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Abstract. For detecting the weak fault diagnosis submerged in heavy noise, a new method called 
multi-scale cascaded multi-stable stochastic resonance (MCMSR) is studied. The method can 
effectively extract weak fault diagnosis from noise background using multi-scale wavelet noise 
tuning stochastic resonance (SR). Firstly, input signal with noise is decomposed by multi-scale 
wavelets transformation, and each scale signal is adjusted by scaling factor, then the decomposed 
signal is used as the input of cascaded multi-stable systems to achieve the detection of fault 
diagnosis. If the input signal is a large parameter signal, to conform to the conditions of SR, the 
decomposed signal must be processed by twice sampling. The simulation and experimental signals 
are carried out to test the feasibility of the method. From the signal to noise ratio (SNR) 
comparison curves of original signal, SR output signal and MCMSR output signal plotted together, 
we can find that the useful signal can be enhanced by MCMSR method than SR method. The 
experimental results indicate that the MCMSR can extract fault diagnosis from heavy background 
noise. 
Keywords: weak fault diagnosis, wavelet transforms, multi-scale, multi-stable stochastic 
resonance. 

1. Introduction 

Signal feature extraction method has been widely used in many fields such as radar, seismic 
survey, oil well logging, satellite communications and so on. In most cases, the useful signal is 
submerged in heavy noise, which increases the difficulty to identify useful signal features. A lot 
of traditional signal detection methods are used to detect weak signal, e.g. the matched filtering, 
the adaptive filtering, the wavelet de-noising, the empirical mode decomposition (EMD) and so 
on [1-6]. These methods obtained the useful signal feature by suppressing or removing noise  
signal, but the disadvantages are that the useful signal may be weakened or even destroyed. 
Comparing with traditional methods, the stochastic resonance (SR) uses the noise instead of 
suppressing noise to extract signal feature. The SR method is proposed by scholar Benzi et al. in 
1981 [7]. Thereafter SR method has received extensive attention, and shows a unique advantage 
in the aspect of weak signal feature extraction. SR system is consisted of nonlinear system, input 
signal and noise. SR phenomenon makes the energy transforms from noise to input signal and 
plays an important role in noise reduction of the signal [8]. 

In recent years, signal feature extraction method by SR theory has been developed rapidly 
[9-16]. Lu et al. [9] proposed a weak signal detection strategy for rolling element bearing fault 
diagnosis, which investigated a new mechanism to realize SR based on the Woods-Saxon (WS) 
potential. Moreover, an underdamped step-varying second-order SR (USSSR) method was 
proposed to further improve the output signal to noise ratio SNR [10]. A quantitative evaluation 
system on the performance and feature enhancement of SR was proposed to evaluate the feature 
enhancement effect of SR [11]. In ref. [12], the SR phenomenon of the bistable Duffing oscillator 
and its application on incipient fault diagnosis were investigated. He and Wang et al. [13-15] 
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investigated improved SR approaches for identifying the defect-induced rotating machine faults 
and the identification of multiple transient faults in rolling element bearing, and presented an 
adaptive multiscale noise tuning SR (AMSTSR) for effective and efficient fault identification of 
rolling element bearings. Shi et al. [16, 17] proposed a novel weak signal detection method based 
on SR tuning by multi-scale noise, and studied a SR and analytical mode decomposition-ensemble 
empirical mode decomposition (AMD-EEMD) method for fault diagnosis of rotating machinery. 

Adaptive Stochastic Resonance (ASR) on mechanical fault diagnosis has also been extensively 
investigated in recent years [17-20]. Qin et al. [18] studied an adaptive and fast SR approach to 
weak mechanical fault feature extraction. Chen et al. [19] studied a method of weak fault feature 
information extraction of planetary gear based on Ensemble Empirical Mode Decomposition 
(EEMD) and ASR. Lei et al. [20] studied an ASR method to solve the problem of weak feature 
extraction in fault diagnosis of planetary gearboxes. 

In the past, the majority SR models are monostable or bistable SR systems. Recently, 
multi-stable SR models to detect weak signal are studied [21-24]. When the background noise is 
heavy, the multi-stable SR model has better noise metastatic capacity than the bistable SR model 
[21, 22]. Although SR has a distinct advantage in the weak signal processing, when the SNR of 
vibration signals is low, the detection effect of single SR is not satisfactory [25]. To obtain higher 
SNR, the Cascaded Stochastic Resonance (CSR) was proposed to increase the output  
SNR [26-29].  

This paper proposes a multi-scale decomposition method by cascaded multi-stable SR system 
and studies its application on the detection of fault diagnosis in heavy background noise. The rest 
is organized as follows. Section 2 provides a short introduction to the multi-stable SR model. 
Section 3 studies the multi-scale wavelet decomposition method. Section 4 describes multi-scale 
decomposition method based on cascaded multi-stable SR system and presents a simulation 
example result. Section 5 and Section 6 provide an application experiment and the conclusions 
respectively. 

2. The principles of multi-stable SR model 

The multi-stable SR model is composed of a multi-stable nonlinear system, periodic input 
signal and noise. The synergistic reaction will occur in the nonlinear system by stochastic 
resonance, which will lead to the noise energy transfer into useful signal. The Langevin equation 
can be written as [22]: ݀ݐ݀ݔ = − ݔ݀(ݔ)ܷ݀ + (ݐ)ݏ + (ݐ)ݏ(1) ,(ݐ)ߟ = ߨsin(2ܣ ݂(2) ,(ݐ

where (ݐ)ݔ is the output signal; (ݐ)ݏ is driving signal, in which ܣ is amplitude and ݂ is driving 
signal’s frequency; (ݐ)ߟ =  is (ݐ)ߝ is noise strength and ܦ represents noise, in which (ݐ)ߝܦ2√
Gaussian white noise. 

For the multi-stable potential model, ܷ(ݔ) represents a potential function shown as: 

(ݔ)ܷ = 2ܾ ଶݔ + 4ܿ ସݔ + 6݀ , (3)ݔ

where ܾ , ܿ  and ݀  are the multi-stable potential barrier parameters. The value of ܾ , ܿ  and ݀ 
determine the potential function which belong to multi-stable, bistable or monostable system. In 
this paper, the potential function belongs to the multi-stable system [29].  

The Eq. (1) can be written as: 
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ݐ݀ݔ݀ = ݔܾ− − ଷݔܿ − ହݔ݀ + ߨsin(2ܣ ݂ݐ) + (4) .(ݐ)ߟ

The potential function ܷ(ݔ) is symmetrical and has three stable points (−ݔଶ, ݔ and ݔଶ) and 
two unstable points (−ݔଵ, ݔଵ) shown as: ݔ = ଵݔ(5) ,0 = ඨ−12݀ ቀܿ + ඥܿଶ − 4ܾ݀ቁ, (6)

ଶݔ = ඨ−12݀ ቀܿ − ඥܿଶ − 4ܾ݀ቁ. (7)

Eq. (4) describes the Brownian motion of an overdamped particle. When there are no a periodic 
signal and noise, the particle stays in one of three potential wells in multi-stable system. When the 
noise and input signal are added, the particles will overcome potential base and move among the 
tristable states, and the stochastic resonance phenomenon occurs [29]. Fig. 1(a) shows that the 
multi-stable system ܷ(ݔ)  with input signal and white noise generates output response (ݐ)ݔ . 
Fig. 1(b) is the potential function waveform of a nonlinear multi-stable system, in which the values 
of ܾ, ܿ, ݀ are 0.52, –0.3 and 0.03, respectively. It can be supposed that a small ball in three 
potential wells do transition reciprocating motion. The system will occur SR when the frequency 
of reciprocating motion is equal to the frequency of weak periodic signal. 

 
a) Structure diagram of multi-stable stochastic resonance 

 
b) The potential function of multi-stable ܷ(ݔ) 

Fig. 1. Multi-stable nonlinear model 

3. Multi-scale wavelet decomposition 

3.1. Discrete wavelet transform (DWT) 

Wavelet transform has good localization ability, and can extract weak signal components from 
signal by multi-resolution decomposition [30]. 

A wavelet basic function ߮(ݐ) is given as: 

߮,(ݐ) = 1√ܽ ߮ ൬ݐ − ܾܽ ൰, (8)
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where ߮,(ݐ) is obtained by the dilation and translation of ߮(ݐ), ܽ is dilation factor and ܾ is 
frequency shift factor. Suppose (ݐ)ݔ ∈  can be transformed into discrete wavelet by (ݐ)ݔ ,(ܴ)ଶܮ
wavelet bases function ߮(ݐ). The wavelet transform coefficient is shown as: 

ܹ ௫ܶ(ܽ, ܾ) = 1√ܽ න ∗߮(ݐ)ݔ ൬ݐ − ܾܽ ൰ (9) ,ݐ݀

where ܽ, ܾ and ݐ are continuous variables. Thus Eq. (9) is continuous wavelet transform. 
Discrete wavelet function can be obtained by discreting the parameter of continuous wavelet 

function [31]. First, taking ܽ = ܽଵ,  ܽଵ > 0,  ݆ ∈ ܼ,  the correspond wavelet function is ܽଵି  ଶ⁄ ߮(ܽଵି ݐ − ܽଵି ܾ), ݆ ∈ ܼ. After taking ܾ = ܽଵܾ݇ଵ, then the intervals of time axis is ܽଵܾଵ. 
Usually, discrete wavelet is binary discrete. When ܽଵ = 2, and we can get ܽ = 2, ܾ = 2ܾ݇ଵ, 
where ݆ ∈ ܼ and ݇ ∈ ܼ. Then the correspond wavelet function is 2ି ଶ⁄ ߮(2ି ଶ⁄ ݐ − ܾ݇ଵ), where ݆ ∈ ܼ. Further ܾଵ is normalized, we can get the following function shown as: ߮,(ݐ) = 2ି ଶ⁄ ߮൫2ି ଶ⁄ ݐ − ݇൯， ݆ ∈ ܼ. (10)

Transform coefficient can be written as: 

்ܹ௫(2, 2݇) = 1√2  ߮∗ ቀ2݊ − ݇ቁ (11) .(݊)ݔ

3.2. Multi-scale wavelet decomposition and reconstruction 

Binary orthogonal discrete wavelet transform decomposes signal into uncorrelated wavelet 
coefficients, and divides the wide band signal into a plurality of narrow bands. The schematic 
diagram of decomposition is shown in Fig. 2. 

The decomposed wavelet coefficients include approximate coefficients ܿ(݇)  and detail 
coefficients ݀(݇) written in the form [32]: 

ܿ(݇) = ൻ(ݐ)ݔ, ߮,(ݐ)ൿ,          ݇ ∈ ܼ, (12)݀(݇) = ൻ(ݐ)ݔ, ߰,(ݐ)ൿ,           ݇ ∈ ܼ,    ݆ = 1, 2, . . . , (13) ,ܬ

where ۦ⋅ ,⋅ۧ  represents an inner product operator, ݆  is decomposition level, ܬ  is cut-off 
decomposition level. The functions ߮,(ݐ) and ߰,(ݐ) are expressed respectively as: ߮,(ݐ) = 2ି ଶ⁄ ߮൫2ି ଶ⁄ ݐ − ݇൯, (14)߰,(ݐ) = 2ି ଶ⁄ ߰൫2ି ଶ⁄ ݐ − ݇൯, (15)

where ߮(ݐ) is the base functions of wavelet decomposition, ߮,(ݐ) is obtained by the dilation and 
translation of ߮(ݐ), ߰(ݐ) is scaling function, ߰,(ݐ) is obtained by the dilation and translation  
of ߰(ݐ).  

The inverse transform of DWT can be realized by the following function: 

(ݐ)݊ݔ =  ܼ∋݇(ݐ)݇,ܬ߮(݇)ܬܿ +     ܼ∋݇(ݐ)݇,݆߰(݇)݆݀
1=ܬ݆ . (16)

Adjusting the size of different scale signal’s amplitudes and reconstructing the signal, the 
signal can be expressed as: 
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(ݐ)ݔ =  ܭ ܿ(݇)߮,(ݐ)∈ +     ܭ ݀(݇)߰,(ݐ)∈
,ୀଵ , (17)

where ݅ܭ is scale contraction factor, and it can adjust amplitude of each scale component. In order 
to improve SNR, we usually turn the approximate coefficients of scale contraction factor to higher, 
while turn the detail coefficients of scale contraction factor to lower. 

 
Fig. 2. Using DWT to decompose the signal (ݐ)ݔ 

4. Multi-scale cascaded multi-stable stochastic resonance system 

4.1. Multi-scale multi-stable stochastic resonance method 

Wavelet transform has good localization properties in time-frequency. The signal can be 
decomposed into different scale frequency components by multi-scale wavelet decomposition. 
Due to the strong selection characteristics of noise intensity and frequency in nonlinear 
multi-stable system, each scale signal need to be adjusted by scaling factor. Then the decomposed 
signal is used as the input of the cascaded multi-stable systems. When the signal is processed by 
multi-scale wavelet decomposition, the noise intensity of input signal is reduced after 
decomposition. The schematic of multi-scale cascaded multi-stable SR system is shown in Fig. 3.  
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Fig. 3. The schematic of multi-scale SR system 

Firstly, the signal is reorganized by the approximate signal with each scale noise. The noise is 
equivalent to noise reduction signal. Then, it is used as the new input signal of each cascaded 
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multi-stable system to optimize SR effect of each unit. And the output signal of entire system is 
the average value of output of all units [33]. In addition, we select the decomposition scale by the 
traversing method. 

4.2. Multi-scale cascaded multi-stable SR system 

We proposed a new SR system named multi-scale cascaded multi-stable SR system (MCMSR) 
shown in Fig. 4. The MCMSR model comprises a plurality of multi-stable SR systems. The output 
signal of first multi-stable system is used as the input signal of the second multi-stable system. 
The output signal of the second multi-stable system is used as the input signal of the third 
multi-stable system, and so on. At last, the output of the last level multi-stable SR system is the 
output of entire MCMSR model. 

SNR is used to judge whether the system produces stochastic resonance. The calculation 
formula of SNR is written in the form: ܴܵܰ = 10lg ൬ܣௗܣ൰, (18)

where ܣௗ is the amplitude value corresponding to the driving signal frequency, and ܣ is the sum 
of all the amplitude values except ܣௗ in the amplitude spectrum [34]. 

 
Fig. 4. Multi-scale cascaded multi-stable SR system 

4.3. Simulation experimental verification 

In order to conform to the adiabatic approximation theory, we select the small parameters 
signal. The input signal (ݐ)ݏ is ܣsin(2ߨ ݂ݐ). The amplitude of signal is equal to 0.3 and the 
frequency of signal ݂ is equal to 0.01 Hz. Let (ݐ)ݑ = (ݐ)ݏ +  is Gaussian white noise and its strength is 0.6. The system parameters are ܾ, ܿ and ݀, the (ݐ)ߟ ,is noisy signal (ݐ)ݑ in which ,(ݐ)ߟ
value of each are 0.72, –0.3 and 0.08, respectively. 

The waveform and spectrum of a noisy sinusoidal signal are shown in Fig. 5. Sampling 
frequency ௦݂ is 5 Hz. It can be observed in the frequency domain in Fig. 5, where there is a uniform 
distribution, and the white noise and frequency has a minor peak nearby 0.01 Hz, the amplitude  
is 0.3212. 

Fig. 6(a) shows decomposition result of the processed signal after DWT. The db1 wavelet is 
used for decomposition and the scale is set to ܬ = 4. The traversing method is used to select 
decomposition scale. The decomposition scale is set as ݆ = 1, ݆ = 2, ݆ = 3, ݆ = 4, ݆ = 5, ݆ = 6, 
and then the best decompose effect value of j is found. It can be seen from Fig. 6(a), ݏ is the 
original signal, ܽ4 is the signal’s low frequency part, ݀1 to ݀4 are the signal’s high frequency  
parts. Fig. 6(b) is spectrum after Fast Fourier Transform (FFT) of the original and the 
reconstructed signal of approximation signal and each scale noise signal. The size of each scale 
signal components of reconstructed signal is to be adjusted by the scale factor. From Fig. 6(b) we 
can find that there are distinct peaks at 0.01 Hz and the peak values in Fig. 6(bb) to Fig. 6(be) are 
much higher than that in Fig. 6(ba). In Fig. 6(be) there has the maximum peak value, but the peak 
value not exceeding 1. At the same time, there are many noise signal components in Fig. 6(bb) to 
Fig. 6(be). It shows that the result of wavelet decomposition is seriously affected by the noise. 
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a) Waveform of original signal 

 
b) Spectrum of original signal 

Fig. 5. The original signal’s waveform and spectrum 

 
a) The time-domain components 

 
b) The spectrum components 

Fig. 6. The decomposition results of original signal after DWT 
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After the input signals were processed by stochastic resonance systems in Fig. 6, we could 
obtain the output signal’s waveform and spectrum shown in Fig. 7. Signal detection results for a 
single multi-stable SR system and MCMSR system were compared in Fig. 7. 

Observing the Fig. 7(a-c), we can find the original signal on the time-domain plot is difficult 
to identify. When it is processed by a multi-scale stochastic resonance system, we can clearly 
discern the periodic signal in the time-domain plot, and noise is also decreased. Observing the 
spectrum in Fig. 7(d-f), it is apparent that peak value at 0.01 Hz has constantly become larger. In 
the frequency domain of MCMSR system output, the amplitude at ݂ is equal to 2.053 which is 4 
times than the original signal and 1.35 times than single stochastic resonance system output signal. 
This indicates that the MCMSR system has better signal enhancement and desorption capability 
than the multi-stable stochastic resonance system. The input SNR curves of original signal, single 
SR model and MCMSR model are plotted in Fig. 8 altogether. We can find that the target signal 
can be amplified by SR effect in the single multi-stable model and the MCMSR model. Especially, 
the SNR is promoted greatly in the low noise intensity region in the MCMSR model. Therefore, 
the MCMSR system is very effective on detection signal, and greatly improves the ability to detect 
weak signals. 

 
Fig. 7. Comparison of signal detection between single SR model and MCMSR model 

 
Fig. 8. SNR curves of original signal, single SR model and MCMSR model 

5. Application experiment 

5.1. The bearing data 

The experimental platform of Case Western Reserve University in US is shown in Fig. 9 [35]. 
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The rolling bearing fault vibration signals are collected by acceleration sensors. Motor housing 
drive end bearing is SKF6205 in the experiment, bearing speed ܰ = 1797 rpm, and the transfer 
frequency ݂  is 29.95 Hz. Rolling generally consists of an inner ring, an outer ring, rolling 
elements and cage, if the rolling bearing malfunctions, the fault frequency is predictable. We can 
assume that outer ring of the rolling bearing is fixed, and the inner ring is rotating with the working 
shaft. The pitch diameter of the bearing is ܦ, the ball diameter of the bearing is ݀, the contact 
angle is ߙ, the number of rolling elements is ݊, then the fault characteristic frequency of inner ring 
is as follows: 

݂݅ = ݊ܰ120݀ ൬1 + ݀cosܦߚ ൰. (19)

The bearing’s details geometry is provided in Table 1. 

Table 1. The main rolling bearing parameters 
Inner diameter 

(mm) 
Outer diameter 

(mm) 
Pitch diameter 

(mm) 
Ball diameter 

(mm) 
Ball 

number  
Contact angle 

/ (°) 
25.001 51.999 39.040 7.940 10.000 0 

 
Fig. 9. The experimental platform 

If bearing inner ring happens fault, then the characteristic frequency ݂ is equal to 162 Hz. 
Fig. 10 are the fault signals’ waveform and spectrum maps of bearing inner ring. Fig. 10(a) is the 
time domain waveform where exists a cyclical shock. Fig. 10(b) is the spectrum map where we 
cannot see the obvious vibration characteristics in original low frequency spectrum, and there are 
a lot of noise signal components, that is to say, from the original vibration signal, it is very difficult 
to diagnose the inner ring fault of rolling bearing. 

 
a) Waveform of actual signal 

 
b) Spectrum of actual signal 

Fig. 10. The waveform and spectrum of actual signal 
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5.2. Analysis of rolling bearing faults 

In the actual signal detection and fault diagnosis, the case which meets the adiabatic 
approximation theory is rare. If the frequency of signal cannot occur stochastic resonance under 
the condition of big argument, the signal can be transformed into a frequency of small parameters; 
we can use the method of stochastic resonance for weak signal amplification. Based on the above 
ideas, scale decomposition stochastic resonance method has been studied in detail [36]. The Scale 
decomposition stochastic resonance is shown in Fig. 11. The specific process is as follows: First, 
the input signal (ݐ)ݏ with noise signal (ݐ)ߟ carry out the integration scale decomposition in order 
to obtain the condition of occurring stochastic resonance. Then output signal (ݐ)ݕ is obtained by 
after input signal (ݐ)ݏ processed by Multi-stable SR system ܷ(ݔ). 

 
Fig. 11. Scale decomposition stochastic resonance 

By above analysis, the method of rotating machinery fault diagnosis based on MCMSR is 
proposed, which is presented in Fig.12. First, we get vibration signal from the rotating machine 
shown in Fig. 12(a). Second, in this scenario, the spectrum of vibration signal is extracted first by 
FFT shown in Fig. 12(b). Third, in order to get a better effect of stochastic resonance, the second 
sampling signal processing through a multi-scale wavelet transform is shown in Fig.1 2(c). In this 
section, the high frequency energy constantly is shifted toward low-frequency part. Last, the new 
signal is fed back to the MCMSR model, and the system output signal is processed by Fourier 
transform. If the spectrum of input signal contains the fault feature frequency, the corresponding 
periodic component of fault will certainly be enhanced by MCMSR system, which is conducive 
to us to make the diagnosis of mechanical failure. 

Fig. 13 shows the specific process of vibration signal by scale wavelet decomposition. 
Fig. 13(a) shows the decomposition result of processed signal after DWT. The scale ܬ is 4. In 
Fig. 13(a), ݏ is the vibration signal, ܽସ is the signal’s low frequency part, ݀ଵ to ݀ସ are the signal’s 
high frequency parts, and ݏ = ܽ4 + ݀1 + ݀2 + ݀3 + ݀4. Approximation signal and each scale 
noise signal are reconstructed respectively, and Fig. 13(b) is the spectrum of the vibration signal 
and the reconstructed signal. From Fig. 13 we can see that it is difficult to identify the fault 
characteristic frequency. 

 
Fig. 12. Principle diagram of the proposed method 
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a) The time-domain components 

 
b) The spectrum components 

Fig. 13. The decomposition results of actual signal after DWT 

 
Fig. 14. The analyzed results of bearing inner race fault using signal SR model and MCMSR model 

When the input signals in Fig. 13(b) are processed by stochastic resonance systems, we can 
obtain the results of output signal. The spectra of output signals by the single multi-stable SR 
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method and MCMSR method are shown in Fig. 14(a) and (b), respectively. The amplitude of 
frequency domain output signal in Single SR system is 0.06458 shown in Fig. 14(a). In the 
multi-scale SR system, the amplitude of frequency domain output signal is 0.3316 which is 5.13 
times than the single SR system output. The experimental results indicate that the MCMSR can 
effectively extract fault diagnosis characteristic from heavy background noise. The different 
output SNR curves of MCMSR model, single SR model and original signal are depicted in Fig. 15 
together. It can be seen that the SNR of MCMSR model is higher than single SR model and 
original signal. At the same time, there is a wider parameter interval to keeping higher SNR for 
the noise intensity D. From the above analysis, multi-scale SR method has more advantages than 
the traditional single SR method in enhancing the fault message. 

 
Fig. 15. SNR curves of original signal, single SR model and MCMSR model 

6. Conclusions 

In the paper, we proposed a new weak fault diagnosis method based on multi-scale wavelet 
noise tuning cascaded multi-stable stochastic resonance. The method can extract useful signal 
from the heavy noise. In this method, the noisy signal is processed by wavelet decomposition. If 
the decomposed signal is a small parameter signal, it can be processed directly by stochastic 
resonance system. If the decomposed signal is a large parameter signal, to conform to the 
conditions of stochastic resonance, it must be processed by twice sampling and stochastic 
resonance system. Finally, the different output SNR curves of MCMSR model, single SR model 
and original signal are depicted altogether. It can be seen that the SNR of multi-scale SR model is 
higher than single SR model and original signal. Simulation and engineering experiments show 
that MCMSR method is very effective in solving the problem of large signal parameters. The 
proposed method provides an effective solution method to solve the common engineering problem 
of weak signal detection. 
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