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Abstract. In order to grasp the nonlinear characteristics of high-speed spatial parallel mechanism, 
the bifurcation and chaotic behaviors of 4-UPS-RPS mechanism are analyzed. Firstly, the 
nonlinear elastic dynamic model of the mechanism is established by using the Lagrange equation 
and the finite element method. Then the effects of parameters including driving angular velocity, 
the radius of motion trajectory, the material of driving limbs, the diameter of driving limbs, and 
the mass of moving platform, on the bifurcation and chaotic behaviors of high-speed spatial 
parallel mechanism are studied. The results show that the above parameters all have a certain 
influence on nonlinear characteristics of the 4-UPS-RPS high-speed spatial parallel mechanism. 
The research can provide important theoretical basis for the further research on the non-linear 
dynamics of spatial parallel mechanism. 
Keywords: high-speed, parallel mechanism, bifurcation, chaotic behaviors. 

1. Introduction 

With the development of modern industry, the requirement of the precision and dynamic 
performance of mechanical products is gradually increased. Nowadays, parallel mechanism has 
received more and more attention [1, 2]. Compared with the serial mechanism, parallel mechanism 
has the characteristics of high speed, high precision and no cumulative error. Chen et al. [3] 
analyzed the kinematics of 4-UPS-RPS spatial 5-DOF parallel mechanism. Liu et al. [4] studied 
the kinematics and dynamics of a spatial 3 degree-of-freedom parallel manipulator. Sun et al. [5] 
established a dynamic model of high-speed 6-PSS parallel robot and optimized the parameters of 
the mechanism. 

There are a wide range of nonlinear factors in the mechanisms, such as clearance, dry friction, 
bearing oil film and nonlinear material constitutive relation [6-10]. As a seemingly irregular and 
random phenomenon, chaos is one of the most important nonlinear characteristic caused by 
nonlinear factors [11-14]. Recently, the chaotic behavior analysis of the mechanism is mainly 
focused on the time-delay system, vibro impact system, the mechanism with joint clearances and 
so on. G. I. Koumene Taffo et al. [15] studied the effects of time delay on the stability of the 
nonlinear oscillator and analyzed the heteroclinic bifurcation of the system by the Melnikov 
method. Wu et al. [16] analyzed the bifurcation and chaotic anti-control of a 3 degree-of-freedom 
vibro-impact system with clearance. Lu et al. [17] studied the influence of clearance to the steering 
swing system, and concluded that the pair clearance can make the swing system from the state of 
periodic motion, quasi periodic motion to chaotic motion gradually. As is known to all, nonlinear 
deformation of light components of high-speed parallel mechanism can cause complex chaotic 
behaviors, and worsen the dynamic performance of the mechanism. But up to now, the previous 
studies were focused on the nonlinearity caused by clearance, dry friction and bearing oil film, 
rarely involved the bifurcation and chaotic behaviors analysis of spatial high-speed parallel 
mechanism with nonlinear deformation of the limbs.  

Therefore, the main purpose of this paper is to study the bifurcation and chaotic behaviors of 
spatial high-speed parallel mechanism, thus forecasting the dynamic behavior of the parallel 
mechanism and selecting appropriate system parameters of the mechanism. This paper regards 
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4-UPS-RPS high-speed spatial parallel mechanism as the research object. The nonlinear elastic 
dynamic model of the mechanism is introduced. The bifurcation and chaotic behaviors of the 
4-UPS-RPS high-speed parallel mechanism with different parameters are analyzed by the phase 
diagram, the Poincare map, bifurcation diagram and the largest Lyapunov exponent method.  

2. Description of high-speed spatial parallel mechanism 

4-UPS-RPS (U represents hooke hinge, P represents prismatic pair, S represents spherical  
joint, R represents revolute pair) high-speed spatial parallel mechanism is shown in Fig. 1. The 
mechanism is composed of a fixed platform, a movable platform and five driving limbs. The fixed 
platform is connected with the movable platform by four UPS branch and a RPS. By changing the 
five driving limbs length, the movable platform can realize three-dimensional rotation and the two 
dimensional translation. The coordinate system of 4-UPS-RPS high-speed spatial parallel 
mechanism is shown in Fig. 2. 

 
Fig. 1. Mechanism diagram of 4-UPS-RPS 

 
Fig. 2. The coordinate system of 4-UPS-RPS 

3. Nonlinear elastic dynamic model of high-speed spatial parallel mechanism 

According to the Lagrange equation and the finite element method, the nonlinear elastic 
dynamic model of the spatial high-speed parallel mechanism is given by [18]: ݍܯሷ + ሶݍሚܥ + ݍܭ = ܳ, (1)

where ܯ = ∑ ܴ ்ହୀଵ ܴܯ + ்ܴ ܴܯ  is the system total mass matrix, ܥሚ = ∑ ்ܴ ܴହୀଵܥ  is the 
system total damping matrix, ܭ = ∑ ்ܴହୀଵ ܴܭ  is the system total stiffness matrix,  ܳ = ∑ ்ܴହୀଵ ܳ + ்ܴ ܳ  is the system total generalized force matrix, ݍ  is the generalized 
coordinate of system, ܴ is the transfer matrix from system to driving limbs, ܴ is the transfer 
matrix from system to moving platform. 

4. Bifurcation and chaotic behaviors analysis of high-speed spatial parallel mechanism 

As we all known, we can judge whether the system is chaotic or not by observing the intercept 
point on the Poincare map [19, 20]. When the Poincare map is only one fixed point or a small 
number of discrete points, the system is in periodic motion. When the Poincare map is the limit 
cycle, the system is in almost periodic motion. When the Poincare map is stretches of dense point 
and having a fractal structure, the system is in chaotic motion [21]. 

Chaotic motion is very sensitive to the initial condition. Lyapunov exponents are a quantitative 
description of the indicators of this phenomenon [22]. When the Lyapunov exponent is negative 
in the direction, the phase volume is shrinkage, and the motion is stable. When the Lyapunov 
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exponent is positive in the direction, the motion is in chaotic state. If the largest Lyapunov 
exponent (LLE) is positive, the system must be chaos. Therefore, the largest Lyapunov exponent 
of the time series can be used as a criterion for determining whether a sequence in a state of chaos 
[23, 24]. 

There are many methods for solving the largest Lyapunov exponent, such as the definition, the 
small data method, the Wolf method and the Jacobian method. The Wolf method is widely used 
in the research of chaos behaviors and chaotic time series prediction based on Lyapunov exponent 
[25-28]. The nonlinear elastic dynamic model shown in Eq. (1) is a set of coupled variable 
coefficient second order differential equations, and as everyone knows, this kind of dynamic 
model can be solved by Newmark integral method, and the Lyapunov exponent can be estimated 
by Wolf method [29]. Then in this paper, the Lyapunov exponent is estimated by Wolf method. 
The main calculation steps of Wolf method are as follows: 

Step 1. Estimated average period by using fast Fourier transform. 
Step 2. Estimated time delay and embedding dimension by using C-C method. 
Step 3. Reconstructed phase space by using the time delay technique. 
Step 4. Obtained the largest Lyapunov exponent by mapping the Lyapunov exponent chart and 

looked for stable region data. 
The distribution of hinge of 4-UPS-RPS parallel mechanism is shown in Table 1. The basic 

parameters of 4-UPS-RPS parallel mechanism are shown in Table 2. The law of motion for  
4-UPS-RPS spatial parallel mechanism is defined as (unit: rad, m): 

۔ۖەۖ
ܺۓ = 1.280 + ݎ × cosሺ߱ݐሻ,ܻ = 0.260 + ݎ × sinሺ߱ݐሻ,     0 ≤ ݐ ≤ 600 s,ߙ = ߚ,0 = ߛ,0 = 0.  (2)

Table 1. The distribution of hinge of 4-UPS-RPS parallel mechanism (mm) 
Hinge type R U2 U3 U4 U5 S1 S2 S3 S4 S5 

Distribution radius 717.07 645 645 645 645 202 202 202 202 202 
Distribution angle 0 ߨ 4⁄ ߨ3  4⁄ ߨ5  4⁄ ߨ7  4⁄ ߨ2 0  5⁄ ߨ4  5⁄ ߨ6  5⁄ ߨ8  5⁄  

Table 2. The basic parameters of 4-UPS-RPS parallel mechanism 
The length  

of oscillating limb 760 mm Elastic modulus of  
tension and compression ܧ = 2.0×1011 Pa 

The length of telescopic limb 840.116 mm Shear elastic modulus ܩ = 8.0×1010 Pa 
The cross section radius  

of telescopic limb 20 mm Poisson ratio 0.29 

The material  
of telescopic limb Steel The density  

of telescopic limb 7.801×103 kg/m3 

The material  
of moving platform Aluminum alloy The mass of  

moving platform ݉ = 36.28 kg 

Principal moment of 
inertia of unit cross 
section to ݔ-axis, ݕ-axis and ݖ-axis, 

respectively 

௫ܫ = 2.512×10-7 m4 

Moment of inertia  
of moving platform 

௫௫ܫ = 0.932 kg·m2 ܫ௫௬ = 9.549×10-3 kg·m2 ܫ௫௭ = –1.937×10-2 kg·m2 ܫ௬௫ =9.549×10-3 kg·m2 ܫ௬ = 1.256×10-7 m4 
௬௬ܫ = 0.6735 kg·m2 ܫ௬௭ = 8.43×10-4 kg·m2 ܫ௭ =1.256×10-7 m4 

௭௫ܫ = –1.937×10-2 kg·m2 ܫ௭௬ = 8.43×10-4 kg·m2 ܫ௭௭ = 0.6816 kg·m2 
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4.1. Effect of driving angular velocity on the dynamic behavior of high-speed spatial parallel 
mechanism 

When the other parameters are invariant and ݎ = 0.045, we change the values of the driving 
angular velocity, the phase diagram of the system in ܺ direction and the corresponding Poincare 
map are shown from Fig. 3 to Fig. 8. Bifurcation diagram of displacement with driving angular 
velocity is shown in Fig. 9. 

 
a) Phase diagram 

 
b) Poincare map 

Fig. 3. The phase diagram and Poincare map when ߱ =  rad/s ߨ

 
a) Phase diagram 

 
b) Local phase diagram of ݉ region c) Poincare map 

Fig. 4. The phase diagram and Poincare map when ߱ = 4.712 rad/s 

 
a) Phase diagram 

 
b) Poincare map 

Fig. 5. The phase diagram and Poincare map when ߱ = 9.2 rad/s 

As shown in Fig. 3, when ߱ =  rad/s, phase diagram has only one trajectory and Poincare ߨ
map has only one point, the system is in single-cycle motion. When ߱ is 4.712 rad/s, the system 
becomes unstable and bifurcates from single-cycle to 3-cycle. From Fig.4, when ߱ = 4.712 rad/s, 
phase diagram has three tracks and Poincare map has three points, the system is in a state of three 
periodic motion. As shown in Fig. 5, when ߱ is 9.2 rad/s, phase diagram has many trajectories 
and Poincare map is a limit cycle, the system is in a state of almost periodic motion. From Fig. 6, 
when ߱ = 9.35 rad/s, phase diagram has five tracks and Poincare map has five points, the system 
appears 5-cycle. As shown in Fig. 7, when ߱ = 9.4 rad/s, the system is in a state of almost periodic 
motion. From Fig. 8, when ߱ = 9.417 rad/s, the almost periodic ring is fracture, and the system is 
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transferred from almost periodic motion to chaos, the phase trajectory of the system is not repeated 
and the Poincare map is a bit of dense points with fractal structure. The results show that the 
driving angular velocity has a great influence on the motion state of the system. When driving 
angular velocity is different, the system has different motion state. Overall, from Fig. 9, we could 
see the effects of driving angular velocity on chaotic behavior of the parallel mechanism. 

 
a) Phase diagram 

 
b) Local phase diagram of ݉ region 

 
c) Poincare map 

Fig. 6. The phase diagram and Poincare map when ߱ = 9.35 rad/s 

 
a) Phase diagram 

 
b) Poincare map 

Fig. 7. The phase diagram and Poincare map when ߱ = 9.4 rad/s 

 
a) Phase diagram 

 
b) Poincare map 

Fig. 8. The phase diagram and Poincare map when ߱ = 9.417 rad/s 

 
Fig. 9. Bifurcation diagram of displacement  

with driving angular velocity 

 
Fig. 10. Bifurcation diagrams  
of largest Lyapunov exponent 
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a) LLE = –0.2145 when ߱ =  rad/s ߨ

 
b) LLE = –0.1593 when ߱ = 4.712 rad/s 

 
c) LLE = –0.0155 when ߱ = 9.2 rad/s 

 
d) LLE = –0.0455 when ߱ = 9.35 rad/s 

 
e) LLE = –0.0099 when ߱ = 9.4 rad/s 

 
f) LLE = 0.7749 when ߱ = 9.417 rad/s 

Fig. 11. Lyapunov exponent chart in ܺ direction 

Bifurcation diagrams of largest Lyapunov exponent is shown in Fig. 10. From Fig. 10, when ߱ < 9.417 rad/s, the largest Lyapunov exponent in X direction is negative; when ߱ ≥ 9.417 rad/s, 
the largest Lyapunov exponent in ܺ direction is positive. The Lyapunov exponent diagram in ܺ 
direction corresponding to different driving angular velocity is shown in Fig. 11. From Fig. 11, 
when ߱ = ߨ  rad/s, ߱ = 4.712 rad/s and ߱ = 9.35 rad/s, the largest Lyapunov exponent in ܺ 
direction are –0.2145, –0.1593 and –0.0455, respectively. In these cases, the system is in a state 
of periodic motion. When ߱ = 9.2 rad/s and ߱ = 9.4 rad/s, the largest Lyapunov exponent in ܺ 
direction are –0.0155 and –0.0099, respectively. And the system is in a state of almost periodic 
motion. When ߱ = 9.417 rad/s, the largest Lyapunov exponent in ܺ  direction is 0.7749, the 
Lyapunov exponent is positive, therefore the system is in a state of chaos. As shown in Fig. 10 
and Fig. 11, the driving angular velocity has a complicated influence on the chaotic behaviors of 
the 4-UPS-RPS high-speed parallel mechanism. 
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4.2. Effect of the radius of motion trajectory on the dynamic behavior of high-speed spatial 
parallel mechanism 

Due to the limitation of the workspace of the 4-UPS-RPS mechanism, the radius of motion 
trajectory denoted as ݎ  is choosed from 0.038 m to 0.057m. When ߱ = ߨ  rad/s, bifurcation 
diagram of displacement with the radius of motion trajectory is shown in Fig. 12. From Fig. 12, 
the system is stable. 

 
Fig. 12. Bifurcation diagram of displacement with the radius of motion trajectory 

4.3. Effect of the material of driving limbs on the chaotic motions of parallel mechanism 

When ߱ = 9.417 rad/s and ݎ = 0.045, the largest Lyapunov exponent in ܺ direction of two 
different materials is shown in Fig. 13. If the driving limbs were aluminum, the largest Lyapunov 
exponent in ܺ  direction is –0.2808. If the driving limbs were copper, the largest Lyapunov 
exponent in ܺ direction is –0. 1092. From Fig. 13, the system is stable.  

 
a) Aluminum 

 
b) Copper 

Fig. 13. Lyapunov exponent in ܺ direction 

4.4. Effect of diameter of driving limbs and the mass of moving platform on the bifurcation 
and chaotic motions of parallel mechanism 

When ߱ =  9.417 rad/s, ݎ = 0.045 and the materials of the driving limbs was steel, the 
relationship between the LLE in ܺ direction and the diameter of driving limbs is shown in Fig. 14, 
the corresponding bifurcation diagram of displacement with the diameter of driving limbs is 
shown in Fig. 15. From Fig. 15, the system is in chaotic state. When ߱ = 9.417 rad/s, ݎ = 0.045 
and the materials of the driving limbs was steel, the relationship between the LLE in ܺ direction 
and the mass of moving platform is shown in Fig. 16. The corresponding bifurcation diagram of 
displacement with the mass of moving platform is shown in Fig. 17. As shown in Fig. 17, the 
system is sometimes in periodic state and sometimes in chaotic state. From Fig. 14 to Fig. 17, the 
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diameter of driving limbs and the mass of moving platform have a complex influence on the 
chaotic motions of the 4-UPS-RPS high-speed parallel mechanism.  

 
Fig. 14. The relationship between the diameter of 

driving limbs and the LLE in ܺ direction 

 
Fig. 15. Bifurcation diagram of displacement  

with the diameter of driving limbs 
 

 
Fig. 16. The relationship between the mass of 

platform and the LLE in ܺ direction 

 
Fig. 17. Bifurcation diagram of displacement  

with the mass of moving platform 

5. Conclusions 

This paper investigates the bifurcation and chaotic behaviors of 4-UPS-RPS high-speed spatial 
parallel mechanisms. The main conclusions are as follows: 

1) The nonlinear elastic dynamics model of 4-UPS-RPS high-speed spatial parallel mechanism 
is introduced. 

2) The effects of parameters including driving angular velocity, the radius of motion trajectory, 
the material of driving limbs, the diameter of driving limbs, and the mass of moving platform, on 
the bifurcation and chaotic behaviors of high-speed spatial parallel mechanism are studied by 
phase diagrams, Poincare map, bifurcation diagram and largest Lyapunov exponent, respectively. 
The results show that the above parameters all have a certain influence on the nonlinear 
characteristics of the 4-UPS-RPS high-speed spatial parallel mechanism. 

3) The results show that the chaos phenomena can be avoided by selecting suitable control 
parameter, and therefore the motion property of mechanism is improved. The research can provide 
important theoretical basis for the further research on the nonlinear characteristic of 4-UPS-RPS 
high-speed spatial parallel mechanism. 

Acknowledgements 

This research is supported by the Natural Science Foundation of Shandong Province (Grant 
No. ZR2017MEE066), the Shandong Young Scientists Award Fund (Grant No. BS2012ZZ008). 



2809. BIFURCATION AND CHAOTIC BEHAVIORS OF 4-UPS-RPS HIGH-SPEED PARALLEL MECHANISM.  
XIULONG CHEN, YONGHAO JIA 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. FEB 2018, VOL. 20, ISSUE 1. ISSN 1392-8716 699 

References 

[1] Mei X., Tsutsumi M., Yamazaki T., et al. Study of the friction error for a high-speed high precision 
table. International Journal of Machine Tools and Manufacture, Vol. 41, Issue 10, 2001, p. 1405-1415. 

[2] Gao Lihua, Zheng Yaqing, Mitrouchev Peter Dynamic model of wire-driven parallel suspension 
system based on ADAMS. Journal of Shandong University of Science and Technology (Natural 
Science), Vol. 32, Issue 6, 2013, p. 89-94. 

[3] Chen Xiulong, Sun Xianyang, Deng Yu Kinematics analysis of 4-UPS-RPS spatial 5-DOF parallel 
mechanism. Transactions of the Chinese Society for Agricultural Machinery, Vol. 44, Issue 8, 2013, 
p. 257-261. 

[4] Liu Shanzeng, Yu Yueqing, Si Guoning, et al. Kinematic and dynamic analysis of a three-degree-
of-freedom parallel manipulator. Journal of Mechanical Engineering, Vol. 45, Issue 8, 2009, p. 11-17. 

[5] Sun Xiaoyong, Zheng Bin, Baojie, et al. Parameter optimization design of high-speed 6-PSS parallel 
robot. Transactions of the Chinese Society for Agricultural Machinery, Vol. 46, Issue 5, 2015, 
p. 372-378. 

[6] Leine R. I., Wouw N. V. D. Stability properties of equilibrium sets of non-linear mechanical systems 
with dry friction and impact. Nonlinear Dynamics, Vol. 51, Issue 4, 2008, p. 551-583. 

[7] Manoj Mahajan, Robert Jackson, George Flowers Experimental and analytical investigation of a 
dynamic gas squeeze film bearing including asperity contact effects. Tribology Transactions, Vol. 51, 
Issue 1, 2008, p. 57-67. 

[8] Chang Jian C.-W. Bifurcation and chaos of gear-rotor-bearing system lubricated with couple-stress 
fluid. Nonlinear Dynamics, Vol. 79, Issue 1, 2015, p. 749-763. 

[9] González Cruz C.-A., Jáuregui Correa J.-C., Domínguez González A., et al. Effect of the coupling 
strength on the nonlinear synchronization of a single-stage gear transmission. Nonlinear Dynamics, 
Vol. 85, Issue 1, 2016, p. 1-18. 

[10] Yue Yuan Local dynamical behavior of two-parameter family near the Neimark-sacker-pitchfork 
bifurcation point in a vibro-impact system. Chinese Journal of Theoretical and Applied Mechainics, 
Vol. 48, Issue 1, 2016, p. 163-172. 

[11] Wang C. C., Hung J. P. Theoretical and bifurcation analysis of a flexible rotor supported by gas-
lubricated bearing system with porous bushing. Journal of Vibroengineering, Vol. 18, Issue 3, 2016, 
p. 1934-1940. 

[12] Wang C. C. Non-periodic and chaotic response of three-multilobe air bearing system. Applied 
Mathematical Modelling, Vol. 47, 2017, p. 859-871. 

[13] Yang Xiaoli, Xu Wei Study on phase synchronization of stochastic chaotic system. Chinese Physics 
B, Vol. 17, Issue 6, 2008, p. 2004-2009. 

[14] Chun Biao A new procedure for exploring chaotic attractors in nonlinear dynamical systems under 
random excitations. Acta Mechanica Sinica, Vol. 27, Issue 4, 2011, p. 593-601. 

[15] Koumene Taffo G. I., Siewe M. Parametric resonance, stability and heteroclinic bifurcation in a 
nonlinear oscillator with time-delay: application to a quarter-car model. Mechanics Research 
Communications, Vol. 52, 2013, p. 1-10. 

[16] Wu Xin, Wen Guilin, Xu Huidong Anti-controlling Neimark-Sacker bifurcation of a three-degree-
of-freedom vibration system with clearance. Acta Physica Sinica, Vol. 64, Issue 20, 2015, p. 89-96. 

[17] Lu Jianwei, Gujue, Wang Qidong Influence analysis of movement pair clearance on nolinear 
dynamic behavior of vehicle shimmy system. Journal of Mechanical Engineering, Vol. 44, Issue 8, 
2008, p. 169-173. 

[18] Chen Xiulong, Li Yunfeng, Deng Yu, et al. Kineto elastodynamics modeling and analysis of spatial 
parallel mechanism. Shock and Vibration, Vol. 17, 2015, p. 1-10. 

[19] Goong Chen, Szebi Hsu, Jianxin Zhou Chaotic vibrations of the one-dimensional wave equation due 
to a self-excitation boundary condition. International Journal of Bifurcation and Chaos, Vol. 8, Issue 3, 
1998, p. 447-470. 

[20] Qiu Chenlin, Cheng Li A chaotic analyzing method based on the dependence of neighbor sub-
sequences in the data series. Acta Physica Sinica, Vol. 65, Issue 3, 2016, p. 48-63. 

[21] Niu Yujun, Wang Xingyuan, Nian Fuzhong, et al. Dynamic analysis of a new chaotic system with 
fractional order and its generalized projective synchronization. Chinese Physics B, 2010, Vol. 19, 12, 
p. 97-104. 

[22] Yang S. Quantitative analysis of unmanned ground vehicles trajectories based on chaos theory. Journal 
of Mechanical Engineering, Vol. 52, 2016, p. 2-127. 



2809. BIFURCATION AND CHAOTIC BEHAVIORS OF 4-UPS-RPS HIGH-SPEED PARALLEL MECHANISM.  
XIULONG CHEN, YONGHAO JIA 

700 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. FEB 2018, VOL. 20, ISSUE 1. ISSN 1392-8716  

[23] Zhang Yong New prediction of chaotic time series based on local Lyapunov exponent. Chinese 
Physics B, Vol. 22, Issue 5, 2013, p. 191-197. 

[24] Li Qingdu, Chen Shu, Zhou Ping Horseshoe and entropy in a fractional-order unified system. 
Chinese Physics B, Vol. 20, Issue 1, 2011, p. 175-180. 

[25] Dieci L., Vleck E. S. V. Lyapunov spectral intervals: theory and computation. Siam Journal on 
Numerical Analysis, Vol. 40, Issue 2, 2002, p. 516-542. 

[26] Fell J., Beckmann P. E. Resonance-like phenomena in Lyapunov calculations from data reconstructed 
by the time-delay method. Physics Letters A, Vol. 190, Issue 2, 1994, p. 172-176. 

[27] Diebner H. H., Sahle S., Mathias A. A robust, locally interpretable algorithm for Lyapunov 
exponents. Chaos Solitons and Fractals, Vol. 16, Issue 5, 2003, p. 841-852. 

[28] Dieci L., Russell R. D., Vleck E. S. V. On the computation of Lyapunov exponents for continuous 
dynamical systems. Siam Journal on Numerical Analysis, Vol. 34, Issue 1, 1997, p. 402-423. 

[29] Li Dongming Study on chaotic vibration of elastic linkage mechanism. Kunming University of 
Science and Technology, 2003. 

 

Xiulong Chen received the B.S. degree in mechatronic engineering from Hebei Normal 
University of Science and Technology, China, in 1999 and M.S. degree in mechanical 
design from Yanshan University, China, in 2002. He received his Ph.D. degree in 
mechatronic engineering from Yanshan University, China, in 2005. He is an Associate 
Professor at College of Mechanical and Electronic Engineering, Shandong University of 
Science and Technology, China. His research interests include nonlinear dynamics, smart 
materials and parallel mechanism, etc. 

 

Yonghao Jia received Bachelor’s degree in mechanical design from Jiangxi University of 
Science and Technology, Ganzhou, Jiangxi, in 2015. Now he is a Master student with 
Shandong University of Science and Technology. His current research interests include 
parallel mechanism dynamics and nonlinear dynamics. 

 




