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Abstract. Local damage detection is one of the most investigated problems in the field of 
condition monitoring. Raw signals often possess different components that make it difficult for 
one to directly detect damage. By such components one can mean high energy of the noise, 
deterministic part or even artifacts (singular impulses that are not connected to the fault). In this 
paper author covers problem of the fault detection in different noise environments by means of 
statistical analysis. Author has applied ߙ-stable distribution as a tool for the impulsivity detection 
instead of commonly used spectral kurtosis and fractional lower-order covariance as a mean of 
cyclicity and impulsivity detection in the presence of non-Gaussian noise. 
Keywords: α-stable distribution, time-frequency decomposition, local damage detection. 

1. Introduction 

Local damage detection is currently undergoing major development in terms of the introduced 
methods and algorithms. In the past years, one can see that this field is growing. Main reason 
behind interest in this topic is that early local damage detection can prevent further degradation of 
the elements. Thus, it can reduce costs of operation of whole machine park. One can see works on 
the machine maintenance in the field [1], application of the data mining methods [2, 3], cyclicity 
detection [4], signal segmentation via statistical approach [5]. Increasing knowledge of the topic 
provides us with the ways to extend and merge methods that were often omitted for this field. One 
of the important problems that is currently investigated in this field is influence and type of the 
noise that is present in the signal. In case of noise that is non-Gaussian standard methods are not 
sufficient and one needs to provide another way of analysis. These methods were previously 
applied to electricity market [6], financial data [7], plasma turbulence [8]. In this paper, author is 
presenting basic summary of ߙ-stable based methods for the fault detection in different noise 
environments. Due to the varying behavior of the noise one can divide this problem into three 
sub-problems. It is known that signal consisting information about the fault will include at least 
three components:  

1) component responsible for the impulsive behavior related to the fault,  
2) deterministic component related to the kinematics of the machine,  
3) background noise.  
One can differentiate at least three types of the background noise. First type, Gaussian, is 

easiest to proceed with in case of the analysis and signal processing. It does not highly affect most 
of the algorithms. Second type, Gaussian noise mixed with singular impulses, let us call them 
artifacts. These impulses are usually connected with the error during signal acquisition, for 
instance hit on the casing during the measurement. It can affect simple methods used for the 
informative frequency band selection like spectral kurtosis or kurtogram. Last type of the noise is 
hardest to work with. It is an impulsive, non-periodic component. It has high energy, usually 
spread in the whole frequency band. It will highly affect standard methods, mostly rendering them 
useless. However, there is one more type of the noise. It is a cyclic, impulsive behavior related to 
the normal work of the machine (see engines, compressors) but it is not a subject of investigation 
in this paper. The rest of the paper is organized as follows: Section 2 covers main properties of 
the ߙ -stable distribution and fractional lower-order covariance. In Section 3 author presents 
application of the methods towards the real world signals. Last section concludes the paper. 
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2. Methodology 

This section covers theory applied to the vibration signals acquired in the harsh environment. 
Each of these methods is easily applied and consistent with the earlier proposed models of the 
signal according to the type of the noise. Methods are applied to the time-frequency decomposed 
signals. As a method of decomposition author used Short-Time Fourier Transform (STFT) and its 
representation, namely spectrogram. Author reminds the reader; the spectrogram is a square of 
absolute value of the Short-Time Fourier transform defined for time point ݐ and frequency ݂ as 
follows [9]:  

,ݐ)ܶܨܶܵ ݂) = ିଵୀ ݐ)ݓݔ − ݇)݁ଶగ/ே, 
where ݐ)ݓ − ߬) is the shifted window and ݔ, . . . , ,ݐ)ܵ ିଵ is the input signal. Next, let us defineݔ ݂) = ,ݐ)ܶܨܶܵ| ݂)|. 
2.1. The ࢻ-stable distribution 

In this subsection author introduces the ߙ-stable distribution and present main properties of ߙ-stable distributed random variables. There are few equivalent definitions of ߙ-stable distributed 
random variables. One of the definition is in terms of its characteristic function.  

Namely, a random variable ܺ  is said to have ߙ-stable distribution if there are parameters  0 < ߙ ≤ 2 ߪ , > 0 , −1 ≤ ߚ ≤ 1  and ߤ ∈ ܴ  such that the characteristic function of ܺ  has the 
following form [10]:  

߶(ݐ) = (ܺݐ݅)expܧ = ۔ۖەۖ
expۓ ቊ−ߪఈ|ݐ|ఈ ቆ1 − tan(ݐ)݊݃݅ݏߚ݅ ቀ2ߙߨ ቁቇ + ቋݐߤ݅ , ߙ ≠ 1,

exp ቊ−ݐ|ߪ| ቆ1 + ߚ݅ ߨ2 ቇ(|ݐ|)ln(ݐ)݊݃݅ݏ + ቋݐߤ݅ , ߙ = 1. (1)

Properties of the distribution differ according to the change of the parameters. For instance, if 
the ߙ is lower the data become significantly more impulsive. Interesting property is that with  ߙ < 2  we do not have finite variance and with ߙ ≤ 1  we also do not have finite mean. 
Furthermore, for ߚ = 0 we have symmetric distribution, while for positive and negative ߚ we 
have right-skewed and left-skewed distribution respectively. Parameters ߪ  and ߤ  are stable 
distribution counterparts of standard deviation and mean. 

 based filter-ࢻ .2.1.1

One of the applications of the ߙ-stable distribution is estimation of the filter characteristic. 
Since impulsive behavior is one of the indicators of the fault, we can use stability parameter of the 
mentioned distribution to create a filter characteristic. It is done via estimation of the ߙ for each 
sub-signal from the time-frequency matrix for the appropriate frequency bin. We define filter 
characteristic as: 

(݂)ߙ = (ߙ)ݔܽ݉ − (ߙ)ݔܽ݉(݂)ߙ − ݉݅݊(ߙ). (2)

2.1.2. Fractional lower-order covariance 

In case of the impulsive, heavy-tailed noise standard methods are not usually appropriate to 
deal with it. Impulsive noise can corrupt results since most of the algorithms depends on the 
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impulsivity of the component related to the fault. In such cases it is needed to apply method that 
connects both impulsivity and cyclicity. It can be achieved using only cyclicity, for instance using 
Cyclic Spectral Coherence or Cyclic Spectral Density. However, one of the minor disadvantages 
of these methods is that they rely on the assumption that second moment of the signal is finite. It 
is often not true in the case of the impulsive behavior present in the data. Thus, there was 
introduced another measure of the dependency, namely fractional lower-order covariance. It is an 
appropriate counterpart of the standard dependency measures since it is well-suited for the ߙ-stable distributions (its parameters depend on the stable distribution parameters). Its estimator 
is easy to apply and has low computational complexity. We define fractional lower-order 
covariance for the stochastic process ܺ(ݐ) as [11]: ܴ௫௫(݇) = ॱ[ܺ(ݐ)ழவܺ(ݐ − ݇)ழவ],    0 ≤ ܤ    ,ܣ ≤ ߙ 2⁄ , (3)

where ߙ is stability parameter of the fitted ߙ-stable distribution. The estimator of ܴ௫௫ for the set 
of discrete observations ݔଵ, ,ଶݔ . . . ,  :ே is defined asݔ

ܴ௫௫(݇) = ∑మୀభାଵ ݊)ݔ||(݊)ݔ| + ݇)|ݔ(݊)ݔ]݊݃ݏ(݊ + ଶܮ[(݇ − ଵܮ , (4)

where ܮଶ is min(ܰ, ܰ − ݇), ܰ is equal to signal length, ܮଵ is max(0, −݇), 0 ≤ ܤ ,ܣ < ߙ 2⁄  and ߙ  is estimated stability parameter from the ߙ -stable distribution. Furthemore <⋅>  denotes 
following operation: ݖழவ = (5) .ݖ݊݃ݏ|ݖ|

Fractional lower-order covariance as a generalized dependency measure can be reduced to the 
both covariation (particular case of this measure) or to the covariance. It can be done by 
appropriate choice of the parameters A and B. If sample distribution is Gaussian, then stability 
parameter is equal to 2. Setting both parameters (A, B) to be equal to their maximum limit  
ߙ) 2⁄ = 1) results in FLOC measure reducing to the standard covariance. 

Algorithm used in this paper applies this measure to the sub-signals extracted from the 
spectrogram, similary as for the ߙ-stable filter. Further enhancement is done via searching local 
maxima in the time-lag representation of the FLOC map. Integration of this map allows for the 
detection of the fault. 

3. Results 

This section covers application of the methods described in the previous section towards real 
world signals. There are three cases. First case – vibration signal from the bearing. Background 
noise is Gaussian. Second case is a vibration signal from the gearbox with artifact (hit on the 
casing of the gearbox during data acquisition). Last case is a vibration signal from the copper ore 
crusher with the impulsive noise. 

3.1. Case 1 - Gaussian noise 

Signal in this case was acquired with frequency sampling equal to 19.2 kHz and signal duration 
equal to 2.5 s. In this case one will apply ߙ-filter which enhances impulsive behavior related to 
the fault. ߙ parameter would be lower for the bands with the impulsive behavior. Using simple 
transformation allows us to obtain filter characteristic which will enhance data in the informative 
frequency band. In Fig. 1(a) one can see spectrogram of the signal before enhancement (top panel) 
and its filtered counterpart. It can be seen that noise in the higher frequency band has been 
attenuated, while impulsive behavior slightly enhanced. In Fig. 1(b) we present filter characteristic 
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for the signal. Fig. 1(c) contains time waveforms before and after filtration. It can be seen that 
filtration heavily enhanced impulses. In Fig. 1(d) we see that fault frequency 12.69 Hz and its 
harmonics are easy to notice after filtration. 

 
a) 

 
b) 

 
b) 

 
c) 

Fig. 1. a) Spectrogram of the raw (top panel) and filtered (bottom panel) signal, b) filter characteristic, 
c) time waveform of the raw (top panel) and filtered (bottom panel) signal, d) its envelope spectra 

3.2. Case B – Gaussian noise with artifact 

Case B uses FLOC dependency map for the detection of the fault. Most of the standard 
methods (kurtogram, spectral kurtosis) would produce false results due to the high value of the 
kurtosis for high frequency bands where one impulses affect whole statistic. Signal was acquired 
with frequency sampling equal to 16.384 kHz and duration 2.5 s. It can be seen that time waveform 
(see Fig. 2(a)) has visible impulses repeating around 4 times per second with high amplitude 
modulation. Decomposing signal to time-frequency representation allows us to see artifact around 
0.2 s in band above 7 kHz. Furthermore, cyclic impulsive behavior is visible in band 1.8-5 kHz. 
Thus, it is reasonable to apply FLOC dependency map and enhance it with local maxima [12]. 
Result is seen in Fig. 2(c). We can see two types of impulsive behavior. First type with often 
repetitions in band 1.8-5 kHz and second, previously masked by high energy in band 0.2-1.6 kHz. 
Partial integration of this map allows to detect both of them with frequencies 16.56 Hz and 
4.1063 Hz respectively. 

3.3. Case C - heavy-tailed noise  

Last type of the analyzed signals has impulsive noise and thus most of the methods cannot be 
applied due to their high sensitivity towards impulsiveness. Thus, author applied FLOC method 
that incorporates both impulsiveness and cyclicity. Signal is acquired with 25 kHz frequency 
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sampling and 10 s duration. In Fig. 3(a) one can time waveform of the signal.  

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 2. a) Time waveform of the signal, b) its spectrogram, c) enhanced FLOC-LM map  
and d) partially integrated maps 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 3. a) Time waveform of the signal, b) its spectrogram, c) enhanced FLOC-LM map  
and d) partially integrated maps 
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It can be seen that impulses from the fault and from the ore hitting the inner walls of the ore 
crusher are not distinguishable. Similarly, one cannot differentiate between them on the 
spectrogram (see Fig. 3(b)). Applying FLOC method and further, enhancing it by using local 
maxima method we can see that lag-frequency representation that has evenly spaced impulsive 
behavior. Integration of this enhanced map and calculation of the distance between peaks 
(similarly as in the autocorrelation) allows for the fault detection with the frequency of 30 Hz. 

4. Conclusions 

In this paper, the problem of local damage in different types of noise environments is  
discussed. Real world signals that are analyzed are often contaminated by noise with varying level 
of impulsive behavior. Most simple in the signal processing is Gaussian noise. However, it can be 
seen that this is not common type. Usually, we have artifacts in the signal due to the human error 
or impulsive behavior due to the type of the machines. The main point of our methodology is to 
supply the readers with possibility of applying these methods depending on their task. In general, ߙ-filtering is useful substitute of spectral kurtosis due to its insensitivity towards singular impulses 
(artifacts), while fractional lower-order covariance is a theory-practice consistent method for 
cyclic impulsive behavior detection. 
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