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Abstract. In this study, shifting a certain number of natural frequencies of a dynamic system to 
the desired values with the concentrated mass modifications is considered. A new method is 
proposed in order to determine the necessary mass modifications. The method proposed is based 
on the Sherman-Morrison formula and uses the receptances that are related to the modification 
coordinates of the original system. The system is sequentially modified at the predefined locations 
by a number of unknown masses which equal the number of frequencies that will be shifted. The 
method yields a set of nonlinear equations which equal the number of shifting frequencies, then 
the necessary masses are estimated by solving these equations numerically. The efficiency of the 
proposed method is shown by various numerical and experimental applications. It is shown that 
the method is very effective and can be used for real applications. 
Keywords: inverse structural modification, natural frequency, frequency response function, 
receptance, mass modification, Sherman-Morrison formula. 

1. Introduction 

Shifting the natural frequency of a system is an important issue in the structural modification. 
This may be made for avoiding resonance or fitting the numerical models to the experimental 
models. The main challenge is the determination of necessary modifications for shifting the 
natural frequencies to the desired values. This problem has been studied by many researchers for 
a long time. Although the problem was well defined, the researchers have been interested in 
developing the efficient methods. Tsuei and Yee [1] presented a method for the determination of 
necessary modifications to shift the natural frequencies of a dynamic system to desired values. 
The method is iterative and uses the forces responses of the system. Bucher and Braun [2] 
developed a theory to show how the necessary mass and stiffness modifications can be computed 
using only the modal test results, even when only a partial set of eigen-solutions is available from 
the tests. Ram [3] presented a strategy for enlarging a spectral gap by adding two appropriate 
oscillators at the proper locations. McMillan and Keane [4] studied shifting resonance from a 
frequency band applying concentrated masses to a plate. Sivan and Ram [5] developed a method 
for determining mass and stiffness modifications to achieve desired natural frequencies by using 
modal analysis. The difficulties arising from truncated data provided by modal analysis were 
overcome by an optimization procedure. Chang and Park [6] proposed a method based on 
frequency response function (FRF) sensitivity analysis for modal updating. The suggested method 
was applied to estimation of spring stiffness values in a spring supported plate. Li and He [7] 
proposed a method based upon use of FRF data in order to determine mass and stiffness 
modifications of an undamped structural system that are needed to change the dynamic 
characteristics of the system. Their approach formulates the structural modification problem using 
a set of linear equations. Park and Park [8] proposed some methods based on FRF 
based-substructure-coupling concept for the identification of structural parameters. Mottershead 
and his coworkers [9-13] presented a series of papers on assigning poles and zeros to the 
dynamical systems. Farahani and Bahai [14] proposed an inverse strategy for the relocation of 
natural frequencies. In the proposed method, a sensitivity analysis of the system’s eigenvalues, 
with respect to material or geometrical parameters of the structure, was conducted. The required 
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parameter variation to achieve a desired frequency shift for the structure was then computed. 
Lawther [15] presented a comprehensive study on removing frequencies from a given range by 
changing the stiffness. The success of the method was assessed according to both the rank of 
changes and the number of freedoms that they connect to. Recently, Ouyang and his coworkers 
[16-19] have studied the passive structural modifications of the mass-spring systems for 
assignment of the eigen-structures i.e. eigen-values and eigen-vectors. The proposed methods are 
based on the use of modal parameters, physical properties or response properties and the problem 
is solved by sensitivity analysis, iterations or optimisation. The physical modifications may be in 
the form of mass, stiffness and damping. Sometimes a mass-spring system is added to the original 
system such that this introduces an additional degree of freedom. Although, the existing methods 
mentioned above has its own advantages and disadvantages, it can be concluded that the methods 
use FRFs are more suitable for the practical applications. Because FRFs are directly measured on 
the test structure. On the other hand, the mass modification is the simplest modification type which 
can easily be applied in practice. Also, this type of modification does not introduce additional 
degree of freedom to the original system. In this respect, the motivation of this paper can be 
clarified as follows: to develop a method for shifting the natural frequencies of a system to the 
desired values by the mass modifications, which uses measured FRFs of the original system 
without needing the physical or modal parameters; to advance Sherman-Morrison (SM) formula 
[20], for the inverse structural modification aim, which is successfully used for the solution of 
various structural modification problems in the past.  

In this study, a new method is proposed in order to shift a certain number of prespecified 
resonance frequencies of the dynamic systems to desired values by adding concentrated masses. 
The method is based on the Sherman-Morrison formula and it estimates the necessary mass 
modifications by solving a certain number of non-linear equations which equal the number of 
necessary modifications. The method uses a number of receptances related to the modification 
coordinates of the original system and does not need the physical or modal properties. The 
numerical simulations, as well as the experimental studies made on a steel beam, show the 
efficiency of the proposed method. 

In the next section, the structural modification method based on the SM formula is presented 
first. Then the method developed for the determination of the necessary mass modifications is 
introduced. After the verification of the method by numerical simulations, an experimental 
application is also given. Lastly, the results of the proposed method are concluded. 

2. Theory of structural modification based on the SM formula 

The method proposed here is based on the SM formula [20] that allows one to compute the 
inverse of a modified matrix by using the inverse of the original matrix and the modification. The 
structural modification based on the SM formula was well defined as follows [21-24]: 

ሾߙ∗ሿ = ሾߙሿ − ሺሾߙሿሼݑሽሻሺሼ்ݒሽሾߙሿሻ1 + ሼ்ݒሽሾߙሿሼݑሽ , (1)

where [ߙ∗] and [ߙ] are the symmetric receptance matrices of the modified and the original  
systems, respectively. The vectors ሼݑሽ and ሼݒሽ consist of the modifications. If a mass ݉ߜ is added 
to the system at coordinate ݎ, then the ݎth elements of ሼݑሽ and ሼݒሽ are ݑ ݒ ,1 =  = −߱ଶ݉ߜ, 
respectively and the other elements are zero.  

Although all the elements of the receptance matrix [ߙ] of a test structure are needed in Eq. (1), 
it can be written at active coordinates only, i.e., response, excitation and modification coordinates 
[22]. Furthermore, in the case of more than one modifications it can be sequentially applied. In 
this respect, if ݊ mass modifications ݉ߜ (݅ = 1, 2,…, ݊) are made on a structure, the receptances 
of the modified system relating the active coordinates can be calculated sequentially as follows: 
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હ = હିଵ − −߱ଶ݉ߜሺહିଵܝሻሺܞ் હିଵሻ1 − ߱ଶ݉ߜሺܞ் હିଵܝሻ ,   ݅ = 1,2, . . . , ݊, (2)

where the matrices and the vectors are written in bold characters for convenience, the superscript ܽ shows the active coordinates, ݅ is the modification step, and ߱ is the angular frequency in rad/s. 
The elements of ܝ and ܞ corresponding to the modification coordinates are one and the others 
are zero. 

3. Method for the determination of the necessary mass modifications 

The aim of this study is the shifting of a certain number of natural frequencies to desired values 
with mass modifications. For the calculation of necessary mass modifications, a method, which 
uses Eq. (2) in an inverse manner, is proposed. In order to clarify the method proposed, first the 
single natural frequency case is considered. It is required that the system has a natural frequency 
at ߱௦ଵ after a mass modification. In this case the receptance value of the modified system at ߱௦ଵ 
goes to infinity for an undamped system. This means that the denominator of Eq. (2) is zero at ߱௦ଵ. In this way, equating the denominator of Eq. (1) to zero for ݊ = ݅ = 1, one can obtain: 1 − ߱௦ଵଶ ଵ்ܞଵሺ݉ߜ હܝଵሻ = 0, (3)

where હ  is the receptance matrix of the original system related to the active coordinates. For the 
single mass modification at coordinate ݎ, all of the elements of vectors ܝ and ܞ are zero except 
the modification coordinate, Eq. (3) yields: 1 − ߱௦ଵଶ ߙଵ݉ߜ ሺ߱௦ଵሻ = 0, (4)

and consequently, the necessary mass modification can easily be found from the Eq. (4) as follows: ݉ߜଵ = 1߱௦ଵଶ ߙ ሺ߱௦ଵሻ, (5)

where ߙ ሺ߱௦ଵሻ is the receptance value of the original system, corresponding to the modification 
coordinate ݎ, at frequency ߱௦ଵ. It should be noted that Eq. (5) is precise and it is not surprising 
that it is similar to what was given in [7, 13]. 

In order to generalize the method for shifting ݊ frequencies, consider two natural frequencies 
of the system that are shifted to ߱௦ଵ and ߱௦ଶ by modifying the system with two masses at two 
prespecified coordinates. Two mass modifications ݉ߜଵ and ݉ߜଶ can be made by using Eq. (2), 
sequentially. By this way, for ݊ = 2 and ݅ = 1, 2, the receptance matrix of the modified system 
for each step can be written as: 

હଵ = હ − −߱ଶ݉ߜଵሺહܝଵሻሺܞଵ் હሻ1 − ߱ଶ݉ߜଵሺܞଵ் હܝଵሻ , (6)હଶ = હଵ − −߱ଶ݉ߜଶሺહଵ ଶ்ܞଶሻሺܝ હଵ ሻ1 − ߱ଶ݉ߜଶሺܞଶ் હଵ ଶሻܝ , (7)

where હଵ  is the recepatance matrix of the system modified with mass ݉ߜଵ , and હଶ  is the 
recepatance matrix of the final system which is modified with both masses ݉ߜଵ and ݉ߜଶ. For the 
final system has two natural frequencies at ߱௦ଵ and ߱௦ଶ, the denominator of Eq. (7) is equated to 
zero at these frequencies. By assuming the modifications ݉ߜଵ and ݉ߜଶ are made at coordinate  
and ݎ, respectively, then the elements of vectors ܝଵ and ܞଵ corresponding to the coordinate  in 
Eq. (6) and the elements of vectors ܝଶ and ܞଶ corresponding to the coordinate ݎ in Eq. (7) are one 
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and all of the others elements are zero. Consequently, this yields two nonlinear equations with two 
unknowns as follows: ܨଵሺ݉ߜଵ, ଶሻ݉ߜ = 1 − ߱௦ଵଶ ଵߙଶ݉ߜ ሺ߱௦ଵሻ = ,ଵ݉ߜଶሺܨ ,0 ଶሻ݉ߜ = 1 − ߱௦ଶଶ ଵߙଶ݉ߜ ሺ߱௦ଶሻ = 0, (8)

where ߙଵ ሺ߱௦ሻ; ݅ = 1, 2 can be determined by means of Eq. (6) as follows: 

ଵߙ ሺ߱௦ሻ = ߙ ሺ߱௦ሻ − ߱௦ଶ ଵ݉ߜ ቀߙ ሺ߱௦ሻቁଶ1 − ߱௦ଶ ߙଵ݉ߜ ሺ߱௦ሻ ,    ݅ = 1, 2. (9)

By substituting Eq. (9) into Eq. (8) and solving the derived equations numerically the 
necessary mass modifications can be obtained. It is clear that this approach can easily be extended 
for the shifting of more than two frequencies in a similar way. For shifting ݊ natural frequencies 
to the desired values, if the last modification is assumed to be at the coordinate ݍ, then ݊ nonlinear 
equations with ݊ unknown masses can be written as follows: ܨଵሺ݉ߜሻ = 1 − ߱௦ଵଶ ିଵሺ߱௦ଵሻߙ݉ߜ = ሻ݉ߜଶሺܨ ,0 = 1 − ߱௦ଶଶ ିଵሺ߱௦ଶሻߙ݉ߜ = ሻ݉ߜሺܨ ⋮ ,0 = 1 − ߱௦ଶ ିଵሺ߱௦ሻߙ݉ߜ = 0, (10)

where ߙିଵሺ߱௦ሻ, (݅ = 1, 2,..., ݊) are determined sequentially, similar to method in Eq. (9), then 
the unknown mass modifications ݉ߜ, (݅ = 1, 2,..., ݊) can be estimated by solving the equation 
set Eq. (10) numerically.  

The proposed method for the general case can be applied as follows: (i) The desired natural 
frequencies and the modification locations are chosen. (ii) The FRFs related to the modification 
locations are measured. If the measured FRFs are the accelerance or the mobility they have to be 
transformed to the receptance for the next calculations. (iii) The FRFs of the modified system are 
sequentially determined by means of Eq. (2). Note that; it is clear from Eq. (2) that the FRFs of 
the modified system can be determined symbolically; due to ݉ߜ, (݅ = 1, 2,..., ݊)  is unknown. 
(iv) The necessary mass modifications are estimated by solving Eq. (10), which is composed from 
the modified FRFs obtained from the previous step. (v) If any solution or practically applicable 
solution is not found, the step (iv) can be repeated for different initial values. If no solution is 
found again, a new set of modification locations can be chosen and the steps (ii)-(iv) are repeated. 
In this case, if still there is no solution it means that there is no solution for the chosen frequencies. 

4. Numerical simulations 

For the verification of the method a six degree of freedom spring-mass system given in Fig. 1 
was considered [9-11]. The value of all the masses is 1 kg and the springs’ coefficients are 1 N/m. 
The natural frequencies of the system are given in Table 1. Receptances of the system were 
calculated in the frequency band 0-0.35 Hz with a 10-4 interval. A Matlab code was implemented 
to apply the proposed method. Eq. (10) was easily created in a single line using a loop. For the 
solution of nonlinear equations, the fsolve function was used and the initial values were set to zero 
for all examples. The simulations for different cases were given below. 

Table 1. Natural frequencies (Hz) of the original mass-spring system 
Modes 1 2 3 4 5 6 ߱ 0.1089 0.1450 0.2046 0.2610 0.3135 0.3369 
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Fig. 1. A six degree of freedoms spring-mass system for numerical simulation 

4.1. Case 1. Shifting two natural frequencies 

Firstly, the shifting two natural frequencies case is considered. For instance, the second and 
fourth frequencies are required to shift to 0.1305 Hz and 0.2349 Hz, respectively, such that the 
original values are decreased by a percentage of 10 %. As is the nature of inverse modification 
there are various combinations for choosing modification coordinates. For the different 
modification coordinates chosen the necessary mass modifications to achieve desired natural 
frequencies were estimated by using proposed method. After modifying the system with the 
obtained masses the natural frequencies of the modified system were determined. The natural 
frequencies of the modified system can be determined by solving eigenvalue problem or by 
analysing FRF of the modified system calculated from the modification formula given in Eq. (2). 
The obtained mass modifications and the natural frequencies of the modified system for different 
modification coordinates chosen are tabulated in Table 2. It is seen that the modified system has 
exactly two desired natural frequencies for some choices of modification coordinates. Due to the 
nature of the inverse modification, no solution is found for the coordinates (1, 2), on the other 
hand, physically impossible solutions, which negative modifications larger than the original mass 
are needed, are found for the coordinates (1, 3), (2, 3) and (2, 6). These unrealistic solutions are 
written in bold characters and are assigned a superscript (*) in the Table 2. The determined natural 
frequencies corresponding to the target modes are also written in bold characters in the table. 
However, if the real applications are considered, then some of the obtained modifications may not 
be applicable. For instance, the necessary mass modification for coordinate 4 is found as 3.4 kg 
which is three times bigger than the original mass. 

Secondly, it is desired that the system has two natural frequencies at 0.27 Hz and 0.30 Hz. In 
this case the fourth natural frequency is decreased, and the fifth natural frequency is increased. 
For this case three possible solutions are found and given in the bottom rows of Table 2. As can 
be seen in the table excellent results are obtained.  

4.2. Case 2. Shifting three natural frequencies 

As a second application, the shifting of a three natural frequency case was considered. 
Differently, in this case the system is first modified with known masses at prespecified coordinates 
and the natural frequencies were calculated, then the target natural frequencies were chosen from 
amongst them. The necessary masses were calculated for the same coordinates and were compared 
with the modification masses. By this way, it is expected that a solution can be found because the 
desired natural frequencies are realistic. For instance, the system was modified by subtracting 
0.20 kg from the mass at coordinate 2 (negative mass modification) and by adding 0.10 and 
0.15 kg masses at coordinates 3 and 4, respectively. In this case, the natural frequencies of the 
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modified system are {0.1080 0.1443 0.2028 0.2543 0.3191 0.3450}. Then it was attempted to 
estimate the modification masses by applying the proposed method for the prespecified modes. 
First, the modes 2, 3 and 4 were considered and the coordinates 2, 3 and 4 were chosen as 
modification coordinates. As can be seen in Table 3 the modification masses are estimated with a 
very small difference such that the desired natural frequencies are achieved after the system is 
modified by the calculated masses. This shows that a small change in the mass does not affect the 
results. Similar results are found when the modes 4, 5 and 6 are considered for the same 
modification coordinates. If the coordinates 4, 5 and 6 are chosen as the modification coordinates 
the different mass modifications are obtained as expected. Nevertheless, the desired natural 
frequencies are exactly achieved for this case.  

Table 2. Shifting two natural frequency cases 
Desired freq. 

(Hz) 
Modif. 
coords. 

Mass modif. 
(kg) 

Natural frequencies of modified system 
1 2 3 4 5 6 

0.1305 
0.2349 

1 
2 

No solution 
No solution – – – – – – 

1 
3 

1.21800 
–2.53122* – – – – – – 

1 
4 

–0.09946 
3.41202 0.0887 0.1305 0.1718 0.2349 0.2971 0.3219 

1 
5 

0.87135 
0.52249 0.1033 0.1305 0.1749 0.2349 0.2928 0.3252 

1 
6 

–0.33883 
-0.66382 0.1305 0.1735 0.2349 0.2994 0.3371 0.3577 

2 
3 

1.77356 
–2.31910* – – – – – – 

2 
4 

0.82029 
1.26839 0.1009 0.1305 0.1715 0.2349 0.2732 0.3024 

2 
5 

0.87667 
0.62869 0.1018 0.1305 0.1972 0.2349 0.2624 0.3154 

2 
6 

0.30535 
–1.37747* – – – – – – 

0.2700 
0.3000 

1 
4 

-0.53705 
1.81188 0.0991 0.1371 0.1922 0.2700 0.3000 0.3687 

3 
4 

–0.52318 
1.61398 0.1025 0.1440 0.1805 0.2700 0.3000 0.3696 

3 
5 

–0.89813 
0.58479 0.1051 0.1681 0.2136 0.2700 0.3000 0.7248 

Table 3. Shifting three natural frequency cases 
Desired freq. 

(Hz) 
Modif. 
coords. 

Mass modif. 
(kg) 

Natural frequencies of modified system (Hz) 
1 2 3 4 5 6 

0.1443 
0.2028 
0.2543 

2 
3 
4 

–0.19759 
0.09832 
0.15186 

0.1080 0.1443 0.2028 0.2543 0.3191 0.3450 

0.2543 
0.3191 
0.3450 

2 
3 
4 

–0.20064 
0.10266 
0.14898 

0.1080 0.1443 0.2028 0.2543 0.3191 0.3450 

4 
5 
6 

0.18868 
–0.82031 
–0.86780 

0.1342 0.1969 0.2543 0.3191 0.3450 0.7166 

4.3. Case 3. Shifting six natural frequencies 

As a last example, all of the six modes are considered to shift to the desired values. For this, 
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all of the masses of the original system are modified with a ratio of 10 %, namely the new values 
of the masses are 1.1 kg. In this case, the target natural frequencies are determined as  
{0.1038 0.1382 0.1951 0.2488 0.2989 0.3212}. Then it is desired that the system has these new 
natural frequencies after six mass modifications. The necessary masses are estimated with a small 
difference as seen in Table 4. For this case, the receptances of the original and modified systems 
are also plotted in Fig. 2. As can be seen in the figure that the desired natural frequencies are 
exactly achieved after modifications.  

Table 4. Estimated mass modifications for shifting all of the six natural frequencies  
in the cases of noise-free and noisy receptances 

Modification cords. Estimated mass modifications (kg) 
Noise-free 5 % noise 10 % noise 

1 0.09929 0.09779 0.08749 
2 0.09944 0.07953 0.14899 
3 0.10261 0.11513 0.05638 
4 0.09926 0.07231 0.19301 
5 0.10067 0.12827 0.00522 
6 0.09973 0.09531 0.11755 

  
Fig. 2. The receptances of the original and modified systems 

In order to verify the efficiency of the proposed method in the case where the receptances are 
contaminated with noise, as seen in real word applications, the additive white noise with ratios of 
5 % and 10 % was added to the receptances of the original system. For these cases, the estimated 
mass modifications are also given in Table 4 and the receptances are plotted in Fig. 3. For the case 
of 5 % noise, the results are satisfactory. For the case of 10 % noise, although some masses, 
especially fourth and fifth masses, are estimated with a large difference, the desired natural 
frequencies are achieved. However, some spurious picks appear nearby the modes. 

5. Experimental study 

In this section the efficiency of the proposed method is verified by an experimental study. The 
test structure is a steel beam which is suspended by a nylon thread as shown in Fig. 4, the 
dimensions and the mass of the beam are 850×25×12 mm and 2 kg, respectively. In this 
application, shifting of three natural frequencies case was considered. Three modification 
locations were chosen and labelled as 1, 2 and 3 on the test beam. The proposed method needs the 
point FRFs and transfer FRFs related to the modification locations of the beam. In a hammer test, 
to measure more than one point FRF, it is necessary to move the accelerometer to the measurement 
points when single accelerometer is used. Moving accelerometer during the measurement of a set 
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of FRFs can yield unexpected results, due to the mass effect of the accelerometer. In order to avoid 
from this problem, three accelerometers (each one is 5 g in mass) were used to measure FRFs in 
this study. In this case, even though the mass of the accelerometers affects the system, their effects 
will be the same on all of the measured FRFs. In this way, the mass effects of the accelerometer 
on the FRFs are neutralized because they are not moved on the beam to measure point FRFs, and 
consequently, the effect of the accelerometer on the performance of the method can be minimized. 
On the other hand, as seen in the numerical simulation, no solution was found, or physically 
unfeasible solutions were found for some modification locations and for some target natural 
frequencies. In order to not coincidence with such a case in this experimental study, using the real 
frequency values would be convenient. Therefore, a simulated test strategy is proposed for the 
experimental study, similar to the case 2 in the numerical simulations: The beam was first modified 
by three known dummy masses. Then, the natural frequencies of the modified beam were 
determined and named as target natural frequencies. The desired natural frequencies were chosen 
amongst them. It is expected that, the estimated mass modifications by using the proposed method 
are close to the used dummy masses. 

 
a) 

 
b) 

Fig. 3. The receptances of the original and modified systems, with a) 5 % noise and b) 10 % noise 

The beam without dummy masses was hit by a modal hammer at locations 1, 2, and 3, 
respectively and the FRFs were measured in bandwidth 0-1.28 kHz with 0.4 Hz interval. Thus the 
3×3 symmetric FRFs matrix was acquired. It should be noted that, in the experiment although the 
accelerances were measured they were transformed to the receptance to apply the proposed 
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method and they were showed by ߙ where  and ݍ represent the response and excitation points, 
respectively. Three of the receptances, which constitute the first row of the measured FRF matrix, 
are plotted in Fig. 5. Then, for a realistic simulation three dummy masses of 16, 32 and 20 g were 
located at locations 1, 2 and 3, respectively, as seen in Fig. 4. A FRF was measured to determine 
the natural frequencies of the modified beam. One of the FRFs of the beam with and without 
dummy masses is compared in Fig. 6. The natural frequencies of the modified beam tend to 
decrease as expected. The beam without dummy masses is referred to as the original beam and the 
beam with dummy masses is referred to as the target beam. The natural frequencies of the original 
and the target beams are also given in Table 5. 

Table 5. The natural frequencies of original and target beam 
 Natural frequencies (Hz) 
 1 2 3 4 5 

Original  86.0 236.4 464.0 763.6 1140.8 
Target  84.4 233.2 457.2 746.8 1130.0 

 
Fig. 4. Photography of the test beam, showing the measurement and modification locations 

 
Fig. 5. The measured three FRFs of the original beam 

For all of the possible different ten cases, the estimated mass modifications and the determined 
natural frequencies of the modified beam are tabulated in Table 6. Note that, although the obtained 
mass modifications are complex the imaginary part was ignored because it is physically 
unimportant. The first line of the table belongs to the beam modified by known dummy masses, 
namely the target beam. Although the different mass modifications are found, the target natural 
frequencies are exactly achieved for each case. However, all of the five natural frequencies are 
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exactly match with those of the target beam for cases 7-9. This is a result of inverse modification 
problems. For case 7, the target receptance which measured with three dummy masses and the 
receptance of the beam modified with estimated masses are plotted in Fig. 7. As can be seen, the 
two receptances are fit together with the exception of antiresonance frequencies. This can be 
explained as follows: the beam was not able to hit exactly at location 3 because of the attached 
modification mass at this point. 

Table 6. Estimated mass modifications and the natural frequencies of the modified beam  
for different target natural frequency cases 

Case Target modes Estimated mass modifications (g) Natural frequencies of the modified beam 
 #1 #2 #3 1 2 3 4 5 

– – 16.0 32.0 20.0 84.4 233.2 457.2 746.8 1130.0 
1 1,2,3 20.7 30.8 12.7 84.4 233.2 457.2 748.4 1131.0 
2 1,2,4 23.4 49.1 4.5 84.4 233.2 454.0 747.2 1129.0 
3 1,2,5 22.2 41.4 8.0 84.4 233.2 456.0 746.6 1130.0 
4 1,3,4 18.2 31.9 18.7 84.4 232.8 457.2 746.8 1130.0 
5 1,3,5 17.7 32.1 19.9 84.4 232.8 457.2 746.4 1130.0 
6 1,4,5 19.2 35.0 16.0 84.4 233.2 456.8 746.8 1130.0 
7 2,3,4 15.2 33.8 17.9 84.4 233.2 457.2 746.8 1130.0 
8 2,3,5 14.9 34.0 18.2 84.4 233.2 457.2 746.8 1130.0 
9 2,4,5 16.0 35.0 16.7 84.4 233.2 457.2 746.8 1130.0 
10 3,4,5 13.1 35.0 17.3 84.8 233.2 457.2 746.8 1130.0 

 
Fig. 6. Comparison of the measured FRFs of original and target beams 

 
Fig. 7. Comparison of a cross receptance of the target and modified beams 
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It should be noted that, a solution was able to be found for each case of the example above 
because the chosen target modes belong to a realistic modified beam. But, a solution may not exist 
or physically unfeasible solutions may be found when the natural frequencies are arbitrarily 
chosen. For example, to shift natural frequencies to the desired values of {80.0 453.0 1140.0} Hz, 
the necessary masses are estimated as {–480.3 –112.5 –536.9} g, which are physically 
inapplicable because the modification masses have a negative sign and have big values compared 
to the total mass of the beam. 

6. Conclusions 

This paper focuses on the shifting of a certain number of natural frequencies of a dynamic 
system to desired values with the concentrated mass modifications. A method based on SM 
formula is proposed for the calculation of necessary masses. The method uses the receptances of 
the system relating to the modification coordinates and needs neither the physical mass, the 
stiffness matrices nor the modal properties. However, an additional degree of freedom is not 
introduced to the system. The method yields a set of nonlinear equations after the sequential mass 
modifications at the prespecified coordinates and then the necessary masses are estimated by 
solving these equations numerically.  

The method proposed was first verified by the numerical applications. It is shown that the 
method is very effective. The excellent results are found for some chosen modification  
coordinates. However, no solution or physically unfeasible solution is found for some chosen 
modification coordinates, due to the nature of the inverse modification problem. As known, a mass 
modification does not affect a mode if it is located at a nodal point of that mode. However, 
different solutions can be obtained depending on choosing the modification coordinates. The 
performance of the method was also examined with noisy receptances. Although the method is 
also effective in the case of noisy FRFs some spurious picks occur nearby natural frequencies, 
especially when the noise level is high. 

The method was also verified by a real beam experiment. Although the proposed method is 
developed by assuming the system is undamped, the real systems have an amount of damping. In 
this case, necessary mass modifications are complex values which are physically unimportant, and 
the imaginary part can be ignored. In spite of that, the results are very satisfactory for the beam 
that has a small amount of damping. It is concluded that the method can also be used for real 
structures as long as the noise and damping values are low. 
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