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Abstract. Aiming at the skew and misalignment between the inner and outer rings of the spindle 
bearing during the installation process, a new method for detecting the spindle bearing assembly 
state is proposed combined an improved maximum correlated kurtosis deconvolution (IMCKD) 
and support vector machine (SVM). The vibration and impulse signals induced by bearing 
assembly skew or dislocation are quite weak. In this paper, the collected vibration signals were 
preprocessed by IMCKD algorithm with optimized parameters between the normal and skewed 
state of the outer rings at first, which aims to deconvolve periodic impulse characteristic and 
enhance the periodic impulse component from a new assembly spindle vibration signal. Then, 
wavelet packet decomposition method was adopted to extract the characteristic energy value of 
different frequency bands, and the eigenvector of the assembly state of the spindle bearing was 
calculated. Furthermore, the support vector machine classification method is implemented to 
analyze the eigenvectors under different assembly states. Finally, the proposed method was 
verified by experimental results. The results show that the IMCKD and SVM methods can 
effectively detect the bearing assembly skew state of the spindle with an accuracy of more than 
95 %. 
Keywords: spindle bearing, assembly diagnosis, maximum correlated kurtosis deconvolution, 
support vector machine. 

1. Introduction  

As rolling contact ball bearings are commonly used in high-speed spindle and one of the most 
vulnerable components as well, their heat generation, stiffness and vibration characteristics have 
attracted lots of attention [1-5]. How to detect the quality of bearing assembly state is a major 
challenge in the practical application since its quality directly affects the performance of the 
spindle system.  

Typically, the bearing states are difficult to determine in a sophisticated spindle system due to 
some uncontrollable factors during the assembly process. Such as wrong design, bad spindle parts, 
improper mounting of the spindle bearings, and bad operation of the operators. However, most of 
them can be detected through signal processing methods except the improper mounting, because 
the present research in this area has not been established. Besides, the previous studies pay more 
attention on the performance of the spindle system when the bearings suffer imbalance load [6-8]. 
Moreover, the skew and dislocation state of bearings are the most common states for a new 
assembly spindle during the running attrition test process. So how to extract the weak impact 
component induced by the skew installation of the spindle bearing is the principle problem. For 
weak fault of the machinery and equipment, the most important thing is how to extract effective 
feature information from measured signals [9-11]. 

In recent years, the application of weak fault signal extraction in spindle bearings has made 
significant progress [12-14]. Jiang proposed an improved method to accumulate envelope 
spectrum of all or part of sub-band signals rather than to demodulate selected sub-band signals, 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2017.18766&domain=pdf&date_stamp=2018-03-31


2830. INVESTIGATION ASSEMBLY STATE OF SPINDLE BEARING BASED ON IMPROVED MAXIMUM CORRELATED KURTOSIS DECONVOLUTION AND 
SUPPORT VECTOR MACHINE. YANFEI ZHANG, XIAOHU LI, SUN’AN WANG, YANHUI SUN 

964 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAR 2018, VOL. 20, ISSUE 2. ISSN 1392-8716  

which was more robust to stochastic impulse disturbance and was able to capture weak period 
information as compared with FIR-based or WPT-based kurtograms [15]. Bin employs the EMD 
to decompose the reconstructed signal, and then the early fault diagnosis of the bearing is obtained 
based on the BP (back propagation) neural network classification with the calculation of the 
energy of each IMF as the eigenvectors [11]. Sawalhi adopts the minimum entropy deconvolution 
(MED) method on bearing fault diagnosis and achieve excellent results by eliminating the impact 
of bearing failure overlap phenomenon [16]. Antoni and Randall first proposed the short time 
Fourier transforms filter-based and finite impulse response filter based on spectral kurtosis (SK) 
to efficiently detect incipient faults [17]. However, the drawback of SK is that the method may 
fail in effectively detecting transients with a low signal to noise ratio. To remedy this drawback, 
a new time-frequency analysis method named minimum entropy deconvolution (MED) was 
originally proposed by Wiggins for application on seismic recordings [18]. On the basis of the 
MED algorithm, McDonald proposed a novel deconvolution algorithm for the detection of bearing 
faults from vibration data. The proposed MCKD method takes advantages of the periodic nature 
of the faults as well as impulse-like vibration behavior associating with most types of faults [19]. 
Considering that the kurtosis coefficient can be used to describe the convexity of the peak of the 
vibration signal, which is consistent with the axial impact characteristics caused by the deflection 
of the inner or outer rings of the spindle bearing. However, the MCKD algorithm unable to 
effectively extract the impact composition of weak fault signal under variable rotation speeds. 
Moreover, the effect of noise reduction is strongly influenced by selected parameters based on the 
experience of the operator. Therefore, an improved MCKD method is studied through grid search 
algorithm with global optimization to automatically search for the optimal parameter.  

However, it is a challenge to develop and adopt effective signal processing techniques that can 
extract key information from the vibration signals of a newly assembly spindle bearing system. 
There is no obvious definite fault signal present in the measured signals. Literature reviews show 
that most of researches were used to focus on the defects in the spindle system [20-23]. Such as 
where is the damage occurred or what fault type is in the bearing. However, few people focus on 
the detection of spindle assembly quality. For a newly assembly spindle, there is no definite defect 
in the internal components in general when the bearing in the assembly process. For example, in 
practical engineering small assembly errors will be inevitably occurred in a spindle system, 
especially for the spindle bearings. Assembly quality problems (such as skew or misalignment of 
bearings) may accompany the assembly process due to differences in the proficiency of the 
assembler. Moreover, for the high-speed and high-precision spindle system, contact angle and 
contact pressure of the rolling bearing will change due to uneven thermal deformation, which will 
result in a weak periodic weak impact for the spindle system, as shown in Fig. 1. Therefore, it is 
necessary to carry out the state detection of the bearings whether it is a newly assembly spindle or 
the actual application one.  

a) 
 

b) 
Fig. 1. Contact deformation caused by the bearing internal cyclical impact load 

However, the ultimate goal of the diagnosis is how to detect the improper mounting state of 
the assembly spindle bearing. So, how to diagnosis the bearing state with a high accuracy is 
another challenge for researchers. SVM, as a machine learning method, has been recognised by 
researchers in fault monitoring and diagnosis field because of its feasibility and effectiveness in 
mechanical fault diagnosis [23-27]. Rojas studies the application of support vector machines in 
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the detection and classification of rolling element bearing fault. This proposal makes the 
classification procedure fast and effective [28]. Yang utilized the IMFs as the input of SVM to 
classify the bearing faults and achieved remarkable results [29]. Rajeswari proposes a multi-fault 
classification method, which contains four fault conditions of the bearing. Then the feasibility of 
the proposed multi-fault diagnosis is verified by comparing the classification accuracy and 
calculation time [30]. Abbasion combines the wavelet denoising and support vector machine for 
rolling element bearings multi-fault classification. The results show that the proposed method is 
fully agree with empirical results [31]. Ziani et al. proposed a method that combines support vector 
machines and binary particle swarm optimization algorithm in order to maximize the separability 
of classification. The experimental results show that this method has a beneficial effect on bearing 
health assessment and fault diagnosis by selecting the regularized Fisher Criterion as a fitness 
function [32]. 

In this paper, by combining the IMCKD and SVM methods, the detection and classification of 
the assembly quality of the spindle bearing are studied. The remaining parts of this paper are 
organized as follows. In Section 2, the new improved MCKD algorithm is put forward and the 
SVM algorithm is briefly described. An improved MCKD algorithm was employed to denoise the 
original signals and to highlight the continuous pulses, which are masked by strong noise. 
Section 3 introduces the experimental setup and descripts the certification of assembly quality for 
spindle bearing. Then the signals after noise reduction are processed by wavelet packet at a precise 
decomposition level. The energy distribution in the different frequency bands of the wavelet 
packet is calculated by analyzing the energy distribution of the vibration signal, which is used as 
the eigenvector of the assembly state of the spindle bearing. In Section 4, the results and 
discussions of the proposed method are given. The characteristic vectors of the vibration signal 
are introduced to construct the eigenvectors to characterize the installation of the bearing. The 
comparative studies show the priority of the method proposed in this paper. Finally, in Section 5, 
we conclude the results of this study and give the prospect research in the future. 

2. Algorithm design  

The proposed IMCKD method combines MCKD with grid search method to maximize the 
advantage of MCKD in extracting the impulse signal from the measured signal and utilizes the 
powerful of grid search method in global optimization for searching the optimal parameters.  

2.1. Maximum correlated kurtosis deconvolution method  

Starting from the collected discrete vibration acceleration signal ݔ, it can be expressed as the 
output of the input bearing vibration impact signal ݕ  through the path transfer attenuation 
response ℎ, then we have the equation: ݔ = ℎ ∗  . (1)ݕ

The algorithm of MCKD aims to recover the signal ݕ by applying a FIR filter f to the acquired 
signal ݔ: 

ݕ =  ݂ݔିାଵ
ୀଵ , (2) 

where:݂ = ሾ ଵ݂, ଶ݂, ⋯ , ݂ሿ் is the coefficient of the filter with the length of ܮ. 
The maximization of the correlated kurtosis indicator is treated as the optimization target in 

the MCKD algorithm by combing Eq. (1) and Eq. (2), and then the ܯ-shift of correlated kurtosis ܭܥெሺܶሻ is derived as: 



2830. INVESTIGATION ASSEMBLY STATE OF SPINDLE BEARING BASED ON IMPROVED MAXIMUM CORRELATED KURTOSIS DECONVOLUTION AND 
SUPPORT VECTOR MACHINE. YANFEI ZHANG, XIAOHU LI, SUN’AN WANG, YANHUI SUN 

966 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAR 2018, VOL. 20, ISSUE 2. ISSN 1392-8716  

ெሺܶሻܭܥ = max ∑ ሺ∏ ି்ெୀݕ ሻଶேୀଵሺ∑ ଶேୀଵݕ ሻெାଵ . (3) 

The correlation kurtosis is suitable for measuring the pulse sequence with a specific period in 
the spindle vibration signal because of consideration of the periodic characteristics of the impact 
component. Compared with kurtosis, correlation kurtosis emphasizes the continuity of the impact 
component and was employed in this section. The filter coefficient ݂, which corresponds to the 
maximum correlated kurtosis, can be obtained by solving the derivatives of the numerator and 
denominator of ܭܥெܶ: ݂݀݀ ெሺܶሻܭܥ = 2‖ܺ‖ିଶெିଶ  ൭ෑ ି்ெݔ

ୀ  ି்ݔି்ݕ
ெ

ୀ ൱൩ே
ୀଵ     −2ሺܯ + 1ሻ‖ݔ‖ିଶெିସ  ൭ෑ ି்ெݔ

ୀ ൱ଶே
ୀଵ  ேݔ

ୀଵ ିାଵݕ = 0, (4) 

where ݇ ݂݀݀ :The Eq. (4) can be rewritten as a matrix form as :ܮ ,… ,2 ,1 = ெሺܶሻܭܥ = ߙଶெିଶሺܺି‖ݕ‖2 + ାଵሻߙ்ܺ − 2ሺܯ + 1ሻ‖ݕ‖ିଶெିସ‖ߚ‖ଶܺݕ = 0, (5) 

ܺ = ێێۏ
ଵିݔۍێ ଶିݔ ଷିݔ ⋯ ேି0ݔ ଵିݔ ଵିݔ ⋯ ேିଵି0ݔ 0 ଵିݔ ⋯ ⋮ேିଶିݔ ⋮ ⋮ ⋮ ⋮0 0 0 ⋯ ۑۑےேିିାଵݔ

 (6) ,ېۑ

ݎ = ሾ0  ܶ  2ܶ ⋯  ݉ܶሿ, (7) 

Ԧߙ = ێێۏ
ۍ ଵି்ିଵݕ ሺݕଵଶݕଵି்ଶ ⋯ ଵିெ்ଶݕ ሻݕଶି்ିଵ ሺݕଶଶݕଶି்ଶ ⋯ ଶିெ்ଶݕ ሻ⋮ݕேି்ିଵ ሺݕேଶ ேି்ଶݕ ⋯ ேିெ்ଶݕ ሻۑۑے

 (8) .ې

ݕ = ்ܺ ݂. (9) 

The matrix ்ܺܺ  is the autocorrelation matrix of ݔ. The inverse ሺ்ܺܺ ሻିଵ is assumed to exist, 
and the filter coefficients are described as: 

݂ = ଶ‖ߚ‖ଶ2‖ݕ‖ ሺ்ܺܺ ሻିଵሺܺܽ + ்ܺܽଵሻ. (10) 

In general, experimental signals will be significantly improved by using a higher shift ܯ, 
which usually takes 1-7. The impact characteristic is enhanced with the increase of the shift ܯ 
because of the sequential impact of the deconvolution method. However, higher order shifts 
require better estimates of the impulse period ܶ and increase the complexity of the calculation. 
When ܯ > 7, solving accuracy will be decreased due to the iteration method is beyond the scope 
of floating-point index. Therefore, it is necessary to determine the order of the optimal filter ܮ and 
the period ܶ  to maximum the effect of MCKD method. In this paper, grid search method is 
introduced to automatically calculate ܮ and ܶ  from the constraint function values on the grid 
points within the given region. The problem of nonlinear programming in grid search is expressed 
as: min  ݂ሺݐሻ,     ௦ܶ ≤ ܶ ≤ ܶ, (11) 
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where ܶ =  ( ଵܶ , ଶܶ , …, ܶ ), ܶ  is independent variables and the number of ܶ  is ݊ ;  ௦ܶ = ( ଵܶ௦, ଶܶ௦, …, ܶ௦), ܶ௦ is the lower limit of ܶ, ܶ = ( ଵܶ, ଶܶ, …, ܶ) and ܶ is the upper 
limit of ܶ. The search parameters are divided into a grid in a certain spatial range. The optimal 
solution of the corresponding point of the object function is gained by grid search method. In order 
to highlight the impact of the signal, the value of kurtosis is employed as the criteria of the output 
signal. The kurtosis is defined as: 

ߚ = 1ܰ  ସேݔ
ୀଵ . (12) 

In this paper, the kurtosis value of the signal with the maximum correlation kurtosis is used as 
the objective function. Eq. (10), which is nonlinear, can be solved iteratively through the following 
procedures: 

1) Firstly, initialize the range and search step in the grid search, the step is set to 1, the period 
search scope is [2, ௦݂/2] ( ௦݂ is the sampling frequency). Then a two-dimensional grid is constructed 
on the coordinate system of ܮ and ܶ. 

2) The current parameter is evaluated according to the kurtosis value of the signal after the 
maximum correlation kurtosis deconvolution. ்ܺ, ்ܺ , ሺ்ܺܺ ሻିଵ can be calculated based on the 
test signal ݔ; 

3) Initiate the filter coefficients ݂ with ܮ samples and calculate the output signal ݕ by using  
Eq. (9); 

4) Compute ߙ ߚ ,  based on signal ݕ  respectively and update the filter coefficient ݂  by 
Eq. (10); 

5) Compute the change of the kurtosis during iteration. Determine whether the difference 
between iterations ∆ܭܥሺܶሻ is less than the given threshold. If the criterion is satisfied, the search 
progress will stop; otherwise, the search progress is reverted back to step 3.  

6) The final output deconvolution signal can be obtained by Eq. (9), and the vibration signal 
is obtained after processing by IMCKD method.  

The detailed flow chart is illustrated in Fig. 2. The signal preprocess is completed and ݕ with 
the enhanced impact is obtained after the above steps. Then the wavelet packet transform (WPT) 
method is introduced in this paper on the processed signal to show the energy distribution in the 
time-frequency domain. 

 
Fig. 2. Signal preprocessing and feature extraction 

2.2. SVM theories 

This section briefly summarizes the principles and the procedure of SVM. The states of the 
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spindle bearing are simplified into two categories (perfect assembly and skew installation). 
Suppose the spindle bearing sample data is ܺ based on the collected acceleration signals under the 
two different assembly states, where ݔ ∈ ܺ. The frequency band energies of the signal are taken 
as the state eigenvectors according to subsection 2.1. Given the state set of spindle bearing Ψ, ߰ ∈ ሼ0,1ሽ, (where 0 represents the normal state and 1 represents the skew state of bearing). 
Bearing assembly quality state detection model is established based on the data set. So, the bearing 
quality state classification is attributed to a quadratic programming problem. The equations can 
be obtained based on the SVM principle: 

minܪሺݓ, ሻߦ = 12 ݓ்ݓ + ܥ  ߦ
 . (13) 

Subject to: ߮   ሺݔ்ݓ + ܾሻ ≥ 1 − ݅    ,ߦ = 1,2, ⋯ , ߦ,݊ ≥ 0,    ݅ = 1,2, ⋯ , ݊,  (14) 

where: ݔ is the input vector of the support machine, ݔ ∈ ܴ, ߰ is the category of ݔ, ߰ ∈ ሼ0,1ሽ; ݓ is the hyperplane normal vector; ߦ  is slack variable and ܥ  is a penalty factor. Radial basis 
function is selected as the kernel function of the SVM algorithm.  

 
Fig. 3. Flowchart of the proposed methodology 

In summary, the flow chart of the proposed method is illustrated in Fig. 3. Based on the 
principle above, the SVM algorithm is described as follows: 

1) According to the eigenvectors ܺ  extracted in subsection 2.1, the training {ݔ ,… ,ଶݔ ,ଵݔ} =
parameter set is established based on the SVM principle and the tag is built corresponding to the 
state class.  

2) The training sample data are mapped to the high-dimensional feature space through the 
kernel function and the nonlinear case can be solved.  

3) Then the SVM optimization algorithm is utilized to obtain the parameters ߛ, ݀ and the ܥ as 
well as the support vector ߙ. 

4) Hence the bearing quality state detection model is established through the support vector ߙ.  
5) Input the eigenvectors of different conditions to the established model in order to achieve 

the bearing assembly quality identification.  
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3. Experimental setup  

3.1. Experimental spindle system design 

In order to verify the proposed methodology, an experimental spindle was constructed for 
diagnosing the bearing assembly quality. A motorized spindle, whose maximum rotating speed is 
10000 r/min, is connected to the experimental mechanical spindle via elastic couplings. A servo 
system was employed to control the operation of the motorized spindle. The details of the spindle 
are shown in Fig. 4. Four NSK7014C angular contact ball bearings were employed in this spindle 
system, which are back to back arrangement (double O arrangement). The deviation of the bearing 
installation can be accurately achieved through a specially designed mechanism. As shown in the 
details of Fig. 4, this is the separately designed and constructed to apply the external axial preload 
on the outer ring to simulate the skew installation of bearings. Moreover, there is no external load 
applied on the spindle in order to minimize the impacts of external factors.  

 
a) 

 
b) 

Fig. 4. Structure sketch of the experimental test platform and location of the transducer 

3.2. Design of the special loading device  

In the spindle test system, three blind holes were designed and uniformly distributed in the end 
of the bearing spacer. The piezoelectric actuators were placed in these blind holes. Furthermore, 
the force applied on the bearing’s outer ring was displayed on computer in real time via a 
capacitive pressure sensor connected with the rear actuator. So, the preload applied on the bearing 
outer ring can be precisely controlled with the piezoelectric actuators and pressure sensors. The 
skew level of outer ring can be varied through the preload value. The structure and function of the 
preloading part are shown in Fig. 5. 

 
Fig. 5. Preload applied on the bearing outer ring 
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3.3. Program of the experimental system 

As shown in Fig. 5, the deviation of the bearing outer ring is achieved by adjusting the preloads 
of ܨଵ, ܨଶ, and ܨଷ applied on the outer ring of the bearing. The bearing is assumed as a rigid body. 
The force applied on the bearing is represented by a vector. This subsection gives expressions of 
the principal vector and the principal moment of applied force which are simplified toward center 
of the bearing according to space force theory. A principal moment and vector in relation to 
applied preload act on the outer ring: the moment is responsible for their deviation and the vector 
for their shift. The force points applied on the out ring are uniformly distributed around the axis. 
So, the principle vector and moment are expressed as: ܨ௧௧ =  ܨ ܯ (15) , =  ܴሺܨ − ሻܨ , (16) 

where: ݅ = 1,…, ݊. ܴ is the distance from the force action point to the center of the bearing. In 
this experiment, three loading points were selected due to bearing outer ring size, sensor volume 
and other factors, so the variable ݅ is 3.  

According to the recommended bearing preload in NSK “Precision Rolling Bearing” product 
manual and considering the installation form of the bearings, a reasonable preload range is 
determined. The lower limit of preload is the smallest preload to prevent the roller slip and the 
upper limit is the maximum of the recommended value. Vibration acceleration signals were 
sampled with the data acquisition instrument Brüel&Kjær and then transmitted to a PC which was 
used for data storage and signal processing. The sampling frequency was set as 8192 Hz. Also, a 
4096 bandwidth is set concomitantly during experimental procedure and the spindle speeds up to 
8000 r/min. Two vibration acceleration sensors were employed in this signal measuring system, 
which were arranged on the front and rear of the spindle house, respectively. Experimental data 
were gathered under different rotation speeds, and different conditions. 

As can be observed in subsection 3.2, the skewing level of the bearing is precisely quantified 
by the preload value. Deviation degree of the bearing is upon the preload condition. Each preload 
level is divided into uniform and skew condition. All of the experiment vibration signals were 
tested under light preload, middle preload and heavy preload conditions. Six altered working 
conditions ܥଵ-ܥଷ were tested at each rotation speed (2000 r/min, 4000 r/min and 8000 r/min). A 
total of 18 groups of the sampling data were collected. Comparative analyses of the sampling data 
were done under different conditions. 

Table 1. Test conditions of spindle bearings (2000/4000/8000 rpm)  
Bearing condition 

Condition tag ܨଵ (N) ܨଶ (N) ܨଷ (N) ܥଵ 400 200 200 ܥଵଵ 200 200 200 ܥଶ 800 400 400 ܥଶଵ 400 400 400 ܥଷ 1200 600 600 ܥଷଵ 600 600 600 

4. Experimental results and discussions 

4.1. Time-frequency analyses of vibration signals 

In this section, the vertical radial ܼ direction of the measured signal is selected to analyze the 
bearing assembly state in the time domain. The signals present no difference between perfect 
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mounting and incorrect mounting conditions due to the strong noise. There is no obvious regular 
impact characteristic under the skew installation. 

Then frequency domain analysis method is employed to further analyze the signal and the 
signals were subjected to fast flourier transform (FFT) to obtain the spectrum, as shown in Fig. 6. 
It can be found that there is a noteworthy difference in the frequency range of 1500 Hz-3000 Hz. 
Moreover, comparative analyses under the skew and perfect conditions show that the frequency 
components are obviously different. There are highlight frequencies at 1800 Hz and 2700 Hz for 
the bearing skew condition (ܥଵ), as shown in Fig. 6(a). Fig. 6(b) shows that highlight frequencies 
are more prominent at 1500 Hz and 2700 Hz under perfect installation condition. However, the 
frequency does not serve as an evaluation criterion to determine whether the bearing is installed 
perfect or not, and the bearing does not present one or several definite fault frequencies under 
skew conditions. So, it is not possible to determine whether the bearing is skew state or not by 
searching the specific fault frequency. This is different from the traditional bearing fault diagnosis, 
whose main purpose is to find the definite fault frequency. Fault characteristic frequencies of this 
test spindle bearing are listed in Table 2. 

 
a) 

 
b) 

Fig. 6. Frequency domain signal under conditions ܥଵ-ܥଵଵ 

Table 2. Fault characteristic frequencies of rolling ball bearing 

Pitch 
diameter ܦ (mm) 

Number 
of balls ܼ 

Ball 
diameter ݀ (mm) 

Fault 
characteristic 
frequency of 

inner ring (Hz) 

Fault 
characteristic 
frequency of 

outer ring(Hz) 

Rolling fault 
characteristic 

frequency (Hz) 

Inner ring 
rotation 

frequency 
(Hz) 

69.9305 14 12.7 6328 2487 177.89 66.7 
 

 
a) 

 
b) 

Fig. 7. Frequency domain under conditions ܥଵ-ܥଶ-ܥଷ and conditions ܥଵଵ-ܥଶଵ-ܥଷଵ 

According to Table 2, there is no fault characteristic frequencies appeared in the newly 
assembled bearing. Moreover, it is also difficult to find the definite fault characteristic frequency 
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in Fig. 7. Therefore, time and frequency domain methods cannot be used to estimate whether the 
bearing is installed perfectly or not, which limits its application on the spindle bearing installation 
status inspection. 

Fig. 7 demonstrates that the regular characteristics of the frequency can be found through 
comparative analysis under different skewing levels (ܥଵ-ܥଶ-ܥଷ). It can be seen that there are 
some obvious frequency prominent points at 1800 Hz, 2650 Hz and 2900 Hz. However, the 
obvious frequencies are highlighted at frequencies around 1650 Hz and 2600 Hz of the bearing 
under normal state (ܥଵଵ-ܥଶଵ-ܥଷଵ). 

4.2. Spindle bearing status classification  

4.2.1. Eigenvector selection and calculation 

The characteristic spectrum presents the same trend under the similar conditions based on the 
analysis in subsection 4.1. We found that the changing of relevant frequency component represents 
a certain installation state of the bearing. So, the bearing can be determined by analyzing the 
energy distribution of the measured signals.  

According to the sampling frequency and the spindle rotation frequency, the best parameter 
search center of the IMCKD algorithm ௦ܶ is 33.3 since the analyzed signal was acquired at the 
rotation speed of 2000 r/min. In order to optimize the extracting effect of the impact component, 
the shift order of ܯ = 7 was chosen. The best filtering parameter ܮ is automatically optimized 
aiming at the maximum signal kurtosis value through the proposed grid search algorithm. 

 
a) 

 
b) 

Fig. 8. The time waveform of the signal: a) original signal, b) filtered signal with IMCKD 

The proposed IMCKD method is processed in order to highlight the impulse components 
which are insensitive to the change of the bearing state. Fig. 8 shows that the comparison results 
between the original signal (Fig. 8(a)) and the filtered signal by IMCKD algorithm (Fig. 8(b)). It 
can be observed in the figure that the signals filtered by the proposed method have better 
highlighted impact characteristics. The larger amplitude of the impact vibration is restrained, and 
the smaller amplitude is reflected through the comparative analysis about the impact amplitude. 

4.2.2. Bearing state identification methodology 

After being processed with IMCKD, feature extraction method is the second critical step for 
identifying the bearing states. The bearing assembly state indicator should show the correction to 
the change of the bearing assembly condition. It is necessary to note that the denoised signals are 
processed by the WPT in the feature selection process and energy eigenvectors are calculated in 



2830. INVESTIGATION ASSEMBLY STATE OF SPINDLE BEARING BASED ON IMPROVED MAXIMUM CORRELATED KURTOSIS DECONVOLUTION AND 
SUPPORT VECTOR MACHINE. YANFEI ZHANG, XIAOHU LI, SUN’AN WANG, YANHUI SUN 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAR 2018, VOL. 20, ISSUE 2. ISSN 1392-8716 973 

different frequency bands. Then normalized processing was having done as the input eigenvector 
of the SVM model. 

The db1 wavelet was employed in this paper and the decomposition level was 3 according to 
experience. Eight corresponding packets were obtained during the wavelet packet decomposition 
calculation. The upper limit of signal analysis frequency, 4096 Hz, was determined from the 
sampling frequency based on Shannon's Theorem. The energy distribution of the vibration signal 
was obtained by the coefficients of the different frequency bands after the WPT. The energy values 
in each band were normalized to indicate the installation skew conditions. 100 sets of experimental 
data were selected, and the results of the final calculated eigenvalue were averaged, as shown in 
Table 3, each condition consists of 6 sets of data.  

Table 3. Energy eigenvalue of different frequency band after normalization 
Node 1 2 3 4 5 6 7 8 

Frequency  
band ݂ / Hz 0-512 512-1024 1024-1536 1536-2048 2048-2560 2560-3072 3072-3584 3584-4096 ܥଵ 0.178 0.147 0.535 0.480 0.141 0.282 0.382 0.411 ܥଶ 0.125 0.121 0.486 0.399 0.142 0.288 0.452 0.486 ܥଷ 0.185 0.155 0.476 0.447 0.162 0.284 0.410 0.465 ܥଵଵ 0.189 0.118 0.340 0.406 0.178 0.355 0.411 0.576 ܥଶଵ 0.123 0.096 0.373 0.361 0.151 0.333 0.444 0.605 ܥଷଵ 0.166 0.166 0.295 0.327 0.190 0.374 0.393 0.650 

As shown in Fig. 9, the energy distribution under each sub-bands corresponding to different 
bearing conditions which can be clearly distinguished from the eigenvectors. The signal energy 
value presents increase in some band range while presents decrease in another band range.  

 
Fig. 9. Eigenvalues under different conditions 

Moreover, the difference is becoming more pronounced with the increase of the bearing 
skewing level. This suggests that the sub-band energy value is a good bearing installation state 
indicator. In Fig. 9, the number 1, 2, …, 8 represent the different frequency bands (as shown in 
Table 3). The six separate lines in the figure represent the average of the energy characteristics of 
the sub-bands calculated under six installation conditions. The energy of the different bands 
changes significantly when the bearing installation was skewed compared to the perfect 
installation conditions, and these three sets of similar conditions present the same trend. In the 
frequency range of 1034-1536 Hz, the eigenvector of bearings skew state (under conditions ܥଵ/ܥଶ/ܥଷ) is 0.41/0.48/0.46, while the eigenvector is 0.57/0.61/0.65 corresponding to a perfect 
state (conditions ܥଵଵ/ܥଶଵ/ܥଷଵ). However, at the node 8 with the frequency range of 3584-4096 Hz, 
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the eigenvector is 0.34/0.37/0.39 under the conditions ܥଵଵ ଶଵܥ/ ଷଵܥ/ , while the eigenvector is 
0.58/0.48/0.47 under conditions ܥଵ / ଶܥ / ଷܥ . Fig. 12 demonstrates that the wavelet packet 
eigenvectors can be used as characteristics of the bearing installation state classification. The 
number of eigenvector is eight under each condition, that is, the dimension of the sample 
eigenvector is eight, and then samples were selected for classification experiments. 

In the SVM classification training, the state classification model of the bearing was established 
according to the eight eigenvectors in Table 3. There is a total of 200 sets of sampling data in the 
classification model for each condition. For these data sets, 50 % data was used for training the 
SVM model while the others were used for testing.  

The parameters ܿ = 17.82 and ݃ = 6.89 were obtained based on the calculation. The accuracy 
of the classification is 94 %. The diagnosis performances of the datasets using proposed method 
are shown in Fig. 10. It can be seen that the energy distribution of the bearing vibration signal is 
relatively concentrated in the perfect installation state. However, the energy distribution of the 
vibration signal presents relatively dispersed under skew condition. 

 
a) 

 
b) 

Fig. 10. Classification performance based on the proposed method  

The classification results show that the installation state of the bearings can be accurately 
detected under the experimental conditions by the proposed IMCKD and SVM method. The 
details of the experimental results under different conditions were presented in Table 4. Wavelet 
noising reduction processing method was adopted to diagnose the bearing state to show the 
superiority of our proposed method. The results demonstrate that the accuracy of the bearing 
installation is 83 % by using the wavelet de-noising method, and most of the bearing outer ring 
skewing states will be misdiagnosed as the perfect state. The main reason for the poor accuracy 
classification of the consequences may be the invalid effective impact of the characteristics. It can 
be observed that the classification accuracy of the installation state of bearing depends on the 
pretreatment of the measured signal. 

Other diagnose tests were also conducted in order to validate the advantage of the proposed 
IMCKD method. The test conditions are the same as above section, the classification results are 
shown in Fig. 11. Although there are obvious dissimilarity eigenvectors between ܥଵ and ܥଵଵ (ܥଶ 
and ܥଶଵ, ܥଷ and ܥଷଵ) conditions, this method fails to diagnose the bearings assembly with a high 
accuracy. The classification performance demonstrates that all of the accuracy is less than 80 % 
based on MCKD and SVM method. In engineering applications, it is unacceptable of the 
diagnostic with such a low accuracy. The proposed method can produce satisfactory results on 
extracting the impulse components and reach a high accuracy.  

Therefore, preprocesses on the original signal seem to have been a greater influence on the 
classification accuracy. This highlights the feasibility and reliability of the IMCKD algorithm 
proposed in this paper in the applications of the newly assembled spindle bearing installation 
quality inspection. 

In general, the impact characteristics of the bearings are obviously enhanced by the method 
proposed in this paper. The classification accuracy can reach more than 95 % by highlighting the 
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characteristic frequency of the singles. Moreover, with the increase of the rotation speed, the 
classification accuracy will be a necessarily concerned question.  

Table 4. SVM output for test data 
Type ܥଵ ܥଵଵ ܥଶ ܥଶଵ ܥଷ ܥଷଵ 

Misclassification number 6 3 5 2 4 2 
Accuracy of classification 94 % 97 % 95 % 98 % 96 % 98 % 

 

 
a) 

 
b) 

 
c) 

Fig. 11. Classification performance under MCKD and SVM method 

4.2.3. Contrast analysis among different rotation speeds  

According to the experimental conditions sets in Table 2, the measured vibration signal was 
analyzed and the corresponding classification accuracy was calculated. The overall classification 
effect of bearing skewed installation state and perfect installation state is displayed in Fig. 12. 

 
a) 

 
b) 

Fig. 12. Classification performance about different conditions based on the proposed method 

Fig. 12 shows the classification effect of the measured signal under the other different 
operating conditions. It can be seen from the area of the scattered distribution in the figure that the 
bearing skew and normal installation can be clearly distinguished. As expected, the impact of the 
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composition is more obvious with the increase of deflection degree of the outer ring, so the 
classification effect is more clearly. Other analyses were also conducted under the rotation speed 
4000 r/min and 8000 r/min to validate the proposed method; the overall classification accuracy is 
shown in Table 5. 

It can be seen that under the experimental conditions established in this paper, the assembly 
state of the spindle bearing can be accurately diagnosed by the IMCKD algorithm combined with 
SVM method. All of the results of the classification accuracy are more than 95 %. This also 
illustrates that the feasibility and effectiveness of the proposed method for quality inspection of 
the spindle bearing assembly. However, due to the limitation of experiments, the eigenvectors of 
the dislocated condition of bearing are not determined in this work. Moreover, it is difficult to 
classify the case clearly between similar conditions (i.e. ܥଶ and ܥଷ) due to the eigenvectors cross 
each other. In the future, the skew level of the bearing will be further studied based on these 
abundant data measured in the experimental process. 

Table 5. SVM output for test data under different rotational speeds 
Rotational speed Type ܥଵ ܥଵଵ ܥଶ ܥଶଵ ܥଷ ܥଷଵ 

4000 rpm Accuracy of classification 95 % 98 % 97 % 98 % 98 % 99 % 
8000 rpm Accuracy of classification 97 % 99 % 98 % 98 % 98 % 99 % 

5. Conclusions 

In this study, a new assembly spindle bearing state diagnostic method was presented. To 
enhance the performance of the impact due to skew installation of bearing in a spindle, an IMCKD 
algorithm was proposed, which aims to deconvolve periodic impulse characteristic from a new 
assembly spindle vibration signal. Then WPT was utilized to analyze the preprocessed signals, 
and three levels of decomposition were obtained. To extract the impact characteristics, the 
normalized frequency band energy value was calculated as classification indices. Finally, SVM 
was implemented and eigenvectors were input to SVM classifier for detecting the bearing state 
under different conditions. The proposed method was verified through experiments under different 
rotation speeds and conditions, and the results have shown that: 

The proposed method presents superiority on detecting the assembly spindle bearing state. 
Periodic impact characteristics of weak signals induced by skew or dislocation state can be 
effectively enhanced by using the proposed improving MCKD algorithm. 

The results show that the different sub-band energy represents a certain installation state of the 
bearing. So, the spindle bearing assembly state (perfect installation or incorrect installation) can 
be determined by analyzing the energy distribution of sub-band of the measured vibration signals. 

Comparative analysis of the results shows that the limitation of the proposed method, which is 
unsuitable for detecting similar assembly conditions (i.e. ܥଵ, ܥଶ and ܥଷ) due to eigenvectors 
cross each other. 
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