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Abstract. Mine hoists play a crucial role in vertical-shaft transportation, and one of the main 
causes of their faults is abnormal lifting load. However, direct measurement of the load value is 
difficult. Further, the original structure must be destroyed for sensor installation. To facilitate 
efficient and accurate monitoring of the lifting load of mine hoist, this paper presents a novel 
condition-monitoring method based on variational mode decomposition (VMD) and support 
vector machine (SVM) through vibration signal analysis. First, traditional empirical mode 
decomposition (EMD) is used to analyze the vibration signal collected by an acceleration sensor, 
and the number of obtained intrinsic mode functions (IMFs) is employed to set the VMD mode 
number. Second, the obtained vibration signal is processed by the parameterized VMD, and the 
useful IMFs of VMD are selected through correlation analysis for feature extraction. Third, the 
obtained features are used to train an SVM model, and the trained SVM is used to monitor the 
mine-hoist lifting load. In this study, experiments on an operated mine hoist are also conducted to 
verify the reliability and validity of the proposed method. The experimental results show that the 
proposed method can accurately identify the considered lifting load conditions. 
Keywords: VMD, EMD, lifting load, mine hoist, SVM. 

1. Introduction 

In vertical-shaft transportation, mine hoist is a very important item of equipment, which is 
used to transport personnel, materials, equipment, and coal between the underground and surface 
areas. Under operation involving frequent start-stopping, high speed, and heavy loads, the 
accidental occurrence of a malignant fault, such as skidding, overloading, or pot-sticking, may 
cause a fatal crash and affect the safety of the mine and its production efficiency. The common 
faults of mine hoist are related to its lifting load. However, the mine hoist system is employed in 
a semi-closed deep and narrow space, and the ropes and hoisting conveyance are large-span 
moving parts. Therefore, it is difficult to directly measure the mine-hoist lifting load. Vibration 
signals can effectively provide health information on a large rotary machine, and many studies on 
vibration usage have been performed by researchers throughout the world [1-4]. That is, vibration 
signal analysis constitutes a new method of monitoring the lifting load of mine hoist. 

Vibration signal is a kind of high-frequency transient signal, and it is difficult to directly use 
such a signal to accurately identify the lifting load conditions of mine hoist. Thus, signal 
processing methods should be used to extract the condition-related features for lifting load 
identification. To date, many techniques have been introduced for the analysis of vibration signals 
in the time, frequency, and time-frequency domains [5]. Time-domain analysis is the simplest 
method for feature extraction, and statistical indicators are usually obtained to monitor the 
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mechanical health [6-8]. For frequency-domain analysis, the time-domain signals are mainly 
transformed into frequency-domain signals through Fourier-transform (FT)-based signal 
processing methods [9-13], and the frequency related information is then used for health 
monitoring. Regardless of whether time- or frequency-domain analysis is employed, however, 
only partial information can be obtained. To achieve more detailed analysis, time-frequency 
analysis methods have been introduced for signal processing, such as the short-time FT (STFT) 
[14, 15], Wigner-Ville distribution (WVD) [16], wavelet transform (WT)-based methods [17-19], 
empirical mode decomposition (EMD) [20], ensemble EMD (EEMD) [21], and variational mode 
decomposition (VMD) [22]. 

Among these methods, VMD can adaptively find the frequency center and bandwidth of each 
component by iteratively searching for the optimal solutions of variational models. This approach 
has frequently been used to analyze complicated signals in recent years. For example, in [23], an 
underdetermined blind source separation is proposed, in which VMD is employed to analyze the 
compound roller-bearing fault signals and the fault-relative features are accurately extracted. Yao 
et al. [24] have employed VMD and robust independent component analysis to achieve noise 
source identification for a diesel engine; their results show that the proposed method can 
accurately separate and identify the combustion noise and piston slap noise. A fault diagnosis 
method for multistage centrifugal pump based on VMD is designed in [25], and a comparison of 
the VMD and EMD fault feature extraction performance shows that the former can accurately 
extract the principal mode of the bearing faults more effectively. Liu et al. [26] have proposed a 
novel signal denoising method that combines VMD and detrended fluctuation analysis (DFA), 
labeled “DFA-VMD”; the order of time complexity of this method is equivalent to that of EMD. 
In [27], a novel fault diagnosis method for wind turbine based on VMD and Teager energy 
operator is proposed. The above methods indicate that VMD is an effective signal processing 
method for complicated signals. 

Through application of a signal processing method, features can be extracted. However, 
development of a method for employing these techniques for lifting load condition identification 
is also important. In this work, a novel lifting load monitoring method for a mine hoist, which is 
based on VMD and a support vector machine (SVM) through vibration signal analysis, is proposed. 
The remainder of this paper is structured as follows. Section 2 introduces the theoretical basis, 
which includes overviews of EMD and VMD. The recognition model of the mine-hoist lifting 
load is described in Section 3. Section 4 presents a verification of the proposed signal processing 
method, which is achieved through simulation analysis. Finally, the experimental study is 
presented and discussed in Section 5, and the conclusion is given in Section 6.  

2. Theoretical basis 

2.1. EMD 

EMD, developed by Huang et al. [20], can self-adaptively decompose a complicated signal 
into a series of intrinsic mode functions (IMFs), based on the local characteristic time scale of 
signal. In EMD application, there are three assumptions: (1) the target signal has at least two 
extrema (one maximum and one minimum); (2) the characteristic time scale is defined by the time 
lapse between the extrema; and (3) if the data are totally devoid of extrema but contain inflection 
points only, they can then be differentiated one or more times to reveal the extrema. The EMD 
algorithm process is described as follows [20, 28-30]. 

1) The upper and lower envelopes are generated using a cubic spline line to fit the local extrema 
points of the signal (ݐ)ݔ, and the mean of the upper and lower envelopes is defined as ݉ଵ. Then, 
we set: ℎଵ = (ݐ)ݔ − ݉ଵ. (1)
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For a strict IMF, the two requirements given in [20] should be met. If ℎଵ  meets the two 
standards of the strict IMF, the result of Eq. (1) is then defined as the first IMF; otherwise, ℎଵ is 
regarded as the original signal (ݐ)ݔ, and the above steps are repeated until the result ℎଵ௞ is a strict 
IMF. Subsequently, the first IMF component is obtained and labeled: ܿଵ = ℎଵ௞. (2) 

2) The first IMF ܿଵ is separated according to: ݎଵ = (ݐ)ݔ − ܿଵ,     (3) 

where ݎଵ is the residue. The above steps are repeated ܰ times until the algorithm satisfies the 
termination condition. Then, we can obtain: 

൝ݎଵ − ܿଶ = ேିଵݎ⋮,ଶݎ − ܿே =  ே. (4)ݎ

3) Finally, the signal (ݐ)ݔ can be decomposed to: 

(ݐ)ݔ = ෍ ܿ௡(ݐ)ே
௡ୀଵ +  (5) .(ݐ)ேݎ

2.2. VMD 

VMD, a new self-adaptive and quasi-orthogonal signal processing method, was proposed by 
Dragomiretskiy and Zoss [22] based on Wiener filtering, one-dimensional Hilbert transform, and 
heterodyne demodulation. VMD can decompose a complicated multi-component signal into a 
serious of sub-signals, named IMF components, each of which is mostly compact around a center 
pulsation and limited-frequency bandwidth. To evaluate the bandwidth of a mode, the following 
constrained variational problem should be solved:  

minሼ௨ೖሽ,ሼఠೖሽ ൝෍ ฯ߲௧ ൤൬(ݐ)ߜ + ൰ݐߨ݆ ∗ ൨(ݐ)௞ݑ ݁ି௝ఠೖ௧ฯଶ
ଶ

௞ ൡ ,
s.t.     ෍ ௞ݑ = ݂௞ ,  (6) 

where ݑ௞ and ߱௞ are shorthand notations for the set of all modes and their center frequencies, 
respectively; ݐ is the time script, and ߜ is the Dirac distribution. 

Theoretically, various methods to solve the reconstruction constraint can be introduced. In  
[22], a quadratic penalty term and Lagrangian multipliers are employed to render the problem 
unconstrained, and the following new expression of the solution can be obtained: 

,௞ሽݑ൫ሼܮ ሼ߱௞ሽ，ߣ൯ = ߙ ෍ ൝෍ ฯ߲௧ ൤൬(ݐ)ߜ + ൰ݐߨ݆ ∗ ൨(ݐ)௞ݑ ݁ି௝ఠೖ௧ฯଶ
ଶ

௞ ൡ௞     + ะ݂(ݐ) − ෍ ௞(ݐ)௞ݑ ะଶ
ଶ + ൽ(ݐ)ߣ, (ݐ)݂ − ෍ ௞(ݐ)௞ݑ ඁ ,  (7) 

where ߙ is the data-fidelity constraint parameter and ߣ is the Lagrangian multiplier.  
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Here, a sequence of iterative sub-optimizations called the alternate direction method of 
multipliers (ADMM) is introduced to address the above formula. The solution to the original 
minimization problem of Eq. (6) is now found as the saddle point of Eq. (7). Then, the modes ݑ௞ 
and their corresponding center frequency ߱௞ can be updated as: ݑ௞௡ାଵ ← argmin௨ೖ ,௜ழ௞௡ାଵሽݑሼ)ܮ ሼݑ௜ஹ௞௡ ሽ, ሼ߱௜௡ሽ, ௡), (8)߱௞௡ାଵߣ ← argminఠೖ ,௜௡ାଵሽݑሼ)ܮ ሼ߱௜ழ௞௡ାଵሽ, ሼ߱௜ஹ௞௡ ሽ, ௡). (9)ߣ

Then, the following two formulas can be obtained: 

௞௡ାଵݑ = argmin௨ೖ∈௑ ቊߙ ฯ߲௧ ൤൬(ݐ)ߜ + ൰ݐߨ݆ ∗ ൨(ݐ)௞ݑ ݁ି௝ఠೖ௧ฯଶ
ଶ     + ะ݂(ݐ) − ෍ (ݐ)௞ݑ + 2௞(ݐ)ߣ ะଶ

ଶ, (10)

߱௞௡ାଵ = argminఠೖ ቊฯ߲௧ ൤൬(ݐ)ߜ + ൰ݐߨ݆ ∗ ൨(ݐ)௞ݑ ݁ି௝ఠೖ௧ฯଶ
ଶቋ. (11)

Through continuous iteration updates, all sub-signals, called IMF models, can be decomposed 
from the solution and are described as follows: 

(߱)ො௞௡ାଵݑ = መ݂(߱) − ∑ (߱)ො௜௡ାଵݑ − ∑ (߱)ො௜௡ݑ + መ௡(߱)2௜வ௞௜ழ௞ߣ 1 + ߱)ߙ2 − ߱௞௡)ଶ . (12)

The complete VMD algorithm is summarized as follows: 
Step 1: Initialize ሼݑො௞ଵ(߱)ሽ, ሼ ෝ߱௞ଵ(߱)ሽ, and ߣଵ, and set ݊ = 0; 
Step 2: Update ݊ with ݊ + 1 and perform a loop; 
Step 3: Update ݑො௞ for all ߱ > 0 with the formula shown in Eq. (12); 
Step 4: Renew ߱௞ according to ߱௞௡ାଵ based on the relation: 

߱௞௡ = ׬ ׬ො௞௡ାଵ(߱)|ଶ݀߱ஶ଴ݑ|߱ ො௞௡ାଵ(߱)|ଶ݀߱ஶ଴ݑ| . (13)

Step 5: Implement dual ascent for all ߱ > 0, where: 

(߱)መ௡ାଵߣ = (߱)መ௡ߣ + ߬ ൥ መ݂(߱) − ෍ ො௞௡ାଵ(߱)௞ݑ ൩. (14)

Step 6: Repeat steps 2 to 5 until the termination criterion of the following form is satisfied: 

෍ ො௞௡ାଵݑ‖ − ො௞௡‖ଶଶ௞ݑ‖ො௞௡‖ଶଶݑ < (15) .ߝ

3. Proposed method 

Vibration signal analysis is an effective means of accurately diagnosing mechanical faults and 
monitoring mechanical conditions, because these signals usually carry abundant state-relative 
information. Mine hoist is a typical item of rotating machinery used for vertical-shaft 
transportation, and its common fault is abnormal lifting load. Here, vibration signals are analyzed 
to monitor the lifting load of mine hoist. However, these vibration signals are both nonlinear and 
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unsteady. Further, it is difficult to extract the load-relative information from these signals; thus, 
monitoring the lifting load of mine hoist using tradition signal processing methods is challenging. 
For EMD, its main purpose is to adaptively decompose a mixed signal into a series of IMFs. 
Theoretically, if the mixed signal is main consist of ݇ components, it can get ݇ IMFs by EMD. 
That is to say, EMD can get the number of components of a mixed signal. For VMD, it is also an 
algorithm to decompose a complex signal into its compositions with IMFs. The mode number is 
an important parameter for VMD and which is mean the number of the components in a complex 
signal. Therefore, a new signal processing approach, combined the advantages of EMD and VMD, 
is tentatively proposed in this paper.  

SVM has been developed from statistical learning theory to solve pattern recognition and 
regression analysis problems using structural risk minimization principles [31, 32]; these 
principles can realize the optimal combination between learning precision and identification 
accuracy with only a small number of samples. Further, SVM-based classification can be regarded 
as a quadratic optimization problem. This technique first maps input samples into a particular 
high-dimensional space with nonlinear transformations and then finds an optimal plane for the 
classes in high-dimensional space to classify the input samples. In addition, SVM has stronger 
generalization ability than the nonlinear function approximation method, and can also overcome 
difficulties in determining the neural network structure and the local minimum.  

Based on the above analysis, this study presents a new condition monitoring method, based on 
EMD, VMD and SVM with vibration signal analysis, to precisely monitor the lifting load of mine 
hoist. The flow chart of the proposed method is shown in Fig. 1. First, traditional EMD is used to 
process the vibration signals collected by an acceleration sensor, and the number of obtained IMFs 
is used to set the VMD mode number. Second, the vibration signal is processed by the 
parameterized VMD and the useful IMFs of the VMD are selected through correlation analysis 
for feature extraction. Third, the obtained features are evaluated to train an SVM model, and the 
trained SVM is used to monitor the mine-hoist lifting load.  

 
Fig. 1. Flow chart of proposed method 

4. Simulation analysis 

To test the superiority of the proposed method, a simulation experiment was conducted, which 
is reported in this section. The test signals used in the simulation are as follows: 
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۔ۖەۖ
ଵݕۓ = 2sin(10ݐߨ),ݕଶ = 1.5cos(80ݐߨ),ݕଷ = ∑sin(200ݐߨ)݁(ି భ்൫௧ି మ்)మ൯,ݕ௖௢௠ = ଵݕ + ଶݕ + ଷݕ + ,(ݐ)݁  (16)

where ଵܶ = 1000, ଶܶ = 0.25 ∗ ݅, ݅ = 1, 2, 3, and ݁(ݐ) is noise that is equivalent to 0.2 times the 
standard deviation of the synthetic signal of ݕଵ, ݕଶ, and ݕଷ. 

Fig. 2 shows the time-domain waves of the simulation signals, i.e., the high-frequency 
oscillation signal (ݕଷ), low-frequency waves (ݕଵ and ݕଶ), and composite signal (ݕ௖௢௠). From this 
figure, the difficulty in identifying the components of the simulated ݕ௖௢௠  is apparent. The 
decomposition results provided by the traditional EMD and EEMD are plotted in Fig. 3. Directly 
observing the plots in Fig. 3(a), it is apparent that the main components are decomposed into ܿଷ 
to ܿ଺. From the plots in Fig. 3(b), it is apparent that most of the information on ݕଵ, ݕଶ, and ݕଷ is 
decomposed into ܿ଺, ܿସ, and ܿଷ. However, part of ݕଵ is falsely decomposed into IMF ܿହ, because 
the parameter settings are not optimal. By comparing Figs. 3(a) and (b), it is apparent that EEMD 
can yield a superior decomposition result for a complex signal than traditional EMD. 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 2. Time-domain waves of simulation signals 

The above analysis reveals that traditional EMD and EEMD have certain limitations in the 
context of complicated signal processing, such as the mode mixing problem and the selection of 
optimal parameters. It has been verified that VMD, a new technique, can effectively manage 
complicated signals; here, it was used to decompose the composite signal shown in Fig. 2. 
According to the principles of the proposed method, the number of IMFs in the decomposition 
process of traditional EMD is 10; thus, the mode number of VMD was set to 10. Based on the 
results reported in [25], the balancing parameter of the data-fidelity constraint was set to 1500. 
Fig. 4 shows the decomposition results of the EMD-based VMD method, where ݕଵ, ݕଶ, and ݕଷ are 
successfully decomposed into the front three IMFs ܿଵ, ܿଶ, and ܿଷ. 

To further analyze the decomposition effect of the EMD-based VMD method, the 
decomposition errors of the above three simulation signals are shown in Figs. 5(a-c). Hence, we 
conclude that the EMD-based VMD method can effectively decompose the complicated simulated ݕ௖௢௠ and yield superior results to the traditional EMD and EEMD. 
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a) 

 
b) 

Fig. 3. Decomposition results obtained using: a) traditional EMD, b) traditional EEMD with default 
parameters defined in [21] 

 
Fig. 4. Decomposition results of the EMD based VMD 

c 1
c 2

c 3
c 4

c 5
c 6

c 7
c 8

c 9
r



2724. LIFTING LOAD MONITORING OF MINE HOIST THROUGH VIBRATION SIGNAL ANALYSIS WITH VARIATIONAL MODE DECOMPOSITION.  
FAN JIANG, ZHENCAI ZHU, WEI LI, SHIXIONG XIA, GONGBO ZHOU 

6028 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. DEC 2017, VOL. 19, ISSUE 8. ISSN 1392-8716  

 
a) 

 
b) 

 
c) 

Fig. 5. Decomposition errors of simulation signals: a) ݕଵ, b) ݕଶ, c) ݕଷ 

5. Experimental study 

5.1. Experimental settings and data collection  

To verify the efficacy of the proposed method in the context of lifting load monitoring with 
vibration signals, an experiment on a running mine hoist was conducted. Fig. 6 shows a schematic 
diagram of a multi-rope friction hoist and the data acquisition system used in this experiment. As 
shown in this figure, the mine hoist contained several ropes, two containers, and a main shaft 
apparatus. Usually, a multi-rope friction hoist is operated based on friction between ropes and 
pads installed in the main shaft apparatus.  

 
Fig. 6. Schematic diagram of mine hoist and data acquisition system 

Thus, the main shaft apparatus is an important component of mine hoist, because it is not only 
a key transmission system of the mine hoist, but also a main load-carrying part. Therefore, the 
vibration signals collected from the main shaft apparatus can reveal characteristic information on 
the lifting load. In this work, the vibration signals were collected by the data acquisition equipment 
and a sensor placed on the top of the bearing housing of the main shaft apparatus with a strong 
magnetic foundation, as shown in Fig. 6. The data acquisition equipment included a data 
acquisition board and data processor, and the acquisition software system was self-developed 
using Visual Basic Language.  

Here, five different lifting loads were simulated for the mine hoist, as listed in Table 1. The 
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sampling frequency used to collect the vibration signals was set to 1000 Hz. Fig. 7 shows the 
vibration signals and their FFT spectrums for these five considered lifting load conditions. From 
this figure, it is apparent that some nuances exist between the amplitudes of the vibration signals 
obtained under different lifting load conditions. However, it is difficult to use these vibration 
signals directly to identify the lifting load conditions without any other obvious characteristics. 
Thus, features must be extracted from the collected vibration signals to reveal the information on 
the mine-hoist lifting load. Then, the correlations between the features and lifting load conditions 
can be constructed to determine if the mine hoist is operating under a normal lifting load. Recall 
that the main purpose of the proposed method is to facilitate monitoring and determination of the 
mine-hoist lifting load through vibration signal analysis alone. Further it is meaningful to 
determine whether the mine hoist is operating under normal or critical lifting load conditions. 

Table 1. Conditions of five lifting experiments  
Experiment no. Label Lifting load (t) Conditions 

1 S1 0 No-load 
2 S1 0 No-load 
3 S2 8.5 Normal 
4 S2 10.5 Normal 
5 S3 11.6 Over load 

 

 
a) 

 
b) 

Fig. 7. Vibration signals and their FFT spectrums for considered conditions 

5.2. Feature extraction  

Feature extraction based on signal processing tools has a significant influence on condition 
monitoring or classification efficacy. Figs. 8, 9 show real decomposed results for the vibration 
signals, which were obtained using EMD, EEMD, and the proposed method. Hence, it is apparent 
that the condition-relative information is not decomposed from the complicated vibration signals 
when traditional EMD and EEMD are used. However, the first several IMFs for the EMD-based 
VMD method exhibit superior consistency and periodicity. That is, our method can effectively 
analyze the collected vibration signals.  
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a) 

 
b) 

Fig. 8. Decomposition results of real vibration signals obtained using: a) traditional EMD,  
b) traditional EEMD with default parameters defined in [21] 

Through use of the EMD-based VMD method, a set of IMFs can be obtained and their 
sensitivity for condition monitoring can be assessed. Theoretically, not all IMFs contain sufficient 
useful information for lifting load identification. To reduce the feature dimensions and improve 
the processing speed of the SVM model, a correlation analysis was conducted to quantify the 
usefulness of each IMF and the five most sensitive IMFs were selected to calculate permutation 
entropy (PE), defined in [33], as foundation features. That is, each selected vibration signal 
segment can product five considered IMFs and each is able to obtain one PE values, so five PE 
values can be calculated from each selected vibration signal segment. 

However, noise commonly exits in vibration signals. To reduce the effect of noise interference 
on the monitoring of lifting load, we used statistical PE features, each is the mean of 15 foundation 
features of the same IMF, to construct samples. Therefore, in this paper, the used sample are 
consistent of five statistical PE features. In this work, 60 samples were extracted for each 
considered lifting load, 20 of which were used to train the SVM model and the remainder of which 
were set for testing. The used samples and target outputs of the SVM are listed in Table 2. Note 
that the other parameters were set to the default values given in [34].  
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Fig. 9. Decomposition results of real vibration signals obtained using EMD-based VMD method 

Table 2. Monitoring results obtained using proposed method 
Conditions Training samples Test samples Target outputs 

S1 20 40 1 
S1 20 40 1 
S2 20 40 2 
S2 20 40 2 
S3 20 40 3 

5.3. Results and discussion 

In this study, the vibration signals collected from a mine hoist under the stage of uniform 
motion were used to establish a correlation model between the features and lifting load conditions. 
Fig. 10 shows the monitoring results of the proposed method, in which the abscissa indicates the 
number of test samples and the ordinate expresses the outputs of the trained SVM. According to 
the designed SVM model, the theoretical outputs of the test samples numbered 1-80, 81-160, and 
161-200 should be “1”, “2,” and “3”, respectively. From the plots in Fig. 10, only one of these 
outputs of the test samples numbered 1-80 is not “1”; that is to say, these test samples, except one, 
are identified as having a no-load condition, which is consistent with the actual situation.  

 
Fig. 10. Test results for proposed method 

However, for the test samples numbered 81-160, some outputs are not “2”, but “1”and “3”. 
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be
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That is, some test samples originally corresponding to a normal load condition are mistakenly 
identified as corresponding to no-load conditions and overload conditions. Similar situations also 
appear for the test samples numbered 161-200, and some test samples are mistakenly identified as 
corresponding to the normal load condition. Further analysis revealed that the phenomenon in 
which more than two continuous adjacent test samples are mistakenly identified did not occur, 
and an incorrect test result for two continuous adjacent test samples occurred only once. Therefore, 
we can use the newest result of two or more continuous adjacent test samples as the final 
classification result. 

To confirm the superiority of the proposed method, comparison experiments were conducted, 
which were labeled “SVM+EMD”, “SVM+EEMD”, and “SVM+VMD”. In these comparisons, 
the classifiers were all SVM models and the number of samples used to train and test the SVM 
model were also the same as those for the proposed method. The permutation entropy values were 
also all extracted from five sensitive IMFs selected via correlation analysis, and the statistical 
features were all calculated using 15 permutation entropy values. For the SVM+EEMD method, 
the EEMD was employed using the default parameters defined in [21]. For the SVM+VMD 
method, the mode number and balancing parameter of the data-fidelity constraint were 
discretionarily set to 5 and 1500, respectively. Table 3 presents the test results for these 
comparison methods. From this table, it is apparent that the SVM+VMD method has the worst 
monitoring result. That is to say, the feature extraction of SVM+VMD is not suitable as the 
classifier for these comparison methods are also SVM. Further analysis the monitoring results of 
SVM+VMD reveals that the VMD with random configuration parameters cannot decompose 
lifting load related information into IMFs successfully.  

Table 3. Monitoring results obtained using proposed method 
Experiments Training samples Test samples Total accuracy (%) 
SVM+EMD 100 200 87 

SVM+EEMD 100 200 89 
SVM+VMD 100 200 81 

Proposed method 100 200 92 

Therefore, setting suitable mode number and balancing parameter of the data-fidelity 
constraint has great influence on feature extraction and condition monitoring. Further, the analysis 
of the monitoring results of SVM+EMD and SVM+EEMD shown that their monitoring accuracies 
are almost the same but are all lower than that of the proposed method. From this comparative 
analysis, we can conclude that the proposed method can successfully recognize the lifting load 
conditions of the mine hoist. 

Fan Jiang conceived and designed the experiments, analyzed the datasets and wrote the paper. 
Zhencai Zhu performed the experiments and analyzed part dataset. Wei Li performed the 
experiments and analyzed part dataset. Shixiong Xia provided helps in analyzing part dataset and 
also contributed to revise the manuscript in review processing. Gongbo Zhou provided helps in 
writing the paper and also contributed to revise the manuscript in review processing.  

6. Conclusions 

Lifting load monitoring is an effective approach to achieve a more secure operation of a mine 
hoist. Focusing on this issue, in this paper, a novel classification method based on variational 
mode decomposition (VMD) and support vector machine (SVM) through vibration signal analysis 
was proposed to facilitate accurate monitoring of the lifting load of mine hoist. In this work, an 
empirical mode decomposition (EMD)-based VMD was developed and the features of the selected 
sensitive intrinsic mode functions (IMFs) were extracted to construct an SVM-based classifier for 
monitoring the mine-hoist lifting load. Experiments on mine-hoist operation were conducted to 
verify the reliability and validity of the proposed method. The experimental results shown that the 
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proposed method can accurately identify the considered lifting load conditions. Some advantages 
of the proposed method are the following: 

1) It is difficult to directly measure the lifting load of a running mine hoist with a force 
transducer, because the original structure must be destroyed to install the sensor. However, 
vibration signals can be collected easily by installing sensors on the main shaft apparatus of the 
mine hoist. In this study, the mine-hoist lifting load was successfully identified by analyzing the 
vibration signals; thus, a new approach for lifting load monitoring was realized. 

2) Complex signal processing is challenging in condition monitoring. It has been shown that 
VMD exhibits superior performance with respect to the processing of nonlinear and non-stationary 
signals compared to EMD and EEMD. However, it is difficult to preset the VMD number mode. 
This work presented an EMD-based VMD method to solve this problem, and the experimental 
results confirmed its improvement over traditional VMD. 
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