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Abstract. Aiming at the nonlinearity, nonstationarity and multi-component coupling 
characteristics of reciprocating compressor vibration signals, an integrated feature extraction 
method based on the variational mode decomposition (VMD) and multi-fractal detrended 
fluctuation analysis (MFDFA) is proposed for a fault diagnosis for a reciprocating compressor 
valve. Firstly, to eliminate the noise interference, a novel VMD method with superior 
anti-interference performance was utilized to obtain several components of the quasi-orthogonal 
band-limited intrinsic mode function (BLIMF) from a strong non-stationarity vibration signal, and 
a consistent number K of BLIMFs was selected based on a novel criterion for all fault states. 
Secondly, the MFDFA method, which can describe the multi-fractal structure feature of 
non-stationary time series, was applied to analyze each BLIMF component, and the parameters of 
MFDFA were employed as the eigenvectors to reflect the structure characteristics and local scale 
behavior of the vibration signal. Then, the principal component analysis (PCA) was introduced to 
refine the eigenvectors for a higher recognition efficiency and accuracy. Finally, the vibration 
signals of four types of reciprocating compressor valve faults were analyzed by this method, and 
the faults were identified correctly by pattern classifiers of BTSVM and CNN. Further results 
comparison with other feature extraction methods verifies the superiority of the proposed method. 
Keywords: fault diagnosis, reciprocating compressor valve, variational mode decomposition 
(VMD), multi-fractal detrended fluctuation analysis (MFDFA), principal component analysis 
(PCA). 

1. Introduction 

As general machinery, reciprocating compressor is widely used in petroleum and 
petrochemical industries, while due to its complex structure and many vulnerable parts, failures 
often occur and even lead to some severe consequences such as the production process termination 
and equipment destruction [1, 2]. According to the statistics, valve is one of the most core and 
vulnerability components, and it accounts for 60 % of the total failure rate of reciprocating 
compressors. Therefore, the valve fault diagnosis plays a significant role to guarantee the normal 
operating condition of reciprocating compressor. Vibration signals are widely used in the 
machinery fault diagnosis because they contain a lot of operating information. However, due to 
the nonlinearity, nonstationarity and multi-component coupling characteristics of reciprocating 
compressor valve vibration signals, an effective signal processing and information extraction 
methods are the key to the fault diagnosis process of a reciprocating compressor valve [3]. The 
traditional signal techniques, such as frequency-domain and time-domain statistical indicators, are 
not suitable for extracting the effective features from the vibration signals of reciprocating 
compressor valve faults [4].  

As a novel tool for analyzing a mechanical fault signal, the Empirical Mode Decomposition 
(EMD), Local Mean Decomposition (LMD) and other self-adaptive signal processing methods 
proposed by the relevant scholars have been used widely in the field of mechanical vibration fault 
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diagnosis [3-6]. Variational mode decomposition (VMD) is a new method of adaptive signal 
decomposition recently proposed by Dragomiretskiy and Zosso [7], which can decompose a 
complicated multi-component vibration signal into a set of modal functions with a limited 
bandwidth by solving the constrained variational model in the variational frame, and separate the 
frequency of each signal component. Compared with EMD and LMD, the VMD is a non-recursive 
processing method to solve the modal aliasing problem in the EMD which cannot correctly 
separate the components with similar frequencies due to the sampling frequency. Furthermore, the 
VMD is a number of adaptive Wiener filter banks, and thus it has more noise robustness and fast 
convergence [7-9]. In accordance with the advantages of VMD, it has been successfully utilized 
for extracting the fault features for nonlinear and non-stationary rub-impact signals [10], 
instantaneous detection of speech signals [8] and trends analysis of financial markets [11], etc. 
Therefore, VMD is an appropriate method to analyze reciprocating compressor valve vibration 
signals with the characteristics of nonlinearity and nonstationarity. 

As an effective method for feature extraction methods, fractal analysis [12, 13] is utilized to 
reveal the non-stationarity and discontinuity characteristics hidden in signals, which can reflect 
dynamic mechanisms corresponding to the different statuses of non-linear systems. Further studies 
show that the multi-fractal analysis [14, 15] presents the fractal singular probability distribution 
form of the signal and improves the elaboration degree of signal geometric features and local scale 
behavior, and has been used for a multiple singularity analysis [16]. With the development of the 
multi-fractal theory, Kantelhardt et al. proposed a multi-fractal detrended fluctuation analysis 
(MFDFA) method [17]. Compared with conventional multi-fractal method, it can eliminate 
sequence trend terms by DFA, which fully reveal the multi-fractal features hidden in  
non-stationary time series, and estimate the multi-fractal spectrum accurately [18]. The literature 
studies [16, 19-22] show that the multi-fractal singularity spectrum obtained by the MFDFA is a 
set of parameters which can describe the dynamic behavior of the multi-fractal time series more 
accurately. However, the choice criterion of MFDFA parameters is still non-uniform in standards. 
Some scholars choose only one single singular exponent as the multi-fractal singularity spectrum 
parameter to form the eigenvector, while other scholars select the singular exponent ߙାஶ, ିߙ ,(0)ߙஶ, ∆ߙ as the parameters of the multi-fractal singularity spectrum. Hence, the proper selection 
of parameters is very important to reflect the inherent information of multi-fractal spectrum and 
the dynamic behavior of time series. In this paper the multi-fractal singularity spectrum parameters 
are considered from two aspects, that is, singular exponent ߙ and multi-fractal spectrum ݂(ߙ), and 
it may realize the fault diagnosis of reciprocating compressor accurately. 

Owing to the characteristics of nonlinearity, non-stationarity and multi-component coupling, 
the vibration signal of the reciprocating compressor contains interference noise. Therefore, it is 
necessary to pre-process the original signal for reducing or eliminating the noise disturbance 
before a further analysis. The proposed feature extraction method combined with the self-adaptive 
decomposition and fractal analysis has become a hot topic in the field of fault diagnosis. Jia, et al. 
[23] presented an intelligent diagnosis of bearing based on the EMD and MFDFA. Liu [24] 
proposed a feature extraction method based on the LCD–TEO and MFDFA for a rolling-bearing 
fault diagnosis. Therefore, to extract more accurate multi-fractal eigenvectors, a feature extraction 
method combined with VMD and MFDFA is proposed in this paper. 

In this research, a novel feature extraction method based on the VMD and MFDFA is proposed, 
and its application for reciprocating compressor valve fault diagnosis is described. The remaining 
section of this paper is organized as follows: Section 2 introduces the principle of VMD and 
MFDFA. The method and procedures of feature extraction method are described in Section 3. The 
process of extracting features for different reciprocating compressor valve faults is presented in 
Section 4. Finally, the conclusion is outlined in Section 5. 
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2. VMD and MFDFA principles 

2.1. VMD algorithm 

VMD is a newly developed methodology for adaptive time-frequency analysis signal 
decomposition based on Wiener filtering, Hilbert transform, analytic signal and frequency mixing, 
etc. The decomposition process is essentially a special iteration solving variational model, and can 
non-cursively decompose a multi-component signal into a series of band-limited intrinsic mode 
functions (BLIMFS) [7].  

2.1.1. Variation model establishment 

In order to establish a variational model of signal decomposition, the VMD defines the intrinsic 
mode function (IMF) as the amplitude modulation-frequency modulation (AM-FM), as follows: ݑ(ݐ) =  ൯, (1)(ݐ)cos൫߮(ݐ)ܣ

where ܣ(ݐ) is the instantaneous amplitude of ݑ(ݐ) and ߮(ݐ) is the instantaneous phase of ݑ(ݐ), ߮(ݐ) is the reduction function that instantaneous frequency ߱(ݐ) = ݀߮(ݐ)/݀ݐ ≥ 0. 
Compared to ߮(ݐ), the variation of ܣ(ݐ) and ߱(ݐ) is more gradual that can be regarded as a 
harmonic signal of constant amplitude and frequency in a smaller time horizon. 

On the basis of this definition, the VMD assumes that the input signal(ݐ)ݔis composed of finite 
BLIMF components with different center frequencies and limited bandwidth, and transforms the 
signal decomposition problem into the variational model framework for processing. The minimum 
sum of the estimated bandwidths of each BLIMF component is sought under the constraint that 
the sum of the BLIMF components is equal to the input signal (ݐ)ݔ. The constraint variational 
model established by the VMD is as follows: 

min{௨ೖ},{ఠೖ} ൝ ฯ߲௧ ൬(ݐ)ߜ + ൰ݐߨ݆ ∗ ఠೖ௧൨ฯଶି݁(ݐ)ݑ
ଶ

ୀଵ ൡ ,
subject  to   (ݐ)ݑ = ,(ݐ)݂

ୀଵ
 (2) 

where ܭ  is the number of the BLIMF component, {ݑ} = ,ଶݑ ,ଵݑ} … {ݑ , and  {߱} = {߱ଵ, ߱ଶ, … , ߱} are frequency centers of ݑ(ݐ). (ݐ)ߜ is Dirichlet function, ∗ symbol is 
convolution symbol. 

2.1.2. Variation model solution 

In order to obtain the optimal solution of the above variational model, the VMD constructs the 
extended Lagrangian function ܮ({ݑ}, {߱}, ߣ) by introducing a quadratic penalty factor ߙ and 
Lagrangian multiplier (ݐ)ߣ, as shown in Eq. (3), the constraint problem is transformed into an 
unconstrained problem. Among them, the quadratic penalty factor can ensure the accuracy of 
signal reconstruction in the presence of Gaussian noise, while Lagrangian multiplier can guarantee 
the rigidity of the model constraints: 
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,{ݑ})ܮ {߱}, (ߣ =  ฯ߲௧ ൬(ݐ)ߜ + ൰ݐߨ݆ ∗ ൨(ݐ)ݑ ఠೖ௧ฯଶିݎ
ଶ + ะ(ݐ)ݔ −  (௧)ݑ

ୀଵ ะ
ୀଵ ଶ

ଶ
 

     + ൽ(ݐ)ߣ, (ݐ)ݔ −  (ݐ)ݑ
ୀଵ ඁ. (3)

On the basis of this, the alternating direction method of multipliers (ADMM) is used to update {ݑ}, {߱} and ߣ, the saddle point of the extended Lagrangian function is sought to be the optimal 
value of the variational model shown in Eq. (2), thus decomposing the input signal (ݐ)ݔ into ܭ 
BLIMF components. The VMD algorithm is a specific process shown in Fig. 1. 

 
Fig. 1. Flow chart of VMD algorithm 

2.2. MFDFA  

2.2.1. Method description 

For non-stationary time series ݔ, the process of MFDFA is as follows: 

ܻ(݅) = (ݔ − ,(ۧݔۦ ݅ = 1, 2, ⋯ , ܰ
ୀଵ , (4)

1) Construction of Signal Outlines  
where ۧݔۦ is the mean value of time series ݔ.  

Divide ܻ(݅) into ௦ܰ =  non-overlapping segments of equal length s. To take the full (ݏ/ܰ)ݐ݊݅
advantage of this series, repeat the same process from the opposite end. Consequently, 
2 ௦ܰ =    .segments are obtained altogether (ݏ/ܰ)ݐ݊݅
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 The least square method is used to fit the polynomial trend of 2 ௦ܰ =  segments, and (ݏ/ܰ)ݐ݊݅
then to calculate the variance: 

,߭)ଶܨ (ݏ = {ܻሾ(߭ − ݏ(1 + ݅ሿ − ߭)జ(݅)}ଶݕ = 1, 2, ⋯ , ܰ)௦
ୀଵ , (5) 

,߭)ଶܨ (ݏ = {ܻሾܰ − (߭ − ௌܰ)ݏ + ݅ሿ − ߭)    జ(݅)}ଶݕ = ௌܰ + 1, ௌܰ + 2, ⋯ , 2 ௌܰ),௦
ୀଵ  (6) 

where ܻ is the trend of the polynomial data of the ߭th segment. If the fitted polynomial trend is 
order ݉, then the trend process is (MF) DFAm. 

Calculate the mean value of the ݍth order fluctuation function: 

(ݏ)ܨ = ቐ 12 ௦ܰ ሾܨଶ(߭, ሿ/ଶଶேೞ(ݏ
జୀଵ ቑଵ/, (7) 

where ݍ is non-zero real numbers.  
4) If there is self-similarity of the time series ݔ, there is a power-law relationship between the 

mean (ݏ)ݍܨ of the ݍth fluctuation function and time scale ܨ :ݏ(ݏ) ∝  (), (8)ݏ

where ℎ(ݍ)  is the generalized Hurst exponent. If ݔ  is a multi-fractal time series, then the 
exponent ℎ(ݍ) will vary with ݍ; if ݔ is a single multi-fractal time series, then the exponent ℎ(ݍ) 
is a constant independent of ݍ.  

Analytically the relation between the generalized Hurst exponent ℎ(ݍ) obtained by Eq. (8) and 
the scaling exponent ߬(ݍ) obtained by the standard partition function as follows: ߬(ݍ) = (ݍ)ℎݍ − 1. (9) 

The multi-fractal singular exponent ߙ and multi-fractal spectrum ݂(ߙ) can be obtained by the 
Legendre transform: 

ߙ = ݍ݀(ݍ)߬݀ = ℎ(ݍ) + (ߙ)݂ (10) ,(ݍ)ℎᇱݍ = ߙݍ − (ݍ)߬ = ߙሾݍ − ℎ(ݍ)ሿ + 1. (11) 

2.3. MFDFA parameters 

The multi-fractal singular spectrum obtained by MFDFA method is a set of parameters which 
can describe the dynamic behavior of the multi-fractal time series. The singular exponent ߙ 
reflects the growth probability of the fractal in a small area. The singular spectrum ݂(ߙ) is the 
fractal distribution function of the singular exponent ߙ. The multi-fractal singular spectrum ݂(ߙ) 
has three characteristic points, namely the left and right end points and the extreme point. As a 
typical multi-fractal singular spectrum shown in Fig. 2, the MFDFA parameters are the left end 
point (ߙାஶ ஶିߙ) right end point ,((ାஶߙ)݂ ,  the width of the multi-fractal singular ,((ஶିߙ)݂ ,
spectrum ∆α = ஶିߙ −   . in the extreme pointߙ ାஶ, and the degree of inhomogeneityߙ

To evaluate the above proposed multi-fractal singular spectrum parameters, the multi-fractal 
singular spectrum of a normal state and valve plate fracture state vibration signals were given in 
Fig. 3, and the multi-fractal singular spectrum parameters were listed in Table 1. From Fig. 3 and 
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Table 1, we can see that shape and position coordinates of multi-fractal singular spectrum are 
different for two fault states, because the shape of the multi-fractal singular spectrum reflects the 
characteristics of the vibration signal probability distribution apparently. Based on the above 
discussion, the six-dimensional eigenvector (ߙାஶ, ݂(ߙାஶ), ߙ, ିߙஶ, ݂(ିߙஶ), ∆α) composed of 
three feature points of the multi-fractal singular spectrum can reveal the inherent dynamics of 
non-stationary time series, so they are suitable as the characteristic parameters of the vibration 
signal. 

 
Fig. 2. Characteristic parameters of  

multi-fractal singular spectrum 

 
Fig. 3. Multi-fractal singular spectrum of cycle of 

normal state and valve fracture state vibration signals 

Table 1. Comparison of multi-fractal singular spectrum parameters 

Valve states Multi-fractal singular spectrum parameters ߙାஶ ݂(ߙାஶ) ߙ ିߙஶ ݂(ିߙஶ) ∆ߙ 
Normal state 2.0401 0.0937 1.7438 1.4955 0.2983 0.5447 

Valve plate fracture state 2.5587 0.2487 1.9591 1.6961 0.0303 0.8626 

3. Feature extraction method based on VMD and MFDFA 

The VMD can self-adaptively decompose a complicated multi-component signal into a series 
of BLIMFs which contain information about the specific frequency band of the original vibration 
signal, and the MFDFA is used to eliminate the influence of non-stationary trend of time series 
through a de-trend process. In this section, a feature extraction method based on VMD and 
MFDFA is proposed.  

The VMD can decompose each fault state vibration signal into a series of BLIMF components 
with a given ܭ value, and the ܭ value may vary for different fault states. Therefore, it is necessary 
to select a uniform parameter ܭ of VMD decomposition for all fault states.  

To solve this problem, the parameter ܭ in VMD is chosen adaptively by using the Minimum 
Redundancy Maximum Relevance (MRMR). The MRMR criterion is essentially a feature 
selection method, and its core idea is to use mutual information to calculate the correlation and 
the redundancy between feature parameters and classification targets. Theoretically, the ideal 
signal decomposition result should be that each BLIMF component has a large correlation with 
the original signal, so that the original signal characteristic is well inherited.  

Assuming VMD to decompose the vibration signal of the reciprocating compressor valve (ݐ)ݔ to obtain ܭ  number BLIMF components {ݑ} = ,ଵݑ} ,ଶݑ ⋯ , {ݑ , the correlation ܦ  of ܭ 
number BLIMF components can be expressed as: ܦ = ܭ1  ,ݑ)ܫ ௨∈{௨ೖ},(ݔ  (12)

 f

 f

 


0
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where ݑ)ܫ,  .(ݐ)ݔ and (ݐ)ݑ represents the mutual information between (ݔ
Similarly, the redundancy ܴ of the ܭ number BLIMF components can be expressed as: 

ܴ = ܭ)ܭ2 − 1)  ,ݑ൫ܫ ൯.      ௨,௨ೕ∈{௨ೖ},ஷݑ  (13) 

In summary, the MRMR criterion is obtained as follows [13]: max(ܯ), ܯ = ܦ −  (14) ,ܴߚ

where ܯ is the MRMR criterion function and ߚ is the adjustment factor. The correlation between 
the BLIMF component, and the original signal is more important than the redundancy, so in this 
paper ߚ is chosen to 0.6.  

The MFDFA can analyze each BLIMF component and obtain six multiple ܭ cells for one fault 
state eigenvector feature vectors. However, for the diagnosis of the reciprocating compressor 
valve, the enormous amount of eigenvectors may reduce its robustness, and even lead to a decline 
in the diagnostic accuracy. Therefore, the eigenvector needs to be reduced to extract highlighted 
information. The Principal Component Analysis (PCA) is an effective method to extract the 
feature of the high-dimensional data [25]. It can be used to replace the original variables by 
constructing a new comprehensive variable, which can effectively reflect the integrated 
information of the original variable.  

Based on the above discussion, the scheme of the fault feature extraction method is shown in 
Fig. 4, and the scheme of the method is briefly described as follows:  

 
Fig. 4. Fault diagnosis scheme 

1) For the vibration signals of different fault states, we employ the VMD method to decompose 
each signal into ܭ (ܭ are usually from 2 to 8) number of BLIMFs, and repeat the decomposition 
VMD method with another ܭ (ܭ are usually from 2 to 8); 

2) For the BLIMFs decomposed by VMD using one number ܯ ,ܭ values are calculated for 
BLIMFs of each fault state respectively, and the ܯ values are added in each fault state together, 
then this calculation is repeated for all parameters ܭ (usually from 2 to 8), and the best ܭ number 
is selected from BLIMFs which has the biggest sum of ܯ values for all fault states; 
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3) For ܭ (a special value has been selected) number of BLIMFs, the multi-fractal spectrum of 
each BLIMF component is calculated in one fault state, then the left end point(ିߙஶ, ݂(ିߙஶ)), 
right end point (ߙାஶ (0)ߙ extreme point ,((ାஶߙ)݂ , , and the width of multi-fractal singular 
spectrum ∆ߙ  are chosen to construct the six-dimensional eigenvector (ߙାஶ (ାஶߙ)݂ , (0)ߙ ,   ;cells for one fault state eigenvector ܭ and there are six multiple ,(ߙ∆ ,(ஶିߙ)݂ ,ஶିߙ  ,

4) The huge amount of cells in eigenvector will decrease the diagnosis accuracy, therefore, the 
PCA is utilized to reduce the dimension of previously extracted eigenvector, then the PCA 
dimension reduced eigenvector is taken as the final eigenvector.  

4. Fault diagnosis for reciprocating compressor valve based on VMD and MFDFA method 

In this study, the proposed VMD and MFDFA method is utilized to extract the fault feature of 
the valve vibration data from a two-stage double-acting reciprocating compressor of type 2D12 
(As shown in Fig. 5). The shaft power of reciprocating compressor is 500 kW, the piston stroke is 
240 mm, and the motor speed is 496 rpm.  

 
a) Original figure of reciprocating compressor 

 
b) Structural drawing of reciprocating compressor 

Fig. 5. Two-stage double-acting reciprocating compressor of 2D12 type  

Valve is one of the core components of reciprocating compressor, its safe and stable operation 
is of great significance for the reciprocating compressor. The 2D12 reciprocating compressor 
valve is a ring valve which is composed of valve seat, valve plate, valve lift limiter, spring, screw 
and nut. Due to the long-term effect of the alternating load, the valve with periodic reciprocating 
motion is more prone to a failure. This paper mainly investigates three kinds of reciprocating 
compressor valve failures: spring failure, valve plate fracture and valve plate gap. When the 
reciprocating compressor valve is abnormal, the performance of the vibration signal in the valve 
cover side direction will undergo a substantial change. Therefore, this paper extracted valve cover 
vibration signals as the analysis data. The vibration signals of four primary valve states are shown 
in Fig. 6 for two periods. 

In this paper, we employed the proposed VMD and MFDFA method to extract features for 
reciprocating compressor valves faults. Using the VMD to decompose the vibration signal of the 
reciprocating compressor valve faults, the key point is to select the number of parameters ܭ. We 
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used the MRMR to choose the appropriate parameter ܭ for the vibration signals of reciprocating 
compressor valves.  

 
Fig. 6. Vibration acceleration in four reciprocating compressor valve states 

 
Fig. 7. MRMR criterion function ܯ values 

Firstly, four different vibration signals of valve faults were decomposed by the VMD with ܭ = 2, 3, ..., 8, respectively. Then, according to Eq. (12) to (14) ܯ values of MRMR criterion 
function are calculated for BLIMFs in each fault state with a special ܭ value. The ܯ values for 
each fault state with different ܭ are shown in Fig. 7. It can be seen from Fig. 7 that the ܯ values 
tend to increase first and then to decrease with the parameter ܭ. When ܭ = 3, the sum of ܯ values 
for four different states reach the maximum. Therefore, in the following study, ܭ = 3 is chosen to 
decompose the valve fault signals. 

 
Fig. 8. BLIMFs of vibration acceleration in  

normal state 

 
Fig. 9. BLIMFs of vibration acceleration in  

valve plate fracture state 
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Fig. 10. BLIMFs of vibration acceleration in  

valve plate gap state 

 
Fig. 11. BLIMFs of vibration acceleration in  

spring failure state 

The vibration signals of four valve fault states were decomposed into three BLIMF 
components by VMD, and they were shown in Figs. 8-11 respectively. Afterwards, three BLIMF 
components in each fault state were calculated by the MFDFA to obtain the multi-fractal singular 
spectrums. In this paper, the scaling exponent ݍ in MFDFA was set as –10 to 10. In order to show 
the differences, the multi-fractal singular spectrum of each BLIMF component for four fault states 
as shown in Figs. 12-14 respectively.  

 
Fig. 12. Multi-fractal singular spectrums of  

BLIMF1 components in all states 

 
Fig. 13. Multi-fractal singular spectrums of  

BLIMF2 components in all states 

 
Fig. 14. Multi-fractal singular spectrums in of BLIMF3 components in all states 

It can be seen that the multi-fractal singular spectrum of each state is a parabola with downward 
opening, and the instantaneous amplitude of the multi-fractal singular spectrums under four fault 
states are distinguished from each other, and the position, span and size of the multi-fractal 
singular spectrum are also different. The multi-fractal singular spectrum index ߙ changes within 
a large range, and demonstrates that the vibration signal is a multi-fractal process. Besides, the 
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value of ∆ߙ, ∆݂ under normal condition is the smallest, while those of fault states are obviously 
higher than the normal state. In brief, the six-dimensional eigenvector (ߙାஶ, ݂(ߙାஶ), ିߙ ,(0)ߙஶ, ݂(ିߙஶ) ߙ∆ , ) of the multi-fractal singular spectrum, is able to reveal the differences of  
multi-fractal characteristics.  

In Table 2, we listed the six-dimensional eigenvector of three BLIMF components for each 
fault state in Figs. 12-14, and the numerical values of eigenvectors have a significant difference 
between four valve states. Then we utilize the PCA to extract the highlighted information, and the 
final fault eigenvector was shown in Table 3. The cells of eigenvector in Table 2 were reduced 
from 18 to 6 for each fault state, and it contributes for a higher recognition efficiency and accuracy. 

Table 2. Multi-fractal parameters of each BLIMF component in different valve states 

Valve states Multi-fractal parameters ߙାஶ ݂(ߙାஶ) ିߙ (0)ߙஶ ݂(ିߙஶ) ∆ߙ 

Normal state 
BLIMF1 1.8559 0.1644 1.5740 1.3428 0.3884 0.5131 
BLIMF2 1.8922 0.0797 1.5815 1.2689 0.2040 0.6233 
BLIMF3 1.8234 0.2714 1.5503 1.2102 0.4092 0.6133 

Valve plate fracture 
BLIMF1 2.5227 –0.0992 1.9543 1.6839 0.0954 0.8388 
BLIMF2 1.6836 –0.0979 1.3301 0.9827 0.1959 0.7009 
BLIMF3 1.8544 –0.2050 1.3104 0.8019 –0.0101 1.0525 

Valve plate gap 
BLIMF1 1.9940 0.0008 1.5264 1.2443 0.3788 0.7497 
BLIMF2 1.7502 0.0980 1.3867 1.1139 0.5932 0.6362 
BLIMF3 1.8354 0.1800 1.5057 1.1384 0.3682 0.6970 

Spring failure 
BLIMF1 2.8369 –0.3271 2.0045 1.8578 0.6212 0.9791 
BLIMF2 1.0954 –0.1606 0.5830 0.2464 0.1829 0.8490 
BLIMF3 1.0827 0.1442 0.6979 0.1635 0.0619 0.9192 

Table 3. Final state eigenvector in different valve states 
Valve states Final state eigenvector 

Normal –0.0357 –0.1070 0.1650 0.0340 –0.1293 0.0730 
Valve plate fracture –0.8435 0.0079 0.4011 –0.2479 0.4423 0.2400 

Valve plate gap 0.1960 0.0694 –0.2091 0.0571 0.0131 –0.1265 
Spring failure 1.8864 0.0035 –0.9158 –0.1818 –0.9707 0.1783 

Further evaluation is needed to assess the effectiveness of the proposed method based on the 
VMD and MFDFA, and this paper introduces the Binary Tree Support Vector Machine (BTSVM) 
and Convolutional Neural Network (CNN) methods to evaluate four valve fault eigenvectors. To 
test this, 150 eigenvector samples were selected from each valve fault respectively, and 100 were 
taken as training samples, other 50 as test samples. For the BTSVM, the radial basis kernel 
function was employed, and the kernel parameter ߛ = 3.57 and error penalty parameter ܥ = 1.85 
were optimized by the genetic algorithm. The CNN is made up of an input layer, convolution layer, 
sampling layer, full connection layer and output layer [26, 27]. The size and number of 
convolution kernel and the sampling width of CNN have an important influence on the fault 
classification results. Therefore, according to the study of the eigenvector data, the convolution 
kernel size is set as 2×1, the number of convolution kernel is as 8, the sampling width is as 2×1, 
the number of neurons in the full connection layer as 8 is based on the experience and constant 
experimentation. Meanwhile, the weights and bias of the model network are initialized to a random 
number between 0 and 1. For each fault state, 50 samples were recognized by BTSVM and CNN 
respectively, and the results are shown in Table 4.  

To compare the superiority of this feature extraction method, the same number of training and 
test samples was extracted by other four methods including EMD-MFDFA and PCA, Wavelet 
packet-MFDFA and PCA, MFDFA and PCA, and VMD-MFDFA, and then recognized using the 
BTSVM and CNN. The recognition results are also listed in Table 4. 
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Table 4. Recognition accuracy of comparison between different methods 

Feature 
extraction 
method 

Recognition accuracy (%) of valve states Total accuracy 
(%) Normal Spring 

failure 
Valve plate 

fracture 
Valve plate 

gap 
BT 

SVM CNN BT 
SVM CNN BT 

SVM CNN BT 
SVM CNN BT 

SVM CNN 

VMD-MFDA 
and PCA 98 100 96 98 100 98 98 100 98 99 

EMD-MFDFA 
and PCA 96 98 92 94 96 96 90 92 93.5 95 

Wavelet packet-
MFDFA and 

PCA 
92 92 90 92 92 94 90 90 91 92 

MFDFA and 
PCA 90 90 88 90 90 92 90 92 89.5 91 

VMD-MFDFA 94 94 90 92 94 96 90 90 92 93 

The results show that both the accuracy in each state and the total accuracy of the proposed 
method are better than those of four other feature extraction methods under the condition of the 
same finite number of samples. Feature vectors extracted by VMD-MFDFA and PCA, the  
EMD-MFDFA and PCA and Wavelet packet-MFDFA and PCA are better than those achieved by 
the MFDFA and PCA from the result of recognition rate, so it is necessary to combine the  
self-decomposition method with MFDFA for resisting noise interference and highlighted 
information extraction, while the VMD is more superior method than the EMD and Wavelet 
packet for these fault vibration signals according to the better recognition rate. From Table 4, we 
also see that the fault recognition rates of VMD-MFDFA without PCA are lower than those of the 
proposed method, so it validates the necessity of using PCA in this method. Through the 
comparative researches above, the proposed method is the superior feature extraction method to 
diagnosis faults of reciprocating compressor valve effectively and accurately. 

5. Conclusions  

According to the nonlinearity, nonstationarity and multi-component coupling characteristics 
of reciprocating compressor vibration signals, this paper presents a novel feature extraction 
method based on the VMD and MFDFA, and it is applied for the fault diagnosis of reciprocating 
compressor valve faults.  

1) In the proposed method, a novel VMD method was employed to eliminate the noise 
interference, which outperforms the traditional time frequency analysis method such as the EMD 
and Wavelet packet for the reciprocating compressor vibration signals. 

2) After the BLIMF components being characterized by the MFDFA method, the PCA was 
employed to refine the final eigenvector, and it indeed has a higher recognition efficiency and 
accuracy. 

3) This method was applied for the fault diagnosis of reciprocating compressor at different 
valve states, and it demonstrates superior recognition results through the comparison with other 
feature extraction methods.  
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