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Abstract. PCA (Principal Component Analysis) is a powerful method for investigating the 
dimensionality and extracting structure from multi-dimensional data, however it extracts only 
linear projections. More general projections – accounting for possible non-linearities among the 
observed variables – can be obtained using kPCA (Kernel PCA), that performs the same task, 
however working with an extended feature set. We consider planetary gearbox data given as two 
15-dimensional data sets, one coming from a healthy and the other from a faulty planetary 
gearbox. For these data both the PCA (with 15 variables) and the kPCA (using indirectly 500 
variables) is carried out. It appears that the investigated PC-s are to some extent similar; however, 
the first three kernel PC-s show the data structure with more details. 
Keywords: visualization of MD data, principal components, PCA and kPCA, kernel trick. 

1. Introduction 

The aim of this paper is to show a real (non-simulated) example illustrating how powerful and 
how easy are the classic and the kernel PCA for using in monitoring or diagnosing aspects of data 
analysis. The classic Principal Component Analysis (PCA) is very popular multivariate method 
dealing with feature extraction and dimensionality reduction [1]. It is based on sound 
mathematical algorithms inspired by geometrical concepts. It permits to extract from 
multi-dimensional data (MD-data) new meaningful features, mutually orthogonal. See in [2, 3] 
effective examples of applications to gearbox data. 

Yet, in some obvious cases, the PCA may fail in recognizing the data structure. There is the 
famous example with two classes of 2D data points representing a ring and its center [4]. PCA is 
here useless; it is not able to visualize the data. Yet, to get the proper structure of these data, it is 
sufficient to add to the 2-dimensional data (ݔ, ݖ  a 3-rd dimension by defining a 3-rd variable (ݕ = ଶݔ ൅ ,ݔ) ଶ. Then, in the 3-dimensional spaceݕ ,ݕ  .the two classes appear perfectly separable ,(ݖ

Thus, the question: Could linearly inseparable data be transformed into some linearly separable 
ones? The answer is yes, it is sometimes possible, only one has to find the proper transformation. 
The kernel methodology proved to be helpful here. 

In the following we will consider the kernel PCA [4]. This is a methodology which extends 
(transforms) the observed variables to a (usually) larger set of new derived variables constituting 
a new feature space ℱ . The extended features express the non-linear higher order relations 
between the observed variables (like in the ring and center example mentioned above). More 
features means more information on the data. So, carrying out the classical PCA in the extended 
space we expect more meaningful results. The computational algorithm retains the simplicity of 
the classic PCA computations [1] where the goal is clearly set and the optimization problem 
reduces to solving an eigen-problem for a symmetric matrix of Gram type. 

A big number of derived new features might cause here some problems with time of 
computation and memory demands. A good deal of these problems can be solved efficiently by 
using the two paradigms: 

1. The useful for us solutions yielded by PCA carried out in the extended feature space may 
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be formulated in terms of inner products of the transformed variables (how to do it: see e.g., [5]). 
2. One may use for the extension so called Mercer’s kernels ݇(ܠ,  and apply to them so ,(ܡ

called ’kernel trick’ (see [5]), which allows to obtain the results of kPCA using only input data to 
classic PCA. 

Combining the two paradigms, one comes to the amazing statement that kernel PCA – with all 
its benefits – may be computed by using only the data vectors from the observed input data space, 
without making physically the extensions (transformations). 

Our goal is to show, how the kernel PCA works for some real gearbox data. The acquisition 
and meaning of the data is described in [6], see also [2]. Generally, the data are composed from 
two sets: B (basic, healthy) and A (abnormal, faulty) gathered as vibration signals during work of 
a healthy and a faulty gearbox. The vibration signals were cut into segments; each segment was 
subjected to spectral (Fourier) analysis, yielding ݀ = 15 PSD variables memorized as a real vector ݔ = ,ଵݔ) … , ்(ௗݔ ∈ ܴௗ. In the following we will analyze a part of the data from [6]. The B set 
contains 500 data vectors, from these 439 gathered under normal load, and 61 – under small or no 
load of the first gearbox. The A set contains also 500 data vectors, from these 434 gathered under 
normal load, and 66 - under small or no load of the second gearbox being in abnormal state. Thus, 
the analysed data contain four meaningful subgroups. Our main goal is providing graphical 
visualization of the data. Will the 4-subgroup structure be recognisable from a (k)PCA analysis? 

Our present analysis is set differently as in [2] under the three following aspects: 1. Learning 
methodology. Set B will be considered as the training data set, and the set A as the test data set. 
2. Subgroup content. Both groups have a finer structure, indicating for heavy or small load of the 
gearboxes. 3. An additional method, the Kernel PCA will be used for analysis. 

In the following, Section 2 describes shortly the principles of the classic PCA and its extended 
version: the kernel PCA (kPCA). Section 3 contains our main contribution: evaluation and 
visualization of the first three principal components expressed in the coordinate system 
constructed from the training data set. Section 4 contains Discussion and Closing Remarks. 

2. Classic and kernel principal component  

Generally, Principal Component Analysis (PCA) proceeds in three basic steps: 
• Step 1. Computing covariance matrix ۱ from a centered data matrix for the healthy gearbox 

taken as training data set.  
• Step 2. Computing eigenvectors of ۱, that is solving for ݒ the equation ۱ܞ =   .ܞૃ
• Step 3. Projection of data points/data vectors using the eigenvectors obtained in step 2.  
The computations in step 1 and step 2 are carried out using the training set of the data. The 

formula derived in step 3 shows how to compute projections for data vectors ܠ௜ belonging to the 
training data B. The same formula is valid for any data vector ܠ residing in ܴௗ, however under the 
condition, that this data vector is centered similarly as the data vectors ܠ௜ ∈  that is using means) ܤ
from B). 

The idea of kernel PCA is to perform a nonlinear mapping Φ of the input space ܴௗ  to an 
extended feature space ℱ and perform there the classical linear PCA. The mapping function is 
usually denoted as Φ and that of individual data vectors/data points ܠ as ߶: Φ: ܴௗ → ℱ  that  is   ݔ ∈ ܴௗ → (ݔ)߶ ∈ ℱ. (1)

The positive fact of extending the number of features is that now these features may capture 
the internal structure of the data more accurately. The unfavorable aspects may be that the 
computing will need more time and memory, and may become unfeasible. Happily, we can get 
around this problem and still get the benefit of high-dimensional data. The classical PCA 
algorithm can be reformulated by expressing the necessary calculations in ℱ as inner products 
(dot products), that may be obtained as specific kernel functions evaluated from the input vectors 
in ܴௗ. This approach is called ’the kernel trick’ [4, 5, 7]. 
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To perform kPCA one should know two important notations: that of the dot product and that 
of a kernel function. The dot product for two vectors ܠ and ܡ belonging to the same space ܴௗ 
denotes the inner product between these vectors: ܠ ⋅ >= ܡ ,ܠ ܡ > = (2) .ܡ்ܠ 

Considering the mapped data vectors ߶(ܠ) and ߶(ܡ) in the feature space ℱ, their dot product 
in the feature space is defined as: ߶(ܠ) ⋅ (ܡ)߶  = (3) ,(ܡ)߶்(ܠ)߶ 

provided that we know explicitly how to evaluate the function ߶(. ) in ℱ, and want to compute 
the needed dot product implicitly that way. 

Alternatively, the needed dot product may be obtained via the kernel trick from a kernel 
function ݇(ܠ,  belonging to the observed space ܴௗ one ܡ and ܠ with the property, that for all (ܡ
computes a kind of similarity measure between the pair (ܠ,  yielding the value just equal to the (ܡ
inner product of the non-linearly transformed data vectors ܠ and ܡ living (after the transformation) 
in an extended data space ℱ as ߶(ܠ) and ߶(ܡ). This may be summarized in the equation: ݇(ܠ, (ܡ =< ,ܠ ܡ >= (ܠ)߶ ⋅ (4) .(ܡ)߶

The exact form of the transformation is here not relevant, because one needs for the analysis 
only the values of the dot products, which are obtained by evaluating the kernel elements ݇(ܠ,  (ܡ
without using in them explicite the ߶(. ) function. 

For a data set composed from ݊ data vectors ܠ௜, ݅ = 1, … , ݊, one obtains the size ݊ × ݊ kernel 
matrix ۹ as ۹ = ,௜ܠ)݇} ݆ ,݅ ,{(௝ܠ = 1, … , ݊. Kernels widely used in data analysis are: • rbf (Gaussian) kernels: ݇(ݔ, (ݕ = exp( − ||ܠ −  ଶ/ܿ), with ܿ denoting a constant called||ܡ
kernel width; •  polynomial kernels: ݇(ܠ, (ܡ = ܠ) ⋅ ௣(ܡ , for some positive ݌  denoting the degree of the 
polynomial. In the following we will use the rbf (Gaussian) kernels computed as: ݇(ܠ, (ܡ = exp{ − (ܠ − ܠ)்(ܡ − { ܿ/(ܡ = exp{ − (܌ ⋅ (5) ,{ܿ/(܌

where ܌ = ܠ − ܿ and the kernel width parameter ,ܡ > 0 is found by trial and error. 
When computing the kPCA we realize the three steps of classic PCA listed above, however 

with some modifications when using the kernel trick approach. For details, see [4]. 
Now let’s go to computing the PCA for our data. 

3. Results of PCA and kPCA for the gearbox data 

In this section, we present our results from the analysis of the gearbox data when applying to 
them the classic and kernel PCA. For both methods, the first three principal components (PCs) 
proved to contain relevant information on the subgroup structure of the data. In Fig. 1 we show 
scatterplots of the pairs (PC1, PC2), (PC1, PC3) – obtained by classic PCA, and scatterplots of 
pairs (kPC1, kPC2), (kPC2, kPC3) as containing the most relevant information. The exhibits in 
left column of Fig. 1 are results of classic PCA, and those in the right column – of kernel PCA. 

The data points in the scatterplots represent time instances of the recorded vibrations. It is 
essential to inspect the exhibits in colour. There are four colours representing four subgroups of 
the analysed data. Data points from set B (healthy, work with full load) are painted in green. Those 
from set B (healthy, work with small or no load) are painted in cyan. Analogously, data points 
from set A (faulty, full load) are painted in red; those from set A (faulty, small or no load) are 
painted in magenta colour. 
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The set B served here as the basic training set for evaluation of the coordinate system capturing 
the main directions of the data cloud B. The analysis was performed using basic data standardized 
to have 0 means. The test data A were standardized using the means from the training group B. 

Looking at the scatterplots in Fig. 1, one discerns there in all exhibits two big clouds of green 
and red data points corresponding to the fully loaded state of the gearboxes. The shapes of the 
clouds are near to ellipsoidal. Both clouds are not fully disjoint; they have few points covering 
common area. The read points have a larger scatter. This may be notified in all exhibits of the 
figure. 

The two small subgroups with the magenta and cyan data points behave differently when using 
the two methods. In the PCA exhibits they appear as one undistinguishable set attached to the big 
red data cloud. Kernel PCA shows them also attached to the red data cloud, however in a rather 
distinguishable manner. 

We may summarize out results that both PCA and kPCA yield equally good results concerning 
the healthy and faulty data, yet kPCA yields more details concerning the details of the structure 
of the data. 

Our results were obtained using a modified code of Scholkopf’s toy_example.m available, for 
example, at: http://www.kernel-machines.org/code/kpca_toy.m. 

 
a) Classic PCA, (PC1, PC2) 

 
b) Kernel PCA, (kPC1, kPC2) 

 
c) Classic PCA, (PC1, PC3), 

 
d) Kernel PCA, (kPC2, kPC3) 

Fig. 1. Scatterplots of four pairs of principal components 

4. Discussion and final results 

We have analyzed two groups of data obtained from acoustic vibration signals from two 
different gearboxes: a healthy and a faulty one. Each of the groups contained a larger sub-group 
of instances gathered under normal load of the machine, and a much smaller sub-group gathered 
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under small or no load of the machine. Usually the instances under small or no load are omitted 
from the analysis, because they may constitute a factor confusing the proper diagnosis. However, 
we took them to our analysis. 

Using classic PCA and kernel PCA we extracted from the data a small number of meaningful 
principal components (PCs) and visualized them pairwise in scatterplots shown in Fig. 1. The PCs 
in that figure are shown in the coordinate system obtained from the eigenvectors of the healthy 
data set. 

One may see in Fig. 1 that the big red and green data points (indicating full load) are 
distinguishable and practically linearly separable (with very few exceptions). This happens both 
for results from classic and kernel PCA. However, the smaller groups of magenta and cyan points 
(under-loading) are in the left exhibits overlapping; while in the right exhibits they are 
distinguishable, especially in the right bottom exhibit. Thus, the kernel PCA yielded here more 
information about the structure of the investigated data. 

This kind of analysis opens immediately the way to diagnostics of the gearbox system with 
respect to its healthy or faulty functioning. It is possible to continue the analysis using some more 
sophisticated methods like in [8], permitting to find the kind of the fault. In any case, the main 
answer about state of the device, can be easily perceived from the simple scatterplots of few kernel 
PCs. 

To this end we would like to emphasize, that our goal was just visualize the data in a plane to 
see what’s going on. To perform formally such tasks like discriminant analysis or clustering of 
the data, obviously one should use special methods dedicated to these tasks (see, for example, [9]). 
Our goal was just to visualize the data for getting directions of further research – following the 
motto Data with Insight Leads you to Decisions with Clarity launched by NYU STERN MS in 
Business Analytics. 
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