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Abstract. In this paper, the dynamic behavior of time-delayed feedback control for maglev train 
system with double discrete time delays is considered with flexible guideway. Considering the 
maglev guideway as Beroulli-Euler beam, the mathematical model of maglev system with flexible 
guideway is constructed. The time delay of the two state feedback signals in the maglev system 
occurs simultaneously, and the values are different. The present treatment method only considers 
one single feedback delay, which are insufficiency. Thus, the Hopf bifurcation with double 
time-delay feedback of maglev train running on the flexible guideway is analyzed considering 
time-delayed position feedback signal ߬ଵ  and velocity feedback signal ߬ଶ . A novel method is 
presented to develop the double-parametric Hopf bifurcation diagram in relation to ߬ଵ and ߬ଶ. 
Sufficient numerical simulations are provided to illustrate the complex dynamical behavior of the 
discrete delays ߬ଵ  and ߬ଶ  for maglev system and we verify the obtained theoretical analysis. 
Finally, the field experiments are carried out to validate the effectiveness of the Hopf bifurcation 
analytical method preliminarily. 
Keywords: maglev system, Hopf bifurcation, dynamic behavior, time delays, flexible guideway. 

1. Introduction 

With the practical application of maglev train, the profuse dynamic phenomena of the maglev 
train running on the guideway are found. Among them, the vehicle-coupled-guideway vibration 
attracts a lot of scholars’ attention [1-3]. At present, there are two kinds of common methods for 
suppressing vehicle-guideway coupling vibration: one is to reduce the possibility of vibration by 
increasing guideway mass and stiffness. For example, the mass of steel reinforced concrete 
guideway beam of Shanghai Maglev Demonstration Line reaches 7 tons per meter [4]. In order to 
provide the basic theory for the suppression of vibration, the other method is proposed to study 
the nonlinear dynamics closely related to the vibration phenomena, such as Hopf bifurcation, limit 
cycle, etc. The construction cost of the first method is increased greatly. Per kilometers line 
construction can cost up to several hundred million RMB, which is not unfavorable for the 
popularization of maglev technology. Therefore, many scholars begin to try to find the cause of 
vibration from the point of view of nonlinear dynamics in order to restrain the vibration pertinently. 
A large amount of literatures show that the coupled vibration phenomenon of maglev system 
corresponds to the Hopf bifurcation in nonlinear dynamics [5-7]. Some valuable results have been 
achieved [8-10]. Wu [8] studied the key mechanism of the control parameters of the maglev 
system acting on the system coupling vibration. Lee [9] investigated the influence of guideway 
parameters of maglev system on Hopf bifurcation and vibration. In the literature [10], the 
relationship between control parameters, guideway parameters and vibration characteristics of 
vehicle-guideway coupling vibration system under stationary suspension condition is studied. 
Besides, the stability of the system is analyzed by Hopf bifurcation.  
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According to the above we can know, most of the researches on Hopf bifurcation of maglev 
systems are concentrated on the stability of guideway parameters and control parameters [5-11]. 
In fact, the networked suspension control system is applied to the actual maglev train. After 
digitizing analog signals measured by sensors, data frames are sent to the network, which leads to 
the existence of network induced time-delay, which may decrease the system stability and cause 
the periodic solutions. It is well known that periodic solutions are caused because of the Hopf 
bifurcation in delay differential equations [12]. The vibration of maglev train is closely related to 
the periodic solution of Maglev system. In National Maglev Transportation Engineering R&D 
center, due to the excessive time-delays in the feedback control loop of the maglev train, some 
serious vibration is occurred leading to the damage of the experimental equipment. Therefore, it 
possesses great theoretic and practical significance to study the Hopf bifurcation and coupled 
vibration of Maglev systems with time-delay feedback control. However, there are few 
publications dealt with the dynamics of maglev train with time-delay state feedback control. 
Zhang [13] has studied the single time-delayed velocity feedback control. The stability and Hopf 
bifurcation of maglev train under flexible guideway are studied through the normal form theory 
and the center manifold. Wang [14] has studied dynamic phenomena under the time-delayed 
position feedback control and has taken the nonlinear effects into account. Paper [15] analyzed 
the Hopf bifurcation of the maglev train by the Pseudo-oscillator method. Unfortunately, the 
dynamic model used in these literatures is rigid guideway or only single time delay feedback signal 
is considered. In fact, multiple time-delays in many state feedback signals of the maglev system 
could take place simultaneously, and the values are different. Therefore, it is more practical to 
consider the maglev dynamics system with multiple different time-delay state feedback signals. 
At present, the most common suspension controller did not utilize the acceleration feedback signal 
directly. So, we will consider the maglev vehicle-guideway coupling model with double time-
delay feedback states of position feedback and velocity feedback in this paper. 

As in the previous studies, as to research on maglev guideway coupling vibration, it either is 
considered only a single feedback delay, or the orbit is considered as a complete rigid body, or the 
double bifurcation analysis is based on a single delay problem. The maglev line some special place, 
because of its special structural requirements, It may produce flexible deformation, thus the 
occurrence of oscillation phenomenon of continuous. From this point of view, this paper analyzes 
the mechanism of coupled vibration of maglev vehicle track through center flow method. The 
condition of coupled vibration is studied to reduce the possibility of coupled vibration between 
vehicle and track. Firstly, the dynamic equation of coupled vibration of maglev vehicle-guideway 
is established. Then, the Hopf bifurcation of the maglev system with two time delays is analyzed 
under flexible guideway, and a two parameters bifurcation diagram with two time-delays is plotted. 
Finally, the effectiveness of the theoretical analysis is proved by numerical simulation and 
preliminary experiments. 

2. Dynamics model of maglev system with flexible guideway 

The maglev vehicle is supported by a number of suspension points, as shown in Fig. 1(a). The 
maglev system of the train can be decomposed into the control problem of the single electromagnet 
guideway system according to the decoupling analysis of the levitation chassis [16]. It is more 
universal to analyze and study the stability of single electromagnet guideway system than the multi 
electromagnet guideway system [17-19]. Without loss of generality, the following assumptions 
should be made before deducing the dynamic equations of maglev train: 

1) The single electromagnet unit (suspension point) has been completely decoupled through 
the levitation chassis, and the suspension point does not affect each other. 

2) In the analysis, the secondary suspension of the carriage is neglected. Because the air spring 
stiffness of the supporting carriage is smaller than the suspension stiffness, the variation of the 
electromagnet load caused by the micro vibration of the carriage can be negligible [18]. In other 
words, the vibration of the electromagnet and the carriage is isolated by the air spring.  
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3) The beam on the maglev line is usually simply supported. Because the length of the beam 
is much larger than the section height and the deformation is much smaller than the length of the 
beam, the mathematical modeling can be carried out according to the Bernoulli-Euler beam [20]. 

4) Compared with the span length of the beam, the length of the electromagnet is very small. 
So, the length of the electromagnet can be neglected in the modeling.  

 
a) 

 
b) 

Fig. 1. Structural diagram of maglev vehicle-guideway coupling control system 

The schematic diagram of the single suspension point-track coupled system is shown as 
Fig. 1(b). Among them, the origin of coordinate system is located at the “O”, which the 
intersection of the orbital left bearing and the track. Electromagnets and loads are reduced to an 
equivalent mass ݉. ݖଵ and ݖଷ are the absolute displacements of electromagnets and guideway, 
respectively. The air gap is ݀௥௘௙ = ଵݖ −  ଷ. The mass of unit length and flexural rigidity of theݖ
guideway beam are ߩ௚ and ܫܧ௚ separately. ܥ௚is the coefficient of viscous damping. ܮ is the span 
of beam. The motion of the maglev guideway can be described by the Bernoulli-Euler beam 
equation [21-23]:  

௚ܫܧ ߲ସݖଷ(ݕ, ସݕ߲(ݐ + ௚ܥ ,ݕ)ଷݖ߲ ݐ߲(ݐ + ௚ߩ ߲ଶݖଷ(ݕ, ଶݐ߲(ݐ = ,ݕ)݂ (1) ,(ݐ

where ݂(ݕ, ,ݕ)݂ :is an external force acting on the guideway. It can be approximately expressed as (ݐ (ݐ = ݕ)ߜ(ݐ)௠ܨ − ଴). (2)ݕ

According to the vibration theory of continuous beam, it can be found that the vibration of 
higher modes can occur only when the energy of the excitation is very high [20]. Therefore, the 
maglev guideway is usually discussed only for the first order mode [21-23]. The problem 
expressed by the (1) is studied by the modal analysis method. For simple supported beam, the first 
order modal frequency ߱ଵ and the first order modal shape function ߶ଵ(ݕ) are as follows [23-24]: 
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߱ଵ = ௚ߩ௚ܫܧଵଶඨߣ ,   ߶ଵ(ݕ) = sin(ߣଵݕ), (3) 

where ߣଵ =  according to the theory of mode superposition, flexible guideway model can be ,ܮ/ߨ
expressed as: ݖଷ(ݕ, (ݐ = ߶ଵ(ݕ)ݍଵ(ݐ), (4) 

where ݍଵ(ݐ) is the amplitude of the first order modal displacement with time. Substituting (4) into 
(1), both sides of the equation are multiplied by ߶ଵ(ݕ), which has been mentioned earlier. Then 
the both sides of the equation are integrated from 0 to ܮ. Finally, the equation will be got: 

(ݐ)ሷଵݍ + (ݐ)ሶଵݍଵ߱ଵߦ2 + ߱ଵଶݍଵ(ݐ) = 2߶ଵ(ݕ଴)ߩ௚ܮ  (5) ,(ݐ)௠ܨ

where ߱ଵ ଵߦ ,  are the First order modal frequencies and damping ratios separately. Through 
defining ܣଵ = 2߶ଵଶ(ݕ଴)ߩ௚ି ଵିܮଵ, the both sides of (5) are multiplied by ߶ଵ(ݕ).The equation can be 
converted: ݖሷଷ(ݐ) + (ݐ)ሶଷݖଵ߱ଵߦ2 + ߱ଵଶݖଷ(ݐ) =  (6) .(ݐ)௠ܨଵܣ

In addition, the rest of the system state variables can be selected separately. ݖଶ is the vertical 
change velocity of electromagnet. ݖସ is the vertical change velocity of the track. ݖହ = ݅ is the 
electromagnet winding current. The model of vehicle track coupling system with the first order 
vibration mode can be obtained by combining the model of maglev system with flexible guideway: 

ەۖۖ
۔ۖ
(ݐ)݀ۓۖ = (ݐ)ଵݖ − (ݐ)௠ܨ,(ݐ)ଷݖ = ଶ݉ܣ (ݐ)ଶ݀(ݐ)ହଶݖ ሷଵݖ݉, = ݉݃ − ܷ,(ݐ)௠ܨ = ൬2ܣଶ݀ ൰ ሶହݖ − ൬2ܣଶݖହ݀ଶ ൰ × ሶଵݖ) − (ሶଷݖ + ሷଷݖ,ହݖܴ + ሶଷݖଵ߱ଵߦ2 + ߱ଵଶݖଷ = ,(ݐ)௠ܨଵܣ

 (7) 

where: 

ଵܣ = ଶܣ   , ܮ ௚ߩ(ݕଵߣ)ଶ݊݅ݏ2 = 4ܣ଴ܰଶߤ .  

At present, the double loop PID controller is applied to the most of the low-speed maglev 
control system. Taking air gap deviation ݖଵ(ݐ) − (ݐ)ଷݖ − ݀௥௘௙, current ݖହ, electromagnet velocity ݖଶ three states as feedback control loop [7, 10]. Therefore, it is of practical significance to study 
the vehicle track coupling dynamics under the maglev control system. Among them, the feedback 
controller is: ܷ = ௘ܷ௖ + ݇௘(ݖଵ − ଷݖ − ݀௥௘௙) + ݇௖ݖହ + ݇௩ݖଶ, (8) 

where ௘ܷ௖ is the Voltage at equilibrium. ݀௥௘௙ is the target air gap. ݇௘, ݇௖ and ݇௩ are the feedback 
factor of each loop separately. Substituting (7) into (8), the state equation of the maglev vehicle 
rail coupling control system can be obtained: 
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ەۖۖۖ
۔ۖ
ሶଵݖۓۖۖ = ሶଶݖ,ଶݖ = ݃ − ଶ݉ܣ ൬ ଵݖହݖ − ଷ൰ଶݖ ሶଷݖ, = ሶସݖ,ସݖ = ଵܣଶܣ ൬ ଵݖହݖ − ଷ൰ଶݖ − ସݖଵ߱ଵߦ2 − ߱ଵଶݖଷ,ݖሶହ = ଶݖ)ହݖ − ଵݖ(ସݖ − ଷݖ − ଵݖ)ܴ − ଶܣହ2ݖ(ଷݖ + ଵݖ − ଶܣଷ2ݖ ൫ ௘ܷ௖ + ݇௘൫ݖଵ − ଷݖ − ݀௥௘௙൯ + ݇௖ݖହ + ݇௩ݖଶ൯.

 (9)

3. Analysis of the hopf bifurcation with double time-delay feedback 

When the double delay maglev system is studied, the dynamic equations and electromagnetic 
equations can be listed according to the symbolic variables, as follows: ܷ = ܴ݅ + ଵݖଶܣ2 − ଷݖ ଓሶ − ଵݖ)ଶ݅ܣ2 − ଷ)ଶݖ ሶଵݖ) − ሷଵݖ݉ሶଷ), (10)ݖ = ݉݃ − )ଶܣ ଵݖ݅ − ሷଷݖଷ)ଶ, (11)ݖ + ሶଷݖଵ߱ଵߦ2 + ߱ଵଶݖଷ = ଶܣଵܣ ൬ ଵݖ݅ − ଷ൰ଶ, (12)ݖ

An equivalent transformation of (11) can be obtained:  

ഺଵݖ = ݉݃ − ଶܣሷଵ݉ݖ݉ ൤ܴ(ݖଵ − (ଷݖ + ሶଵݖ)ଶܣ2 − ଵݖ(ሶଷݖ − ଷݖ ൨ − 2݅ × ሶଵݖ)ଶܣ − ଵݖ)݉(ሶଷݖ − ଷ)ଶݖ ඨ݉݃ − −ଶܣሷଵݖ݉ ܷ݉ ඨ݉݃ − ଶܣሷଵݖ݉ . (13)

Takingݖଵ, ݖଶ, ݖହ as feedback variables, the feedback control parameters are applied to the 
voltage interface of the electromagnet: ܷ = ௘ܷ௖ + ݇௘൫ݖଵ − ଷݖ − ݀௥௘௙൯ + ݇௖ݖହ + ݇௩ݖଶఛ, (14)

where the position feedback signals and velocity feedback signals with time delay are represented 
by ݖఛଵ = ݐ)ଵݖ − ߬ଵ), ݖఛଶ = ݐ)ଶݖ − ߬ଶ) respectively. 

At the equilibrium point, the value of the state variable is ݖଵ − ଷݖ = ݀௥௘௙, ݖଶ = 0. 
Where ݀௥௘௙  is the target gap. At this point, the voltage at the equilibrium point is ௘ܷ௖ = (ܴ − ݇௖)݀௥௘௙ܣଷ .When the equilibrium point is shifted to the coordinate origin, the 

linearized system equation can be obtained through the feedback expression: 

ഺଵݖ − ቎ܴ݃ܣଶ + ݇௖݉ ඨ݉݃ܣଶ ቏ ଵݖ + ቎ܴ݃ܣଶ + ݇௖݉ ඨ݉݃ܣଶ ቏ ଵݖ − ݇௘݉ ଵఛభݖ − ݇௩݉ ଶఛమݖ = 0. (15)

Furthermore, the characteristic equation of the linear system can be obtained: ߣ)ܦଵ, ,ଶߣ ߬ଵ, ߬ଶ) = ଵଷߣ + ଵ݁ିఒభఛభߣܾ + ଵ݁ିఒభఛమߣܿ + ଶߣ݀ + ܽ = 0, (16)
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where: 

ܽ = ݀ = − ቎ܴ݃ܣଶ + ݇௖݉ ඨ݉݃ܣଶ ቏ ,   ܾ = − ݇௘݉ ,   ܿ = − ݇௩݉.  

Similarly, the expressions about I are brought into orbit equations and expanded by Taylor: 

ሷீݖ = −ඨ 2݉௚ sin ቆ݈ߨ௚ ଴ቇݔ ݇௤ଵ݉ݖሷଵ − ሶீݖଵ߱ଵߟ2 − ߱ଵଶீݖ + ,ሷଵݖ)݂ ,ሶீݖ  (17) .(ீݖ

The characteristic equations can be obtain according to (17): ߣ)ܦଵ, (ଶߣ = ଶଶߣ + ଵଶߣ݁ + ଶߣ݂ + ℎ = 0, (18) 

where: ݁ = ݂   ,ଵܣ݉ = ଵ߱ଵ,   ℎߦ2 = ߱ଵଶ.  

In the analysis of the influence of time delay on the stability of maglev system, they can be 
divided into 5 cases: 

Case (1). ߬ଵ = ߬ଶ = 0 
By changing the variables, the characteristic equation can be transformed into: ܦ(ߣଵ) = ଵ଺ߣ + (2ܾ + ଵସߣ(2ܿ + (2ܽ − ଵଷߣ(݂ܽ + ((ܾ + ܿ)ଶ + ݁݀ଶ)ߣଵଶ     +(2ܽ(ܾ + ܿ) − ݂݀(ܾ + ଵߣ((ܿ − ݂ܽ݀ + ℎ݀ଶ = 0.  (19) 

According to the Routh-Hurwitz criterion, if there is no time delay, the maglev system is in 
stable state if and only if the eigenvalues exist negative real parts. 

The existence of time delay can lead to instability of the system. According to past experience, 
if the real part of characteristic root of characteristic Eq. (16) and (18) is 0, the stability of 
equilibrium may be changed. 

Case (2). ߬ଵ = 0, ߬ଶ (ߚ)݃ :0 < = ଺ߚ + (2ܽ − ݂݀)ଶߚସ − [2(2ܽ − ݂݀)((2ܽ(ܾ + ܿ) − ݂݀(ܾ + ܿ)) − ݂ܽ݀)     +((ܾ + ܿ)ଶ + ݁݀ଶ)ଶ]ߚଶ + ((2ܽ(ܾ + ܿ) − ݂݀(ܾ + ܿ)) + −݂݀ܽ)ଶ = 0.  (20) 

It is easy to find out ݃(0) = (−݂݀ܽ + ℎ݀ଶ)ଶ >  0, ݃(+∞) → +∞ .When ߱ = ଶߚ , The 
equation can be transformed into: ݃(߱) = ߱ଷ + ܽଶ߱ଶ − [2ܽ(ܿ + ݀) + ܾଶ]߱ + (ܿ + ݀)ଶ = 0. (21) 

The above equations are derived: ݃′(߱) = 3߱ଶ + 2ܽଶ߱ − [2ܽ(ܿ + ݀) + ܾଶ] = 0. (22) 

If ݃(߱) = ݃(߱∗) < 0, (݃′(߱∗) = 0), the Eq. (20) has only one positive root. Corresponding 
to the critical value, the time delay is ߬ଶ଴: 

߬ଶ଴ = ଴ߚ1 arccos ܾ)଴ଶ2ܽߚ + ܿ) − ݂݀(ܾ + ܿ) + ଴ߚߨ2݊ ,   ݊ = 0,1,2, … (23) 
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Case (3). ߬ଶ = 0, ߬ଵ > (ߚ)݃ :0 = ଺ߚ + ((2ܾ + 2ܿ)ଶ − 2(2ܽ − ସߚ((݂ܽ + ((2ܽ − ݂ܽ)ଶ     −2(2ܾ + 2ܿ)ℎ݀ଶ)ߚଶ + (ℎ݀ଶ)ଶ − (−݂ܽ݀)ଶ = 0.  (24)

According to the Hurwitz theorem, ݇௣  satisfies ܿ + ݀ >  0 and ܿ >  0, ݀ >  0. Because of ݃(0) < 0 and ݃(+∞) > 0, there is a positive root ߚ଴. The corresponding critical value of time 
delay ߬ଵ଴ is: 

߬ଵ଴ = ଴ߚ1 arccos (2ܾ + ଴ଶߚ(2ܿ − ℎ݀ଶ−݂ܽ݀ + ଴ߚߨ2݊ ,   ݊ = 0,1,2, … (25)

Case (4).߬ଵ ∈ (0, ߬ଵ଴), ߬ଶ (ߚ)݃ :0 < = ଺ߚ + (2ܾ + 2ܿ)ଶߚସ + 2(2ܽ(ܾ + ܿ) − ݂݀(ܾ + ܿ))sin߬ߚଵߚଷ     −(2(2ܾ + 2ܿ)(2ܽ(ܾ + ܿ) − ݂݀(ܾ + ܿ))cos߬ߚଵ + 2(2ܾ + 2ܿ)ℎ݀ଶ+ ((ܾ + ܿ)ଶ + ݁݀ଶ)ଶ) + ((ܾ + ܿ)ଶ + ݁݀ଶ)ଶ)ߚଶ + (2ܽ(ܾ + ܿ) − ݂݀(ܾ + ܿ))ଶ+ (ℎ݀ଶ)ଶ + 2(2ܽ(ܾ + ܿ) − ݂݀(ܾ + ܿ))ℎ݀ଶcos߬ߚଵ = 0.  (26)

The above equations are derived: ݃′(ߚ) = ସߚ6]ߚ + 4(2ܾ + 2ܿ)ଶߚଶ + 6(2ܽ(ܾ + ܿ) − ݂݀(ܾ + −ଵ߬ߚsinߚ((ܿ 2(2(2ܾ + 2ܿ)(2ܽ(ܾ + ܿ) − ݂݀(ܾ + ܿ))cos߬ߚଵ + 2(2ܾ + 2ܿ)ℎ݀ଶ+ ൫(ܾ + ܿ)ଶ + ݁݀ଶ)ଶ)൧.  (27)

Due to: −2(2(2ܾ + 2ܿ)(2ܽ(ܾ + ܿ) − ݂݀(ܾ + ܿ))cos߬ߚଵ + 2(2ܾ + 2ܿ)ℎ݀ଶ      +((ܾ + ܿ)ଶ + ݁݀ଶ)ଶ) < 0. 
There is a positive ߚ∗ that satisfies ݃′(ߚ∗) = 0 and ݃(ߚ∗) has a minimum. If: ݃(ߚ) = (∗ߚ)݃ < 0, 
The Eq. (26) has only one positive root. 
The corresponding critical value of time delay ߬ଶ଴is: 

߬ଶ଴ = ଴ߚ1 arccos ଴ଷߚ + (2ܽ(ܾ + ܿ) − ݂݀(ܾ + ܿ))sinߚ଴߬ଵ((ܾ + ܿ)ଶ + ݁݀ଶ)ߚ଴ + ଴ߚߨ2݊ , ݊ = 0,1,2,3, … (28)

Case (5).߬ଶ ∈ (0, ߬ଶ଴), ߬ଵ (ߚ)݃ :0 < = ଺ߚ + ((2ܾ + 2ܿ)ଶ − 2((ܾ + ܿ)ଶ + ݁݀ଶ)cos߬ߚଶ)ߚସ     −2(2ܾ + 2ܿ)((ܾ + ܿ)ଶ + ݁݀ଶ)ߚଷsin߬ߚଶ + (((ܾ + ܿ)ଶ + ݁݀ଶ)ଶܿݏ݋ଶ߬ߚଶ     −2(2ܾ + 2ܿ)ℎ݀ଶ + ((ܾ + ܿ)ଶ + ݁݀ଶ)ଶ݊݅ݏଶ߬ߚଶ)ߚଶ     +2((ܾ + ܿ)ଶ + ݁݀ଶ)ℎ݀ଶߚsin߬ߚଶ + (ℎ݀ଶ)ଶ     −(2ܽ(ܾ + ܿ) − ݂݀(ܾ + ܿ))ଶ = 0.  (29)

Similarly, when (ℎ݀ଶ)ଶ − (2ܽ(ܾ + ܿ) − ݂݀(ܾ + ܿ))ଶ < 0, there is a positive root ߚ଴. 
The corresponding critical value of time delay ߬ଵ଴ is: 



2747. NONLINEAR DYNAMIC ANALYSIS ON MAGLEV TRAIN SYSTEM WITH FLEXIBLE GUIDEWAY AND DOUBLE TIME-DELAY FEEDBACK CONTROL.  
JUNQI XU, CHEN CHEN, DINGGANG GAO, SHIHUI LUO, QINGQUAN QIAN 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. DEC 2017, VOL. 19, ISSUE 8. ISSN 1392-8716 6353 

߬ଵ଴ = ଴ߚ1 arcsin ଴ଷߚ− + ((ܾ + ܿ)ଶ + ݁݀ଶ)ߚ଴cosߚ଴߬ଶ(2ܽ(ܾ + ܿ) − ݂݀(ܾ + ܿ)) + ଴ߚߨ2݊ , ݊ = 0,1,2, … (30) 

The delay critical value above must satisfy the corresponding condition of Hopf bifurcation: 

ܴ݁ ൤ ௫൨ఛೣୀఛೣబ߬݀ߣ݀
ఒୀ௜ఉబ ് 0 (31) 

As shown in Fig. 2, the velocity feedback time delay and the displacement feedback delay are 
taken as the bifurcation parameters for the feedback control of the maglev dynamic model. 

 
Fig. 2. the time delay feedback control with block diagram 

According to the above inferences, the critical value of the time-delay position feedback loop 
and the velocity feedback loop under different conditions can be determined. The periodic 
solutions of Hopf bifurcation and the critical point of the system center manifold can be 
determined according to the relevant data of the test vehicle at the low speed maglev base of Tongji 
University and the critical time delay under different conditions. The physical parameters are 
shown in Table 1. 

Table 1. Physical parameter values ݉ = 700 kg ܰ௠ ଴ߤ 450 = = 4 π×10-7 H·m-1 ߟ ௠ܣ 0 = = 0.024 m2 ܴ௠ = 1.2 Ω ݅௥௘௙ = 19.1 A ݔ௥௘௙ = 0.009 m 

The shadow region represents the stable domain. The stable domain can be verified by 
numerical calculation. The dynamics of the system outside the region is very complex. Based on 
the above analysis, bifurcation conditions can be described, as shown in Fig. 3.  

 
Fig. 3. Bifurcation diagram in relation to ߬ଵ and ߬ଶ 
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The stability of the stable domain can be improved from the graph. The extension domain of 
the stable domain is shown in ACDA. In this region, you can choose the appropriate value in  ߬ଵ ∈ (0, ߬ଵ଴) to obtain a stability for ߬ଶ > ߬ଶ଴. According to the solution of the critical delay 
condition, it is shown that we can obtain the stability of the periodic solution of the Hopf 
bifurcation at the center manifold of the system at the critical value. The Hopf bifurcation curve 
(OAD) on the left shows that the Hopf bifurcation is supercritical, and the related limit cycles are 
stable. The curve on the right (BCD) shows that the Hopf bifurcation is subcritical, and the related 
limit cycles are unstable. As shown in Fig. 3. 

4. Numerical simulations 

Through the numerical simulation, many different delay values can be tested to verify the 
above theoretical results. In addition, we can select four representative delay values near OA, AD, 
DC and CB to describe the problem. 

When ߬ଵ = 0 s, the critical value of ߬ଶ for Hopf bifurcation can be acquired as ߬ଶ଴ = 0.07 s 
(the point B from Fig. 3). Two points near the boundary (߬ଶ = 0.065 s and ߬ଶ = 0.075 s) will be 
selected to carry out the numerical simulation. The simulation results can be seen in Figs. 4-5.  

 
a) Displacement of electromagnet 

 
b) Displacement of rail 

 
c) Airgap 

 
d) Phase locus 

Fig. 4. Simulation results of the maglev system when ߬ଵ = 0 s, ߬ଶ = 0.065 s 

We can learn from Fig. 4 that the maglev possesses stability when ߬ଶ = 0.065 s < ߬ଶ଴  
(in the shaded region). In Fig. 4(a)-(c), it can be seen that the displacement of electromagnet, the 
displacement of rail and the air gap tend to be stable. In Fig. 4(d), from the limit cycle, it can be 
seen that the air gap and the air gap change rate gradually approaching 0, which can further explain 
the system to reach a stable state. In Fig. 5(a), (b), the displacement of electromagnet and the 
displacement of rail are increasing continuously, which indicates that there is obvious instability 
phenomenon. In Fig. 5(c), it can be seen that the system loses the stability when  ߬ଶ = 0.075 s > ߬ଶ଴ (right side of the curve BCD) with the appearance of an emanative vibration. 
The Fig. 5(d) shows that the limit cycle is unstable.  It is known as subcritical Hopf bifurcation 
when the point is out of the dashed line BCD.  

When ߬ଵ =  0.027 s, the critical value of ߬ଶ  for Hopf bifurcation can be obtained as  ߬ଶ଴ =  0.0589 s (in the solid line AD). Two points near the boundary ( ߬ଶ =  0.055 s and  ߬ଶ = 0.063 s) will be selected to carry out the numerical simulations. The simulation results can 
be seen in Figs. 6-7.  
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a) Displacement of electromagnet 

 
b) Displacement of rail 

 
c) Airgap 

 
d) Phase locus 

Fig. 5. Simulation results of the maglev system when ߬ଵ = 0 s, ߬ଵ = 0.075 s 

 
a) Displacement of electromagnet 

 
b) Displacement of rail 

 
c) Airgap 

 
d) Phase locus 

Fig. 6. Simulation results of the maglev system when ߬ଵ = 0.027 s, ߬ଶ = 0.055 s 

We can learn from Fig. 6 that the maglev system is stability when ߬ଶ = 0.063 s > ߬ଶ଴  
(in the shaded region). It is known as supercritical Hopf bifurcation when the point is out of the 
solid line AD. In fact, from Fig. 6(a), (b) we can find that the electromagnet the flexible guideway 
has a stable periodic vibration, which results in the change of airgap and magnetic force. So, the 
maglev system presents vehicle-coupled-guideway vibration. 

It can be seen from the Fig. 7 that the maglev system loses the stability when  ߬ଶ = 0.055 s < ߬ଶ଴ (left side of the curve AD) with the appearance of a stable periodic vibration. 
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In Fig. 7(a)-(c), it can be seen that the displacement of electromagnet, the displacement of rail and 
the air gap tend to be stable.  In Fig. 4(d), From the limit cycle, it can be seen that the air gap and 
the air gap change rate gradually approaching 0, which can further explain the system to reach a 
stable state.  

 
a) Displacement of electromagnet 

 
b) Displacement of rail 

 
c) Airgap 

 
d) Phase locus 

Fig. 7. Simulation results of the maglev system when ߬ଵ = 0.027 s, ߬ଶ = 0.063 s 

When ߬ଶ =  0 s, the critical value of ߬ଵ  for Hopf bifurcation can be acquired as  ߬ଵ଴ = 0.00133 s (the point A from Fig. 3). Two points near the boundary (߬ଵ = 0.001 s and  ߬ଵ = 0.0016 s) will be selected to carry out the numerical simulation. The simulation results can 
be seen in Figs. 8-9.  

 
a) Displacement of electromagnet 

 
b) Displacement of rail 

 
c) Airgap 

 
d) Phase locus 

Fig. 8. Simulation results of the maglev system when ߬ଵ = 0.001 s, ߬ଶ = 0 s 
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a) Displacement of electromagnet 

 
b) Displacement of rail 

 
c) Airgap 

 
d) Phase locus 

Fig. 9. Simulation results of the maglev system when ߬ଵ = 0.0016s, ߬ଶ = 0 s 

We can learn from Fig. 8 that the maglev possesses asymptotic stability when  ߬ଵ = 0.001 s < ߬ଵ଴ (in the shaded region). In Fig. 8(a)-(c), it can be seen that the displacement of 
electromagnet, the displacement of rail and the air gap tend to be stable. In Fig. 8(d), From the 
limit cycle, it can be seen that the air gap and the air gap change rate gradually approaching 0, 
which can further explain the system to reach a stable state.  

In fact, from Fig. 9(a), (b) we can find that the electromagnet the flexible guideway has stable 
periodic vibrations, which results in the change of airgap and magnetic force. So, the maglev 
system presents vehicle-coupled-guideway vibration. In Fig. 9(c), it can be seen that the system 
has a stable periodic vibration when ߬ଵ= 0.0016 s > ߬ଵ଴ (out of the solid curve AD). The phase 
portrait of the Fig. 8(d) also illustrates that the limit cycle is unstable.  It is known as supercritical 
Hopf bifurcation when the point is out of the solid line AD.  

When ߬ଶ =  0.0675 s, the critical value of ߬ଵ  for Hopf bifurcation can be acquired as  ߬ଵ଴ = 0.0275 s (in the dashed line BCD). Two points near the boundary (߬ଵ = 0.026 s and  ߬ଵ = 0.03 s) will be selected to carry out the numerical simulation. The simulation results can be 
seen in Figs. 10-11.  

We can learn from Fig.10 that the maglev system is asymptotic stability when  ߬ଵ = 0.026 s < ߬ଵ଴ (in the shaded region). In Fig. 10(a)-(c), it can be seen that the displacement 
of electromagnet, the displacement of rail and the air gap tend to be stable. In Fig. 4(d), From the 
limit cycle, it can be seen that the air gap and the air gap change rate gradually approaching 0, 
which can further explain the system to reach a stable state.  

In Fig. 11(a), (b), the electromagnet displacement and the track displacement are increasing 
continuously, which indicates that there is obvious instability phenomenon. When  ߬ଵ = 0.03 s > ߬ଵ଴ (out of the dashed curve BCD) In Fig. 11(c), it can be seen that the system loses 
the stability with the appearance of an emanative vibration. The phase portrait of the Fig. 11(d) 
shows that the limit cycle is unstable. It is known as subcritical Hopf bifurcation when the point 
is out of the dashed line BCD.  

Especially, it can be seen that the demand of position feedback time-delay is more rigorous 
than that of velocity feedback. The value of position feedback time-delay needs to be smaller to 
keep the system stable. It is also related to the position feedback control which plays a more 
important regulatory role in the whole controller. Moreover, if the maglev system is stable, ߬ଵ 
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should be less than 0.00133 s when ߬ଶ = 0 s. But if ߬ଶ(< 0.07s) increases, ߬ଵ which ensures the 
maglev system stable can increase to almost 0.029 s. It indicates that the stability region is enlarged. 
It is shown from the simulation results that appropriately adjusting time-delay parameters can 
change the dynamic response amplitude, which provides a significant method to restrain the 
vibration. 

 
a) Displacement of electromagnet 

 
b) Displacement of rail 

 
c) Airgap 

 
d) Phase locus 

Fig. 10. Simulation results of the maglev system when ߬ଵ = 0.026 s, ߬ଶ = 0.0675 s 

 
a) Displacement of electromagnet 

 
b) Displacement of rail 

 
c) Airgap 

 
d) Phase locus 

Fig. 11. Simulation results of the maglev system when ߬ଵ = 0.03 s, ߬ଶ = 0.0675 s 

5. Preliminary experimental results 

Taking the maglev test train of National Maglev Transportation Engineering R&D center as 
shown in Fig. 12, the suspension test is implemented on the movable guideway in covered court.  
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a) Levitation electromagnet 

 
b) Replaceable track 

Fig. 12. Experimental platform of low speed maglev Center 

The signal transmission is shown in Fig. 13. In the test maglev vehicle, the maglev train is 
stably levitated by the interaction between the digital controller and the magnetic suspension 
chopper. At the same time, the sensor signal with time delay on the magnetic suspension controller 
acts on the digital controller for real-time feedback [25-28]. The sampling frequency is 2500 Hz, 
and the experimental parameters of the system and the controller feedback parameters are 
consistent with the parameters used in the theoretical analysis and simulation. Because of the 
convenience of the experiment, only a set of time delay parameters is verified here. The time delay 
in the controller is modified to ߬ଵ = 0.027 s, ߬ଶ = 0.055 s and the experiment is carried out. After 
the train is levitated, data sampling is carried out. Finally, the collected signal is processed by 
Kalman filter [29-31]. The experimental results obtained are shown in Figs. 14-16.  

 
a) 

 
b) 

Fig. 13. Signal transmission in test maglev vehicle 

 
Fig. 14. Experimental results: suspension  

air gap response 

 
Fig. 15. Experimental results: electromagnetic 

acceleration response 

In the previous section, the numerical simulation of vehicle track coupling vibration with 
double time-delay (velocity and position signal feedback time-delays) based on flexible track is 
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carried out in numerical simulation. By simulating different time delay values, the theoretical 
method can be verified, and some signals and parameters can be used for subsequent experiments. 
In the process of experiment, the time delay values of the simulation analysis, which can lead to 
coupling vibration, is taken to prove that the theoretical method is effective. The output of three 
state variables of air gap, electromagnet acceleration and current can be obtained according to the 
experiment. 

It can be seen that the vehicle-guideway coupling vibration occurs when ߬ଵ =  0.027 s,  ߬ଶ = 0.055 s. The coupling vibration is stable periodic vibration and the amplitude of the air gap 
vibration is about 20 mm, which are close to the simulation results. Considering the complexity 
of the actual system model and the presence of disturbances in the experiment, it can be concluded 
that the proposed theoretical analysis method and simulation results are believable. 

 
Fig. 16. Experimental results: current response 

6. Conclusions 

The vibration phenomenon is abundant when the Maglev train is levitated on the flexible 
guideway. The study of the vibration problem is very important to learn the complicated dynamic 
behavior of Maglev system and improve the ride quality of the train. In this paper, we investigate 
the Hopf bifurcation of Maglev train running on flexible guideway with time delays of position 
and velocity feedback control. Importance is given to both the delays, then the sufficient 
conditions for stability of the equilibrium point and the existence of Hopf bifurcation when  ߬ଵ = 0, ߬ଶ > 0, ߬ଶ = 0, ߬ଵ > 0, ߬ଵ > 0, ߬ଶ > 0 are obtained. The possibility of the interaction 
between the two delays is proved. The two parameter bifurcation diagram describes the combined 
effects of discrete time delay ߬ଵ and ߬ଶ  on the dynamic characteristics of Maglev train. The 
theoretical solution is verified by numerical simulation. If Maglev train has stability, when  ߬ଵ = 0, ߬ଶ should not exceed ߬ଶ଴. And if ߬ଵ can increase in a certain range, the value of ߬ଶ which 
can stabilize the system will also increase. that is, the stability region is extended. Vice versa. 
Extensive numerical simulation and experiment results are included to verify theoretical analysis. 
It is indicated that the complicated dynamic behavior of Maglev train can be changed by the double 
tome-delays. And the stability domain with ߬ଵ and ߬ଶ drawn in this paper is especially valuable 
for guiding to adjust time-delayed parameters to suppress the dynamic response and vibration 
between Maglev train and guideway. The vibration of Maglev train is very serious. In practical 
application, the adjustment of time delay parameters plays a guiding role in avoiding vibration. 
The study of vibration is of great significance to the stable operation of Maglev train. 
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