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Abstract. The working state of machinery can be reflected by vibration signals. Accurate 
classification of these vibration signals is helpful for the machinery fault diagnosis. A novel 
classification method for vibration signals, named Transform Domain Sparse 
Representation-based Classification (TDSRC), is proposed. The method achieves high 
classification accuracy by three steps. Firstly, time-domain vibration signals, including training 
samples and test samples, are transformed to another domain, e.g. frequency-domain, 
wavelet-domain etc. Then, the transform coefficients of the training samples are combined as a 
dictionary and the transform coefficients of the test samples are sparsely coded on the dictionary. 
Finally, the class label of the test samples is identified by their minimal reconstruction errors. 
Although the proposed method is very similar to the Sparse Representation-based Classification 
(SRC), experimental results illustrates its performance is far superior to SRC in the classification 
of vibration signals. These experiments include: frequency-domain classification of bearing 
vibration data from the Case Western Reserve University (CWRU) Bearing Data Center and 
wavelet-domain classification of six fault-types gearbox vibration data from our rotating 
machinery experimental platform. 
Keywords: sparse representation-based classification; transform domain; vibration signal; fault 
diagnosis. 

1. Introduction 

In the field of machinery fault diagnosis, vibration analysis is one of the most common and 
reliable methods [1]. It takes advantage of the advanced signal processing methods to extract fault 
information from raw vibration signals, which are collected by vibration sensors installed on the 
machinery, and then makes a diagnosis according to the fault information. In the past few decades, 
Fourier transform (FT) [2, 3] and wavelet transform (WT) [4, 5] were widely utilized in 
recognizing the fault feature frequencies of machinery equipment with lots of decent results. 
However, the feature frequency cannot be known in some cases for the difficulty in obtaining the 
rotating frequency or parameters of mechanical parts, which limits its broader application.  

Classification-based fault diagnosis, as another method of vibration analysis, uses training 
samples to establish a diagnostic decision maker and determines the fault type of test samples 
according to the maker output, which avoids the calculation of fault feature frequencies. 
Frequently used classification methods in the field of fault diagnosis include linear discriminant 
analysis (LDA) [6], artificial neural network (ANN) [7] and support vector machine (SVM) [8, 9], 
etc. LDA, as a basic Fisher discriminant classifier, pursues a low degree of coupling between 
classes and a high degree of polymerization within class. ANN realizes nonlinear mapping 
between symptoms and faults. SVM, as another linear classifier, is a machine learning method 
based on statistical learning theory, and produces a favorable generalization performance. In 
addition, the classification method for time-domain parameters and fuzzy logic classification 
techniques [10] were also used well in the area of fault diagnosis.  

In recent years, a new classification technique, i.e. sparse representation based classification 
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(SRC), has been proposed in the field of pattern recognition [11, 12]. Its basic principle is to sparse 
code a test sample over a dictionary and then to perform the classification based on the 
reconstruction error. Since its appearance, SRC and its variants have been widely applied in face 
recognition [13, 14], EEG signal classification [15] and music genre classification [16] etc. In the 
field of fault diagnosis, SRC is rarely studied. A typical application appeared with a good result 
in [17], where compressive sensing theory was implied to reduce the dimension of original 
vibration signals and SRC was used to classify the low- dimensional signals.  

In this paper, on the basis of SRC, we propose a new classification method for machinery 
vibration signals, named Transform Domain Sparse Representation-based Classification 
(TDSRC). In TDSRC, the dictionary for sparse representation is not constructed with raw samples, 
but constructed with the transformation coefficients of the raw samples. This provides a new idea 
that classification can be performed using sample variations in the transform domain  

The idea comes from the fact that machinery vibration signals of different fault-types show 
significant differences in transform domain. Compared to previous studies, the method of TDSRC 
makes better use of the global differences between different sample classes. The results of two 
experiments demonstrate that the classification performance of the proposed method, i.e. 
classification accuracy, sparsity concentration index [12] and noise immunity, is better than that 
of SRC and conventional SVM.  

The remainder of the paper is organized as follows. In Section 2, the basic idea of SRC and its 
variants are reviewed. Section 3 presents the proposed method TDSRC. Two experiments are 
provided to verify the proposed method in Section 4. Finally, Section 5 concludes the paper. 

2. Sparse representation-based classification (SRC) and its variants 

Suppose ۯ = ,ଵۯ] ,ଶۯ ⋯ , [ۯ ∈ ܴ× is a training dataset as the concatenation of ݊ training 
samples of all ܭ  object classes, and ۯ = ,,ଵܞൣ ,,ଶܞ ⋯ , ,ೖ൧ܞ ∈ ܴ×ೖ  is the sub-set of the 
training samples from class ݇. For a test sample ܡ ∈ ܴfrom class ݇, generally it can be well 
approximated as the linear combination of the samples from ۯ [12, 18]: ܡ = હ,ଵܞ,ଵ + હ,ଶܞ,ଶ + ⋯ + હ,ೖܞ,ೖ =  હ, (1)ۯ

where હ = ൣહ,ଵ, હ,ଶ, ⋯ , હ,ೖ൧் ∈ ܴೖ is the coding vector. Since the membership ݇ of the test 
sample is initially unknown, the linear representation of ܡ can be written in terms of all training 
samples as ܡ = હ, where: હۯ = [હଵ; ⋯ ; હ; ⋯ ; હ] = ൣ0, ⋯ ,0, ,,ଵߙ ⋯ , ,,ೖߙ 0, ⋯ ,0൧் ∈ ܴ. (2) 

In SRC [10], L1-norm minimization is used to sparsely code ܡ on ۯ, i.e.: હෝ = argminఈ ሼ‖ܡ − હ‖ଶଶۯ +  હ‖ଵሽ, (3)‖ߛ

where ߛ is a scalar constant. Then classification is done via: 

identity(ܡ) = argmin ሼ݁ሽ, (4) 

where ݁ = ܡ‖ − હෝ‖ଶ, and હෝۯ  is the coefficient vector associated with class ݇. Moreover, 
other sparse optimization criterions were recently utilized in classification issue. For example,  
L2-norm minimization, named Collaborative Representation (CR), proposed by Zhang et al. [13] 
solves the coding vector by: હෝ = argminఈ ሼ‖ܡ − હ‖ଶଶۯ +  હ‖ଶଶሽ. (5)‖ߛ



2831. TRANSFORM-DOMAIN SPARSE REPRESENTATION BASED CLASSIFICATION FOR MACHINERY VIBRATION SIGNALS.  
YU FAJUN, FAN FULING, WANG SHUANGHONG, ZHOU FENGXING 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAR 2018, VOL. 20, ISSUE 2. ISSN 1392-8716 981 

L1-norm combining with L2-norm minimization, named Class Specific Sparse Representation 
(CSSR), was presented by Huang et al. [19] formulated as: 

હෝ = argminఈ ൝‖ܡ − હ‖ଶଶۯ + ߛ ‖હ‖ଶ
ୀଵ ൡ, (6) 

and classification is made by: 

identity(ܡ) = argmin ሼ݁ሽ, (7) 

where ݁ = ܡ‖ −   .હෝ‖ଶ/‖હෝ‖ଶۯ

3. Transform domain sparse representation-based classification (TDSRC) 

In section 2, it can be seen that there are two phases in SRC: Sparse coding and classification. 
In the coding phase, training samples are combined together as a dictionary. In recent years, lots 
of methods for constructing dictionary have appeared, such as FDDL [18], JDDLDR [20] and 
DKSVD [21] etc. These methods have one thing in common: the dictionary is constructed by a 
learning algorithm to improve its discrimination ability as much as possible. Although the 
dictionary is updated in each iteration, it keeps in the same domain as training samples. It is well 
known that machinery vibration signal is noisy and non-stationary, which means that its many 
statistics are time-varying. Therefore, even if different vibration signals are of the same fault-type, 
they will show significant differences in time-domain waveform. However, they have many nearly 
the same statistics in transform domain. For example, bearing vibration signals of the same  
fault-type have almost the same dominate frequencies in frequency-domain, and gear vibration 
signals of the same fault-type almost have the same wavelet coefficients in wavelet-domain.  

Table 1. Algorithm of TDSRC 
Input: a matrix of training samples ܣ = ,ଵܞ] ,ଶܞ ⋯ , [ܞ ∈ ܴ× for ܭ classes, a test sample ܡ ∈ ܴ, a transformation ܶ[⋅], a maximum transform scale ܮ and a scalar constant ߛ 

Step 1: For every training sample ܞ  (݅ = 1, 2, … , ݊), perform ܶ[ܞ] to obtain a coefficient matrix ۱, 
whose columns are the transform coefficient vectors of ܞ from scale 1 to ܮ. The same as the test sample ܡ, perform ܶ[ܡ] to obtain a coefficient matrix ܇ 

Step 2: For ݆ = 1, 2, … ,  ܮ
Step 2.1: Let dictionary ܦ = ,ଵ,ܥ] ,ଶ,ܥ ⋯ , ݅),ܥ ,], whereܥ = 1, 2, ⋯ , ݊) denotes the ݆th column vector of ۱, i.e. the transform coefficient vector of ܞ at scale ݆ 

Step 2.2: Normalize the columns of ۲to have unit L2-norm; where ۲, and હෝ, are the sub-dictionary 
of ۲ and sub-vector of હෝ associated with class ݇ respectively, and they meet  ۲ = [۲,ଵ, ⋯ , ۲,, ⋯ , ۲,] and હෝ = [હෝ,ଵ; ⋯ ; હෝ,; ⋯ ; હෝ,] 

Output: ݅݀݁݊(ݕ)ݕݐ݅ݐ = ݊݅݉݃ݎܽ ሼܴሽ 

Based on the above considerations, in the proposed method, i.e. TDSRC, the vibration signals, 
including training samples and test samples, are transformed to another domain at first; then, 
sparse representation-based classification is performed in the transform domain. The algorithm of 
TDSRC is summarized in Table 1. It needs three steps to finish the algorithm. In the first step, all 
the samples, including training samples and test samples, are transformed into another domain. In 
the second step, the transform coefficients of the training samples are combined as a dictionary 
and the transform coefficients of the test samples are sparsely coded on the dictionary. In the final 
step, the class label of the test samples is identified by their minimal reconstruction errors. In 
Table 1, if the type of transformation is specified as Fourier-transform, the input parameter ܮ 
represents the points of discrete Fourier transform (DFT) and the coefficients matrix ۱ 
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degenerates into a vector composed of DFT coefficients; and if wavelet-transform (WT) is used, 
the wavelet name must be given and ۱  is composed of WT coefficient vectors with different 
length.  

Step 2.3: Solve the L1-minimization problem: હෝ = ఈೕ݊݅݉݃ݎܽ ฮ܇ − ۲હฮଶ +  ฮહฮଵ, (8)ߛ

where ܇ is the ݆th column vector of ܇, i.e. the transform coefficient vector of ܡ at scale ݆; 
Step 2.4: Compute the residuals: ݎ, = ฮ܇ − ۲,હෝ,ฮଶ,   (݇ = 1,2, … ,  (9) .(ܭ

End for Step 3: Compute the summation residuals: 

ܴ = ඩ ,ଶݎ
ୀଵ ,    ݇ = 1,   2, … ,  (10) .ܭ

4. Experimental verification 

To investigate the performances of the proposed TDSRC method for vibration signal 
classification, two experimental cases, i.e. bearing vibration signals and gearbox vibration signals, 
are considered in this section.  

4.1. Bearing vibration signal classification 

The bearing vibration data were downloaded from the Case Western Reserve University 
Bearing Data Center [22]. The experimental platform shown in Fig. 1 consists of a motor, control 
electronics, a torque transducer, and a dynamometer. Single point faults of size 0.007, 0.014, 0.021 
and 0.028 in. were set on the drive-end bearings (Type 6205-2RS JEM SKF) at the location of 
outer raceway, inner raceway and rolling element (ball), respectively. The vibration data were 
measured by using an accelerometer being attached to the motor housing with the sampling 
frequency of 12 kHz. 

 
Fig. 1. Bearing test rig of CWRU [22] 

In the preprocessing stage, twelve fault-types of vibration data samples were chosen to 
construct training and testing datasets, including a normal, three types of outer race fault, four 
types of inner race fault, and four types of ball fault. Each sample was split with an overlapping 
length of 128-point into lots of segments, whose length were set to 2048-point. A total of over 80 
segments can be obtained. Taking into account the influence of sample size, the number of training 
samples must be large enough to build the dictionary for sparse decomposition. Therefore, we 
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randomly selected more than 60 segments as training samples and other 20 ones as testing samples. 
The descriptions of the bearing datasets are shown in Table 2.  

Table 2. Description of bearing dataset for classification 
Fault type Data file Number of training/testing samples Label of class 
Normal Normal_3 60/20 N 

Outer-race OR007@6_3 60/20 O-I 
Outer-race OR014@6_3 60/20 O-II 
Outer-race OR021@6_3 60/20 O-III 
Inner-race IR007_3 60/20 I-I 
Inner-race IR014_3 60/20 I-II 
Inner-race IR021_3 60/20 I-III 
Inner-race IR028_3 60/20 I-IV 

Ball B007_3 60/20 B-I 
Ball B014_3 60/20 B-II 
Ball B021_3 60/20 B-III 
Ball B028_3 60/20 B-Ⅳ 

In the implementation of TDSRC, all the samples, including 720 (60×12) training and 240 
(20×12) testing ones, are transformed into frequency-domain by Fast Fourier Transform (FFT) at 
first. Then, the scalar constantߛ  is set to 0.5 and SLEP [23] method is utilized for solving 
L1-minimization problems. With the changes of FFT points, the classification accuracy rate is 
plotted in Fig. 2. It can be seen that the accuracy rate is improved significantly with the increase 
of FFT points. Fig. 3 shows the relationship between the classification accuracy rates，obtained 
respectively by TDSRC and SRC，and the scalar constantߛ with the FFT points of 2048, which 
demonstrates that both of them almost keep unchanged with high values when the parameter ߛ 
varies in [0.0001, 0.8], while drop sharply if ߛ approaches to 0 or 1. At the same time, it is verified 
that the classification performance of TDSRC is superior to that of SRC for the bearing dataset. 

 
Fig. 2. The relationship between the classification 

accuracy rate and FFT points for  
the bearing dataset 

 
Fig. 3. The relationship between the classification 

accuracy rates obtained respectively by TDSRC and 
SRC and the scalar constant ߛ for the bearing dataset 

4.2. Gearbox vibration signals classification 

The proposed TDSRC method is further applied in gearbox fault diagnosis. The experimental 
platform (Fig. 4) consists of a motor, a drive shaft seat, a magnetic particle torque converter and 
a gearbox, etc. The vibration signals are acquired by an acceleration sensor placed in the output 
shaft bearing seat. A normal situation and five fault-ones, including three single faults, i.e.  
tooth-broken and point-corrosion of large gear, wear-out of small gear, and two combination faults, 
i.e. broken-wear and point-wear faults, are considered. Rotating speed is set to 1500 r/min, and 
vibration signals of the horizontal direct are collected with a sampling frequency of 5120 Hz and 
the sampling time is 10.5 s in each situation.  
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Like the experiment of bearing data classification, in the preprocessing stage, each of the six 
gearing vibration signals is split with an overlapping length of 128-point into lots of segments, 
whose length are set to 1024-point. A total of over 70 segments can be obtained. From them, we 
randomly select more than 50 ones as training samples to build the dictionary and other 20 ones 
as testing samples. The descriptions of the gearbox datasets are shown in Table 3. 

 
Fig. 4. The gearbox experimental system  

Table 3. Description of gearbox dataset for classification 
Fault type Number of training/testing samples Label of class 
Normal 50/20 N 

Tooth-broken in large gear 50/20 TBL 
Point-corrosion in large gear 50/20 PCL 

Wear-out in small gear 50/20 WOS 
Tooth-broken in large gear and 

wear-out in small gear 50/20 TBL-WOS 

Point-corrosion in large gear and 
wear-out in small gear 50/20 PCL-WOS 

It is well known that wavelet transform (WT) has perfect local properties in both time and 
frequency spaces. However, WT does not split the high frequency bands. Wavelet packets 
transform (WPT) [24] further decomposes the high frequency part which is not decomposed in 
WT. Since the modulation information of machine fault always exists in the high frequency bands, 
in this respect, WPT has a better representation of fault signal [25]. Therefore, all the samples, 
including 300 (50×6) training and 120 (20×6) testing ones, are transformed into wavelet-domain 
by WPT at first. Then, the scalar constant ߛ  is set to 0.5 and TDSRC is implemented. The 
classification accuracy rate is shown in Fig. 5. The results indicate: 1) as the decomposition depth 
increases, all of the classification accuracy rates increase at first and then decrease; 2) in the four 
wavelet packets (‘db1’, ‘coif1’, ’dmey’ and ’sym2’), ‘sym2’ has the highest accuracy, reaching to 
95.3 % when the transform depth is 4. To be clear, their accuracy rates are only 27.4 % at the 
transform depth of 0 for the four wavelet packets, which means that WPT is not conducted and 
SRC is directly implemented to classify the 120 testing samples. Therefore, SRC in  
wavelet-domain can significantly improve the accuracy of fault diagnosis for gearbox.  

For comparison, the gearbox dataset is tested by SVM method. SVM is a pattern recognition 
classification algorithm based on statistical learning theory and originally designed for binary 
classification. Fault diagnosis is a multi-classification problem, thus multi-classification SVM 
should be constructed. Modeled on reference [26], the gearbox dataset, including 300 training 
samples and 120 testing ones, are translated into different frequency bands by WPT at first; then, 
the optimal features are selected based on the distance evaluation technique from the statistical 
characteristics of raw signals and wavelet package coefficients, and the energy characteristics of 
decomposition frequency band; finally, the optimal features are input a multi-classification SVM 
with SVM toolbox [27] to classify these samples. The relationship between classification accuracy 
and number of classifiers is plotted in Fig. 6, which demonstrates that the classification 
performance is not as high as that of the proposed TDSRC method for gearbox dataset. 
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Fig. 5. The relationship between the classification 

accuracy rate and decomposition depth for the 
gearbox dataset 

 
Fig. 6. The relationship between the classification 

accuracy and the number of classifiers for the 
gearbox dataset 

4.3. Discussion 

In the two experiments above, Fourier transform and Wavelet packets transform were 
implemented respectively before classification. It is vital to choose a proper transformation for the 
classification accuracy. In the diagnosis experiment of bearing, FT was chosen because the 
distribution of Fourier coefficients is obviously different when the bearing is in different faults. In 
the gearbox experiment, however, WPT was implemented to get WPCs of different frequency 
bands for their difference of energy distribution when the gearbox is in different faults. Therefore, 
it needs to get a thorough knowledge of coefficients distribution of the classification objects in the 
transform domain before implementation of TDSRC.  

In addition to the choice of transformation, these parameters have also some influence on 
classification accuracy, such as the number of FFT points, the scalar constantߛ, the decomposition 
depth of WPT and the number of training samples. The influence results of the first three 
parameters have been shown respectively in Fig. 2, Fig. 3 and Fig. 5. Considering the influence 
of the number of training samples, we selected different numbers of training samples to construct 
the dictionary for spare decomposition, and selected other 20 samples of each fault type for test. 
The classification accuracy rates of the bearing dataset and the gearbox dataset are shown in Fig. 7. 

 
Fig. 7. The relationship between the classification accuracy and the number of training samples 

It can be seen that both of them increase at first and then decrease. For the bearing dataset, the 
highest accuracy reaches to 98.4 % when the number of training samples is 60. For the gearbox 
dataset, the highest accuracy gets to 96.1 % when the numbers of training samples are 50. 
Therefore, the number of training samples must be appropriate. The information of constructed 
dictionary is incomplete when the number is too small. On the other hand, redundant information 
will be generated if the number is too large. 
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5. Conclusions 

This paper presents a new classification method for machinery vibration signals, named 
Transform-domain Sparse Representation based Classification (TDSRC). It provides a new idea 
that classification can be performed using sample variations in the transform domain, which 
greatly improves the flexibility of sample classification. The method leverages the fact that 
machinery vibration signals possess sparse nonzero values in transform-domain and their 
transform coefficients are significantly different with each other when different fault occurs. The 
experimental results of bearing and gearbox vibration signals demonstrate the method can 
effectively diagnose both of them fault types with a higher accuracy than that of SRC and SVM.  
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