centers, the root mean 
square error of the ten-step prediction decreases first and then increases, and the total 
time-consuming of 50 steps is reduced and finally stabilizes at about 1.128 seconds. When the 
number of cluster centers is 8, the multi-variable evolution path similarity vector of 4976 
observation phase points is clustered, and the projection of the X and Y direction is shown in 
Fig. 4. The clustering center and phase point distribution are shown in Table 5. 

Due to the complexity and uncertainty of the multivariate evolutionary trajectory similarity 
vector of the observation phase points, the uneven distribution of the data sets may lead to the 
formation of clusters with different sizes and densities. It is shown from Fig. 4 and Table 5 that 
the 𝐾-means algorithm clustering with weighted processing avoids the high density of elements 
in the cluster, makes the clustering result relatively balanced, and greatly reduces the effect on the 
multi-step prediction precision of the model. 

 Fig. 4. The XY direction projection of the adjacent phase clustering 
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Table 5. Distribution of cluster centers and phase points 
Clustering center X component Y component Z component Number of phase points 

1 0.1909 0.1626 0.3952 601 
2 0.8377 0.5395 0.0271 576 
3 0.5249 0.3048 0.2138 1398 
4 0.0976 0.4185 0.5216 421 
5 0.0976 0.1096 0.1646 763 
6 0.3931 0.1464 0.2385 453 
7 0.0262 0.0310 0.0602 354 
8 0.2909  0.2666 0.6347 409 

6.6. Multi-step prediction performance comparison of each model 

6.6.1. The local multivariable linear autoregressive model 

The AR model is a commonly used time series prediction model, which has a relationship 
between variables of time series, and the current variable can be represented by the previous time 
[28, 29]. The local multivariable linear autoregressive model function can be written as: 

𝑥ଵ,ାଵ = 𝑎 +   𝑏,𝑥,ି(ିଵ)த


ୀଵ
ெ

ୀଵ` = 𝑎 + 𝑏ଵ,ଵ𝑥ଵ,      + ⋯ + 𝑏ଵ,భ𝑥ଵ,ି(ିଵ)ఛభ + ⋯ + 𝑏ெ,ಾ𝑥ெ,ି(ಾିଵ)ఛಾ, (27) 

where 𝑎 , 𝑏ଵ , 1, …, 𝑏ெ,  is the fitting parameter. Combined with the evolutionary trajectory 
comprehensive criterion, the parameters are estimated by the least square method to calculate the 
predicted value. 

6.6.2. The local multivariable least learning machine (ELM) prediction model 

For a multivariable time series training set: 𝑆 = ሼ(x୧, 𝑦୧)|𝑥 ∈ 𝑋 ∈ 𝑅,   𝑦 ∈ 𝑌 ∈ 𝑅,   𝑖 = 1, … , 𝑁ሽ,  

with 𝑁 samples, where 𝑥 is the input variable and𝑦is the output variable, the objective function 
of ELM [30] is: 𝑚𝑖𝑛 ଵଶ ‖𝛽‖ଶ + ଶ ∑ 𝑒ଶேୀଵ ,  𝑦 = ℎ(𝑥)𝛽 + 𝑒, (𝑖 = 1, … , 𝑁). Where 𝑥 is the output 
vector of the hidden layer; 𝐿 is the number of hidden nodes, 𝑊  is the input weight of the 𝑗th 
hidden node; 𝑏 is the deviation of the 𝑗th hidden node; 𝛽 is the output weight of the hidden layer; 
And for the 𝑗th hidden node excitation function. According to the Lagrange multiplier method and 
KKT optimal conditions, we have: 𝛽 = 𝐻்𝛼 = 𝐻்[𝐻𝐻் + 𝑑𝑖𝑎𝑔 ቀଵ , … , ଵቁ]ିଵ𝑌: 

𝐻 = ℎ(𝑥ଵ)⋮ℎ(𝑥ே)൩ = 𝑔(𝑤ଵ, 𝑏ଵ, 𝑥ଵ) ⋯ 𝑔(𝑤, 𝑏, 𝑥ଵ)⋮ ⋮𝑔(𝑤ଵ, 𝑏ଵ, 𝑥ே) ⋯ 𝑔(𝑤, 𝑏, 𝑥ே)ே×. (28) 

So as to obtain the prediction model 𝑓(𝑥) = ℎ(𝑥)𝛽. 

6.6.3. The local multivariable RBF neural network multi-step prediction model 

In the RBF neural network structure as shown in Fig. 5, the input vector of the network is the 
transpose of the input of m-dimensional vector 𝑋, then the number of network input layer nodes 
is 𝑚 = ∑ 𝑚ெ . Let the nodes of the hidden layer of the network have radial basis vectors  
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𝐻 = ൣℎଵ, ℎଶ, … , ℎ, … , ℎ൧் and ℎ as Gauss basis functions [31]: 

ℎ = exp ቆ− ฮ𝑋 − 𝐶ฮ2𝑏 ቇ ,   𝑗 = 1,2, … , 𝑘. (29) 

In this hidden layer, the center vector of Gaussian basis function of the 𝑗 th node is: 𝐶 = ൣ𝑐ଵ, 𝑐ଶ, … , 𝑐, … , 𝑐൧் , 𝑖 =  1, 2, …, 𝑚 . The same dimensionality of 𝐶  and 𝑋  can 
determine the quality of the network to a large extent. Let the base width vector of hidden layer 
node of network be: 𝐵 = ൣ𝑏ଵ, 𝑏ଶ, … , 𝑏, … , 𝑏൧். Where 𝑏 is the Gaussian basis function radius of 
node 𝑗, the size of which determines the complexity of the network, and the appropriate value can 
be selected through experiments and error information; ‖•‖ is the vector norm, which is generally 
the Euclidean norm.  

The weight vector from the hidden layer to the output layer is: 𝑊 = ൣ𝑤ଵ, 𝑤ଶ, … , 𝑤, … , 𝑤൧். (30) 

The output function of the network is: 

𝑥,ାଵ = 𝐺(𝑋) =  𝑤ℎ
ୀଵ =  𝑤 exp ൭− ฮ𝑋 − 𝐶ฮଶ2𝑏 ൱

ୀଵ . (31) 

In order to verify the superiority of the proposed model algorithm, the experimental 
performance is compared with the multi-variable local linear AR model, multivariable local RBF 
neural network multi-step prediction and multivariable ELM multi-step prediction model. The 
experimental results are shown in Figs. 6-9. 

 
Fig. 5. RBF network structure 
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b) 

Fig. 6. The multi-step prediction model proposed in this paper 
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a) b) 

Fig. 7. multi-step prediction of local linear AR model  

 
a) 

 
b) 

Fig. 8. Multi-step prediction of local RBF model model 

 
a) 

 
b) 

Fig. 9. Multi-step prediction of local ELM model 

In order to verify the multi-step prediction performance of the proposed model, compared with 
other multi-step prediction models, the effective step size of multi-step prediction is 50 steps, as 
shown in Figs. 6- 9. It can be seen from Fig. 6 that the prediction accuracy of the model proposed 
in the previous 12 steps is very high. Although the predicted trajectory deviates from the original 
trajectory after 12 steps, the deviation is relatively small, indicating that this model predicts a 
longer prediction step Long and small prediction error. As can be seen from Fig. 7, the multivariate 
local linear AR model has only 4 steps for multi-step prediction. After 4 steps, the predicted 
trajectory deviates from the original trajectory, the prediction error fluctuates greatly, and the 
prediction effect is not good. As can be seen from Fig. 8 and Fig. 9, the multivariable local RBF 
neural network model and Multivariable Local Least Learning Machine (ELM) model have 
five-step and seven-step effective prediction steps. Although the prediction error is small in the 
effective step, the same deviation from the predicted trajectory also limits the effective step of the 
prediction and the prediction error is larger. 

In order to verify the high efficiency of the model, the root mean square error is used as the 
evaluation criterion, as shown in Eq. (26), to estimate the time consumption of the 50 step 
prediction step. The prediction error and total time-consuming of each model are shown in Table 6. 
It can be seen from Table 6 that the total time-consuming forecast for multi-step prediction is only 
0.835 s, which greatly improves the prediction efficiency. In summary, the local Volterra 
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multivariable chaotic time series multi-step prediction based on phase point clustering proposed 
in this paper has better multi-step prediction performance. 

Table 6. Predictive errors and total time-consuming comparisons for each model 
Multi-step prediction 

model 
One step prediction 

error 
Ten steps prediction 

error 
Total time-consuming / 

s
Multivariate local linear  

AR model 6.317×10-2 8.165×10-1 3.725 
Multivariable local  

RBF model 2.054×10-2 5.483×10-1 9.043 
Multivariate local  

ELM model 8.523×10-2 2.692×10-1 5.416 
The model presented  

in this paper 4.564×10-3 8.627×10-2 0.835 

6.6.4. Cram’er-Rao lower bound performance evaluation 

Cram’er-Rao Lower Bound (CRLB) determines a lower bound for the variance of any 
unbiased estimator, and the estimate for reaching this lower bound is called the minimum variance 
unbiased (MVU) estimator [32]. Let 𝜃 be the parameter to be estimated, estimate it from the 
observed value 𝑥 , they satisfy 𝑎 probability density function 𝑓(𝑥; 𝜃), the lower bound of the 
variance of any unbiased estimate is the reciprocal of Fisher’s information: var൫𝜃൯ ≥ 1𝐼(𝜃). (32) 

The Fisher information is defined as: 

𝐼(𝜃) = 𝐸[ቆ𝜕ln𝑓(𝑥; 𝜃)𝜕𝜃 )ଶ = −𝐸 ቈቆ𝜕ଶln𝑓(𝑥; 𝜃)𝜕𝜃ଶ ቇ. (33) 

If and only if: ∂ln𝑓(𝐱; 𝜃)∂𝜃 = 𝐼(𝜃)(𝑔(𝐱) − 𝜃).  

The unbiased estimate for all 𝜃 to reach the lower bound can be calculated as 𝜃 = 𝑔(𝑥), which 
is the MVU estimator and the minimum variance is 1/𝐼(𝜃). 

We use the parameters of the multivariate Volterra model as an estimator, and use CRLB to 
evaluate the performance of the prediction result. The time series is 𝑥(1), 𝑥(2), . . . , 𝑥(𝑁). For 
multivariate estimated parameter 𝜃 = [𝜃ଵ, 𝜃ଶ, … , 𝜃ே]், its probability density function is 𝑓(𝑥; 𝜃), 
which satisfies two regularization conditions [33]. The Fisher information matrix is an 𝑁 × 𝑁 
matrix. 𝐼(𝜃), is defined as: 

𝐼(𝜃)× = 𝐸 ቈቆ∂ln𝑓(𝑥; 𝜃)∂𝜃 ቇ ቆ∂ln𝑓(𝑥; 𝜃)∂𝜃 ቇ = −𝐸 ቈቆ∂ଶln𝑓(𝑥; 𝜃)∂θ ∂𝜃 ቇ.  

Let 𝑇(𝑥)  be an estimate of a parameter vector, 𝑇(𝑥) = (𝑇ଵ(𝑥), 𝑇ଶ(𝑥), … , 𝑇(𝑥))் , and 
remember that its expected vector 𝐸(𝑇(𝑥)) is 𝜙(𝜃). The Cramer-Rao lower bound holds that the 
covariance matrix of 𝑇(𝑥) satisfies: 
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𝐶𝑜𝑣ఏ(𝑇(𝑥)) ≥ 𝜕𝜙(𝜃)𝜕𝜃 [𝐼(𝜃)ିଵ] ቆ𝜕𝜙(𝜃)𝜕𝜃 ቇ்,  

where 𝐴 ≥ 𝐵 means that 𝐴 − 𝐵 is a positive semidefinite matrix; 𝜕𝜙(𝜃)/𝜕𝜃 is a Jacobian matrix 
whose 𝑖𝑗th element is 𝜕𝜙(𝜃)/𝜕𝜃. 

 
Fig. 10. Plot of CRLB performance evaluation 

In order to better illustrate the effectiveness of the proposed algorithm, CRLB is used to 
estimate the lower bound of the MSE of the predicted value in a one-step prediction. Fig. 10. 
shows the MSE of the lower limit assessment of CRLB. The method presented in this paper also 
clearly shows that MSE has the same trend as CRLB and can track CRLB’s MSE well, which 
verifies the effectiveness and superiority of the proposed method. 

7. Conclusions 

Studies have shown that PM2.5 is strongly linked to other health problems such as respiratory 
diseases and heart and lung diseases. Protecting the environment to protect humans from air 
pollution, developing effective and reliable PM2.5 prediction models, and assisting environmental 
management departments in formulating effective environmental protection measures are urgent 
and indispensable requirements. PM2.5 concentration chaotic time series data is influenced by 
multiple variables such as temperature and wind speed in prediction, and in order to improve the 
prediction accuracy, a multi-step local Volterra multivariable chaotic time series prediction model 
based on phase clustering is proposed. Through reasonable selection of forecasting model input 
variables, and combining with clustering phase points, effectively solve the traditional local 
prediction model selection in the adjacent point problems of unreasonable and time-consuming 
long, and the proposed model has greatly increased the multi-step prediction step length and 
precision effectively, reduce the error of cumulative effect, and greatly reduce the multi-step 
prediction time, has broad application prospects and value in air quality forecast. 
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