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Abstract. Four-stage main helicopter transmission system occupies several strong points like 
good carrying capacity and is addressed by many scholars. However, the influence of variable 
parameters on natural characteristics in a three-engine helicopter, is not to be investigated, 
according to the limited published issues. Thus, in the study, a vibration model of the four-stage 
main helicopter transmission system is established through the lumped mass method. In the model, 
many factors, including time-varying meshing stiffness and torsional stiffness of gear shaft are 
considered. The differential equation of the system is solved via the Fourier method, 27-orders 
natural frequency and modal shape corresponded by each degree of freedom (DOF) of the system 
are obtained. The influence of the shaft torsional stiffness on the first five orders of the system 
natural frequency is studied. Besides, the impact of the matching relationship of key shafts’ 
torsional stiffness on the system stability is analyzed. These contributions would improve 
modification developments of four-stage deceleration helicopter in future. 
Keywords: helicopter transmission system, four-stage reducer, natural characteristics, torsional 
stiffness. 

1. Introduction 

The four-stage main transmission system, which is capable of carrying heavy loads, is the main 
part of three-engine helicopters. The gear transmission system has three input branches, tail branch 
and planetary gear chain. It means it has a quite complicated structure and dynamic behavior [1]. 
Moreover, several dynamic factors like time-varying meshing stiffness, clearances and synthetic 
transmission errors influence the coupling gear pairs. In addition, the rotational speeds of shafts 
in each stage could have an impact on the system vibration. Therefore, it is meaningful to study 
its vibration characteristics. 

For the research of vibration characteristics in a multi-shaft system, Kubur M. [2] proposed a 
dynamic model of multi-shaft helical gear reduction unit formed by flexible shafts and predicted 
free and forced vibrations of the system. Huang J. [3] investigated the influences of system 
parameters on the natural characteristics of a parallel multi-shaft gear-rotor system. Gu Z. [4] 
analyzed torsional vibration characteristics for the helicopter transmission system by the 
impedance matching method. Wang J. [5] studied torsional vibration of the helicopter 
transmission system by the whole transfer matrix. Wang M. [6] proposed a decision table for a 
fault diagnosis of the helicopter transmission system. 

On the other hand, in terms of the planetary gear chain of main transmission system, 
Kahraman A. [7-12] analyzed natural modes of planetary gear trains, proposed a power flow 
analysis methodology and assemblability check methodology for planetary gear trains. Saada A. 
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[13] discussed the influence of the ring support stiffness on free vibration and determined 
potentially dangerous frequencies for sun gear-planet and planet-ring gear contacts. Lin J. and 
Parker R. G. [14-16] investigated the natural frequency and vibration mode sensitivities to system 
parameters for both tuned (cyclically symmetric) and mistuned planetary gears. Velex P. [17] 
calculated dynamic tooth loads on a planetary gear set, and the original Ritz method was applied 
to solve large parametrically excited differential systems. Sheng D. P. [18, 19] proposed a 
nonlinear transverse-torsional coupled model with backlash and bearing clearance for planetary 
gear set and studied its load sharing behavior by the Rung-Kutta numerical integration method. 

Although a lot of researches related to gear pairs, in this paper, a multi-shaft system and 
planetary gear train have been carried out and many models considering different parametric 
variables were proposed as well, it should be noted that, there is very few relevant researches 
based on the impact of shaft torsional stiffness on the vibration characteristics in a long 
transmission chain. The main purpose of this work is to explore the changes of shaft torsional 
stiffness on various orders of natural frequency, and to solve the natural frequency and modal 
shape corresponded by each DOF. Finally, the key shafts affecting the vibration characteristics of 
the helicopter were analyzed, and references could be provided for the helicopter design. 

2. Dynamic modeling 

A dynamic model of four-stage transmission system is shown in Fig. 1. As shown in the figure, 
the system has three same input branches, namely 𝑗 branch (𝑗 = 1, 2, 3). Each branch has 5 gears. 𝜃ଵ() and 𝜃ଶ() are rotational DOF of drive bevel gear and passive bevel gear in the first stage 
deceleration; 𝜃ଷ() and 𝜃ସ() are rotational DOF of drive bevel gear and passive bevel gear in the 
second stage deceleration; 𝜃ହ() and 𝜃 are rotational DOF of drive gear and passive gear in the 
synthesized stage (third stage); 𝜃  is rotational DOF of the planet carrier; 𝜃 , 𝜃଼  and 𝜃ଽ  are 
rotational DOF of three gears in the tail transmission branch; 𝜃௦ and 𝜃 are rotational DOF of the 
sun gear and planet gear 𝑖. 𝑘ଶଷ, 𝑘ସହ, 𝑘଼, 𝑘, 𝑘௨௧ and 𝑘௦ are torsional stiffness of shafts connecting each gear pair; 𝑐ଵଶ, 𝑐ଷସ, 𝑐ହ, 𝑐௦  and 𝑐  are meshing damping of each gear pair; 𝑘ଵଶ, 𝑘ଷସ, 𝑘ହ, 𝑘௦  and 𝑘  are 
meshing stiffness of each gear pair. The flexibility between the shafts and transverse DOF are not 
taken into account due to its weak influence on the natural frequency. 

Based on the description above, the four-stage deceleration helicopter transmission system, with 
3 branches in the 1st and 2nd stage, has 27 generalized coordinates X (rotational DOF) as shown 
below, and Table 1 shows the corresponding relation between gears and their rotational DOF: 𝑋 = ቄ𝜃ଵ(), 𝜃ଶ(), 𝜃ଷ(), 𝜃ସ(), 𝜃ହ(), 𝜃, 𝜃, 𝜃଼, 𝜃ଽ, 𝜃௦, 𝜃, 𝜃ቅ். 

1) Time-varying meshing system stiffness. 
The expansion formula of time-varying meshing stiffness is shown in Fourier series under the 

fundamental meshing frequency: 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧ 𝑘ଵ_ଶ() (𝑡) = 𝑘ଵଶ + 𝑘ଵଶsin(𝜔ଵଶ𝑡 + 𝛽ଵଶ),𝑘ଷ_ସ() (𝑡) = 𝑘ଷସ + 𝑘ଷସsin(𝜔ଷସ𝑡 + 𝛽ଷସ),𝑘ହ_() (𝑡) = 𝑘ହ + 𝑘ହsin(𝜔ହ𝑡 + 𝛽ହ),𝑘_(𝑡) = 𝑘 + 𝑘sin(𝜔𝑡 + 𝛽), 𝑘଼_ଽ(𝑡) = 𝑘଼ଽ + 𝑘଼ଽsin(𝜔଼ଽ𝑡 + 𝛽଼ଽ),𝑘௦(𝑡) = 𝑘,௦ + 𝑘ୟ,௦sin(𝜔𝑡 + 𝛽௦)𝑘(𝑡) = 𝑘, + 𝑘,sin൫𝜔𝑡 + 𝛽൯,

 (1)
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where 𝜔 is the fundamental meshing frequency of each pair; 𝛽 is the initial phase of meshing 
stiffness; 𝑘ଵ_ଶ() (𝑡), 𝑘ଷ_ସ() (𝑡), 𝑘ହ_() (𝑡), 𝑘_(𝑡), 𝑘଼_ଽ(𝑡), 𝑘௦  and 𝑘  are the time-varying meshing 
stiffness of the gear pair; 𝑘 and 𝑘 are the average and maximum variable meshing stiffness, 
here, 𝑘 consists of oil film stiffness and contact stiffness. 

 
a) Dynamic model 

 
b) FEM model 

 
c) Boundary condition 

Fig. 1. Model of three-engine helicopter transmission system 

2) Relative displacement of gear pair. 
The relative displacement of each gear pair along the meshing line is defined as follows: 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝑋ଵ_ଶ()(𝑡) = 𝜃ଵ()𝑟ଵ − 𝜃ଶ()𝑟ଶ,𝑋ଷ_ସ()(𝑡) = 𝜃ଷ()𝑟ଷ − 𝜃ସ()𝑟ସ,𝑋ହ_()(𝑡) = 𝜃ହ()𝑟ହ − 𝜃𝑟,𝑋_(𝑡) = 𝜃𝑟 − 𝜃𝑟,𝑋଼_ଽ(𝑡) = 𝜃଼𝑟 − 𝜃ଽ𝑟ଽ,𝑋௦(𝑡) = 𝜃௦𝑟௦ − 𝜃𝑟,𝑋(𝑡) = 𝜃𝑟 − 𝜃ெோ𝑟ெோ,

 (2)
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where 𝑋ଵ_ଶ()(𝑡) , 𝑋ଷ_ସ()(𝑡) , 𝑋ହ_()(𝑡) , 𝑋_(𝑡) , 𝑋଼_ଽ(𝑡), 𝑋௦  and 𝑋  are the relative displacement 
along the meshing line. 𝑟ଵ, 𝑟ଶ, 𝑟ଷ, 𝑟ସ, 𝑟ହ, 𝑟, 𝑟, 𝑟 , 𝑟ଽ, 𝑟௦, 𝑟 and 𝑟ெோ are radiuses of the base circle. 

3) Dynamic meshing and damping forces. 
Dynamic meshing and damping forces of each gear pair are defined as follows: 

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧𝐹ଵ_ଶ()(𝑡) = 𝑘ଵ_ଶ() (𝑡)𝑋ଵ_ଶ() + 𝑐ଵ_ଶ()(𝑡)𝑋ሶଵ_ଶ(),𝐹ଷ_ସ()(𝑡) = 𝑘ଷ_ସ() (𝑡)𝑋ଷ_ସ() + 𝑐ଷ_ସ() (𝑡)𝑋ሶଷ_ସ() ,𝐹ହ_()(𝑡) = 𝑘ହ_() (𝑡)𝑋ହ_() + 𝑐ହ_() (𝑡)𝑋ሶହ_() ,𝐹_ (𝑡) = 𝑘_(𝑡)𝑋_ + 𝑐_(𝑡)𝑋ሶ_,𝐹 _ଽ (𝑡) = 𝑘଼_ଽ(𝑡)𝑋଼_ଽ + 𝑐଼_ଽ(𝑡)𝑋ሶ଼_ଽ,𝐹௦ (𝑡) = 𝑘௦(𝑡)𝑋௦ + 𝑐௦(𝑡)𝑋ሶ௦,𝐹 (𝑡) = 𝑘(𝑡)𝑋 + 𝑐(𝑡)𝑋ሶ,

 (3)

where 𝐹ଵ_ଶ()(𝑡), 𝐹ଷ_ସ()(𝑡), 𝐹ହ_()(𝑡), 𝐹_(𝑡), 𝐹 _ଽ(𝑡), 𝐹௦(𝑡) and 𝐹(𝑡) are dynamic meshing and 
damping forces of each gear pair. 𝑐ଵ_ଶ()(𝑡), 𝑐ଷ_ସ() (𝑡), 𝑐ହ_() (𝑡), 𝑐_(𝑡), 𝑐଼_ଽ(𝑡), 𝑐௦(𝑡) and 𝑐(𝑡) are 
mesh damping forces of the engaged gear pair. 𝑋ଵ_ଶ()(𝑡), 𝑋ଷ_ସ()(𝑡), 𝑋ହ_()(𝑡), 𝑋_(𝑡), 𝑋଼_ଽ(𝑡), 𝑋௦ 
and 𝑋 are the relative velocity along the meshing line. 

4) Differential equation of motion. 
According to the analysis and equations above, the differential equation of the trial model 

system can be deduced through the Newton’s law, as shown below: 

⎩⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎨
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎧𝐽ଵ𝜃ሷଵ() + ൣ𝐹ଵ_ଶ()(𝑡) + 𝐹ଵ_ଶௗ()(𝑡)൧𝑟ଵ + 𝑘𝜃ଵ() = 𝑇ா,𝐽ଶ𝜃ሷଶ() − ൣ𝐹ଵ_ଶ()(𝑡) + 𝐹ଵ_ଶௗ()(𝑡)൧𝑟ଶ + 𝑘ଶଷ()(𝜃ଶ() − 𝜃ଷ())  = 0,𝐽ଷ𝜃ሷଷ() + ൣ𝐹ଷ_ସ()(𝑡) + 𝐹ଷ_ସௗ()(𝑡)൧𝑟ଷ + 𝑘ଶଷ()(𝜃ଷ() − 𝜃ଶ()) = 0,𝐽ସ𝜃ሷସ() − ൣ𝐹ଷ_ସ()(𝑡) + 𝐹ଷ_ସௗ()(𝑡)൧𝑟ସ + 𝑘ସହ()(𝜃ସ() − 𝜃ହ()) = 0,𝐽ହ𝜃ሷହ() + ൣ𝐹ହ_()(𝑡) + 𝐹ହ_ௗ()(𝑡)൧𝑟ହ + 𝑘ସହ()(𝜃ହ() − 𝜃ସ()) = 0,𝐽𝜃ሷ −  ൣ𝐹ହ_()(𝑡) + 𝐹ହ_ௗ()(𝑡)൧𝑟ଷୀଵ + ൣ𝐹_ (𝑡) + 𝐹_ௗ (𝑡)൧𝑟 + 𝑘௦(𝜃 − 𝜃௦) = 0,𝐽𝜃ሷ − ൣ𝐹_ (𝑡) + 𝐹_ௗ (𝑡)൧𝑟 + 𝑘଼(𝜃 − 𝜃଼) = 0,𝐽 𝜃ሷ଼ + ൣ𝐹 _ଽ (𝑡) + 𝐹 _ଽௗ (𝑡)൧𝑟 + 𝑘଼(𝜃଼ − 𝜃) = 0,𝐽ଽ𝜃ሷଽ − ൣ𝐹 _ଽ (𝑡) + 𝐹 _ଽௗ (𝑡)൧𝑟ଽ + 𝑘௨௧𝜃ଽ = −𝑇ோோ,𝐽௦𝜃ሷ௦ +  (𝐹௦ + 𝐹௦ௗ )ேୀଵ 𝑟௦ − 𝑘௦(𝜃 − 𝜃௦) = 0,𝐽𝜃ሷ − (𝐹௦ + 𝐹௦ௗ )𝑟 + (𝐹 + 𝐹ௗ )𝑟 = 0,𝐽 +  (𝑚𝑟ଶேୀଵ )൨ 𝜃ሷ −  (ேୀଵ 𝐹௦ + 𝐹௦ௗ + 𝐹 + 𝐹ௗ )𝑟cos𝛼 = −𝑇ெோ,

 (4)

where 𝑇ா is denoted as the output torque of engine 𝑗 (𝑗 = 1, 2, 3); 𝑇ோோ and 𝑇ெோ are the output 
torque of the tail branch and planet carrier. 𝐹 and 𝐹ௗ are dynamic meshing and damping forces 
of each gear pair. 

In addition, after the decomposition and recombination of Eq. (4), it can be expressed with 
following matrix-vector form: 
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ሾ𝑀ሿ൛𝑋ሷ ൟ + ሾ𝐶ሿ൛𝑋ሶ ൟ + ሾ𝐾ሿሼ𝑋ሽ = ሼ𝐹ሽ, (5)

here [𝑀], [𝐶], [𝐾] are the mass matrix, damping matrix and stiffness matrix of the governing 
equation, and all matrices are in 27 dimensions; the matrix {𝐹} is external excitation. 

Table 1. Torsional DOF of each order 
DOF Name DOF Name DOF Name 

1 Gear 1 (First Engine) 10 Gear 5 (Second Engine) 19 Gear 9 
(Tail Transmission) 

2 Gear 2 (First Engine) 11 Gear 1 (Third Engine) 20 Gear 10 
(Sun Gear) 

3 Gear 3 (First Engine) 12 Gear 2 (Third Engine) 21 Gear 11 
(Planet Gear 1) 

4 Gear 4 (First Engine) 13 Gear 3 (Third Engine) 22 Gear 12 
(Planet Gear 2) 

5 Gear 5 (First Engine) 14 Gear 4 (Third Engine) 23 Gear 13 
(Planet Gear 3) 

6 Gear 1 (Second Engine) 15 Gear 5 (Third Engine) 24 Gear 14 
(Planet Gear 4) 

7 Gear 2 (Second Engine) 16 Gear 6 
(Synthesized Gear) 25 Gear 15 

(Planet Gear 5) 

8 Gear 3 (Second Engine) 17 Gear 7 
(Tail Transmission) 26 Gear 16 

(Planet Gear 6) 

9 Gear 4 (Second Engine) 18 Gear 8 
(Tail Transmission) 27 Planet Carrier 

3. Calculation and discussion 

3.1. Model parameters and natural characteristics calculation 

An example case of four-stage transmission system is listed in Table 2 and Table 3. Gear 
number is according to Table 1. 

Table 2. Gear parameters 
 Tooth number Module Face width (mm) Initial phase of meshing stiffness (°) 

Gear 1 30 4.5 40 0 
Gear 2 85 4.5 40 0 
Gear 3 40 5 60 20 
Gear 4 90 5 60 20 
Gear 5 25 4.75 40 30 
Gear 6 142 4.75 40 30 
Gear 7 40 5 35 0 
Gear 8 60 5 35 0 
Gear 9 70 5 40 20 
Gear 10 68 5 40 20 

Gear 11-16 37 5 40 
∅௦ଵ = 0, ∅௦ଶ = 𝜋/3, ∅௦ଷ = 2𝜋/3, ∅௦ସ = 2.5𝜋/3, ∅௦ହ = 𝜋, ∅௦ = 4𝜋/3 

By setting the value of damping item and external excitation item in Eq. (5) to be zero, the 
vibration differential equation of the system under free condition can be obtained, as shown in the 
following equation: ሾ𝑀ሿ൛𝑋ሷ ൟ + ሾ𝐾ሿሼ𝑋ሽ = 0. (6)
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After solving Eq. (6), the natural frequency and modal shape of 27 orders corresponded by the 
system can be obtained. The modal shape corresponded by the natural frequency of various orders 
is shown in Fig. 2. Its 𝑥-coordinate denotes 1-27 order DOF, and its y-coordinate denotes the 
modal shape corresponded by DOF. In addition, the FEM solution is calculated as well to verify 
the numerical model shape. The geometric model in CATIA is introduced into the ANSYS 
workbench 18.1, so a finite element analysis model is obtained. Gear pair is equivalent to a 
cylinder, which is same as the dynamic model. The hexahedral meshing method is applied for 
calculation, and then it refines the grid in contact areas, as shown in Fig. 1(b). The contact area is 
set as so separation, which is shown in Fig. 1(c). The grid size of the non-contact region of this 
model is defined as 3 mm, and the contact area is defined as 2 mm, which ensures the mesh 
rationality and the maximum efficiency, the results tend to converge when the number of nodes is 
52874 and the number of elements is 15523. 

Table 3. System parameters 
Parameter Value (N/m) Parameter Value (N/m) Parameter Value (N·m/rad) 𝑘ଵଶ 12×108 𝑘ଵଶ 6×108 𝑘 3×105 𝑘ଷସ 8×108 𝑘ଷସ 4×108 𝑘ଶଷ 6×105 𝑘ହ 8×108 𝑘ହ 4×108 𝑘ସହ 3×105 𝑘 7×108 𝑘 3.5×108 𝑘଼ 6×105 𝑘଼ଽ 10×108 𝑘଼ଽ 5×108 𝑘௦ 9×105 𝑘,௦ 8×108 𝑘,௦ 4×108 𝑘௨௧ 2×105 𝑘, 8×108 𝑘, 4×108  

Fig. 2(a) and Fig. 2(b) correspond to the modal shape of the first-order natural frequency, 
showing that vibration occurs mainly in the planetary gear train, and there is no obvious vibration 
in the rest DOF. Fig. 2(c) and Fig. 2(d) correspond to the modal shape of the second-order natural 
frequency. According to Table 1, the tail transmission gears are 17, 18 and 19 DOF respectively. 
When there is vibration under the natural frequency of the second-order with only three gears of 
tail transmission operated, the other DOF did not vibrate. Fig. 2(e)-2(j) show the modal shape 
under the rest natural frequency, suggesting that multi DOF of the system results in vibration at 
different directions and with different sizes when the system operates under the natural frequency. 
According to the modal shape of each order in Fig. 2, it can be found out that apparent coupling 
action occurs in each stage of the transmission system, which needs a further analysis and 
exploration. 

3.2. Analysis of natural frequency influenced by torsional stiffness of shafts 

The helicopter has multiple deceleration stages, lots of branches and a great many shafts, which 
have the principal effects on the system. Torsional stiffness of these shafts is highlighted redly in 
Fig. 1(a), the changes of torsional stiffness can lead to different stiffness matrices, affecting the 
natural frequency accordingly. The influence of torsional stiffness on the natural characteristics 
are explored and shown in Fig. 3. Theoretical results are provided for a design of the helicopter 
shaft in order to avoid damage and failure. 

Fig. 3(a) shows the impact of 𝑘 on the natural frequency. It indicates that this shaft hits the 
lower frequency respectively, which easily tends to cause resonance. In the other words, this shaft 
is the key shaft. In addition, when 𝑘  is no less than 8×104 N·m/rad, the 1st order natural 
frequency remains 640 Hz, while the natural frequency of the rest orders continues to increase; 
when 𝑘 is greater than 2.2×105 N·m/rad, 2nd order natural frequency remains 1100 Hz, while 
natural frequency of the rest orders gradually tends to be stable; the 3rd order, 4th order and 5th 
order natural frequencies always increase with the rise of 𝑘. 
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a) 1st order numerical solution 

 
b) 1st order FEM solution 

 
c) 2nd order numerical solution 

 
d) 2nd order FEM solution 

 
e) 3rd order numerical solution  

f) 3rd order FEM solution 

 
g) 4th order numerical solution 

 
h) 4th order FEM solution 

 
i) 5th order numerical solution 

 
j) 5th order FEM solution 

Fig. 2. Model shape of transmission system corresponded by first 5 orders 
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Fig. 3(b) demonstrates the impact of 𝑘ଶଷ on the natural frequency, showing similar laws to 
Fig. 3(a). However, the 2nd order natural frequency remains stable at 1100 Hz when 𝑘ଶଷ is greater 
than 4.5×105 N·m/rad. At the same time, the abrupt change point of the 5th order is 
4.5×105 N·m/rad. Fig. 3(c) shows the impact of 𝑘ସହ on the natural frequency. It can be seen that 
the change of torsional stiffness slightly impacts the natural frequency of the first 5 orders.  
Fig. 3(d) shows the impact of 𝑘௦ on the natural frequency. It can be seen that 1st order natural 
frequency increases almost linearly, while the natural frequency of other orders shows a little 
change along with the increase of 𝑘௦; it crosses the low frequency regions when 𝑘௦ is lower, so 
the shaft is also a key shaft, and its torsional stiffness (𝑘௦) cannot be too low. Fig. 3(e) and  
Fig. 3(f) respectively show the influence of 𝑘଼ and 𝑘௨௧ on the natural frequency. The values of 
natural frequency of all orders show similar trends. 𝑘଼  is relatively important in the tail 
transmission branch because it hits the lower frequency in the 1st and 2nd orders. 

 
a) 𝑘 

 
b) 𝑘ଶଷ 

 
c) 𝑘ସହ 

 
d) 𝑘௦ 

 
e) 𝑘଼ 

 
f) 𝑘௨௧ 

Fig. 3. Impact of each shaft’s torsional stiffness on first five orders natural frequency 

Through the comprehensive comparison of the above figures, it can be found that 𝑘 and 𝑘௦ 
have greater influence on the 1st natural frequency; 𝑘 and 𝑘ଶଷ have greater influence on the 2nd 
natural frequency. 
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3.3. Analysis of matching relationship of key shaft’s torsional stiffness 

In the paper, the system stability was enhanced through changing the torsional stiffness of key 
shafts to avoid the resonance frequency. According to the aforementioned analysis, the system 
input shaft (𝑘) and sun gear input shaft (𝑘௦) are the key shafts. By changing the values of 
torsional stiffness of these two shafts respectively, the matching relationship between their 
stiffness value and natural frequency of the first five orders was calculated. 

According to Fig. 4(a), for the first order natural frequency, the torsional stiffness of two shafts 
must not be too low at the same time so as to avoid the resonance frequency, and the torsional 
stiffness of sun gear input shaft is dominant. Based on Fig. 4(b) and Fig. 4(c), the system input 
shaft mainly controls the natural frequency of the second order and third order. When 𝑘 is greater 
than 2×105 N·m/rad, even if the sun gear input shaft has low stiffness, the system can maintain 
stability. It can be seen from Fig. 4(d) that the torsional stiffness of two shafts must not be too low 
at the same time for the natural frequency of the fourth order. Besides, Fig. 4(e) shows that the 
natural frequency of the fifth order is greater than 1100 Hz no matter how to change the torsional 
stiffness of two shafts, so the torsional stiffness of these two shafts doesn’t have effect on the 
system stability in the natural frequency of the fifth order if the operating frequency is lower than 
1100 Hz. 

 
a) 1st order 

 
b) 2nd order 

 
c) 3rd order 

 
d) 4th order 

 
e) 5th order 

Fig. 4. Matching relationship on torsional stiffness of key shafts 
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4. Conclusions 

In this paper, a model of the four-stage helicopter transmission system is proposed, and the 
differential governing equation of system vibration is derived as well. Based on the governing 
equation, the natural characteristics and modal shape are obtained by employing the Fourier series 
method. Furthermore, this paper presents the influence of the changes of torsional stiffness on 
various orders of natural frequency. In addition, the matching relationship of key shafts in the 
system is calculated to estimate their combined effect on each order. 

The analysis results enable us to draw the following conclusions: 
1) When the four-stage deceleration helicopter transmission system operates under the natural 

frequency, each DOF of the system produces vibrations at different directions and with different 
sizes, and the transmission at all stages shows an obvious coupling effect.  

2) The modal shape under the first-order natural frequency occurs mainly in the planetary gear 
train; the second-order and third-order natural frequency mainly affects the tail transmission branch. 

3) The system input shaft (𝑘) and sun gear input shaft (𝑘௦) are the key shafts of the system, 
and the system is in the low frequency region when their torsional stiffness is low and tends to 
have resonance. 

4) The system input shaft (𝑘) as well as Gear 2 and Gear 3 connecting shafts (𝑘ଶଷ) greatly 
impact on the second-order and third-order natural frequency; Gear 7 and Gear 8 connecting shaft 
(𝑘଼) is the most important shaft in the tail transmission branch. 

5) For the first order natural frequency, torsional stiffness of two key shafts must not be too 
low at the same time so as to avoid resonance frequency; and the torsional stiffness of sun gear 
input shaft (𝑘௦) is dominant; for natural frequency of the fifth order, neither torsional stiffness of 
two key shafts affects the system stability if the operating frequency is lower than 1100 Hz. 
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