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Abstract. This paper proposes the algorithms for optimization of Remote Core Locking (RCL) 
synchronization method in multithreaded programs. The algorithm of initialization of RCL-locks 
and the algorithms for threads affinity optimization are developed. The algorithms consider the 
structures of hierarchical computer systems and non-uniform memory access (NUMA) to 
minimize execution time of RCL-programs. The experimental results on multi-core computer 
systems represented in the paper shows the reduction of RCL-programs execution time. 
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1. Introduction 

Currently distributed computer systems (CS) [1] are large-scale and include multiple 
architectures. These systems are composed of shared memory multi-core compute nodes (SMP, 
NUMA systems) equipped by universal processors as well as specialized accelerators. System 
software must consider the large scale, multiple architectures and hierarchical structure. Parallel 
programs for multi-core CS are multithreaded in most cases. The software must ensure linear 
speedup with a large amount of threads. Thread synchronization while accessing to shared data 
structures is one of the most significant problem in multithreading programming. The existing 
approaches for thread synchronization include locks, lock-free algorithms and concurrent data 
structures [2] and software transactional memory [3]. 

The main drawbacks of lock-free algorithms and data structures are the limited application 
scope and high complexity of development of programs [2, 4, 5]. Furthermore, the development 
of lock-free algorithms and data structures includes the problems, connected with ABA problem 
[6, 7], poor performance and restricted nature of atomic operations. Software transactional 
memory nowadays have a variety of issues and does not ensure sufficient performance of 
multithreaded programs and is not applied in common real applications for now. 

Conventional approach for synchronization by lock-based critical sections is still the most 
widespread. Locks are simple in usage and ensure the acceptable performance. Furthermore, the 
most of existing multithreaded programs utilizes lock-based approach. Thereby scalable 
algorithms and software tools for lock-based synchronization is very important today. Lock 
scalability depends on resolutions of the problems, connected with access contention of threads 
and locality of references. Access contention arises when multiple threads access to a critical 
section, protected by one lock. In the terms of hardware, it leads to the huge load to the data bus 
and cache memory inefficiency.  

The main approaches for scalable lock implementations are CAS spinlocks [8], MCS-locks 
[9], Flat combining [10], CC-Synch [11], DSM-Synch [11], Oyama lock [12]. Some of the existing 
works also includes the methods for localization access to cache memory [10, 13-15]. The works 
[14, 15] are devoted to concurrent data structures development (lists and hash tables) based on 
critical section execution on dedicated processor cores. The paper [13] propose universal hardware 
solution, which includes the set of processor instructions for transferring the ownership to a 
dedicated processor core. Flat Combining [10] refers to software approaches and suggests the 
server threads (all the threads become server threads by order), which execute critical sections. 

This paper considers Remote Core Locking (RCL) method [16, 17]. RCL minimizes execution 
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time of existing programs thanks to critical path reduction. This technique assumes replacement 
of high-load critical sections in existing multithreading applications to remote functions calls for 
its execution on dedicated processor cores (Fig. 1). 

The current implementation of RCL has several drawbacks. There is no memory affinity for 
NUMA systems. The latency of RCL-server addresses to the shared memory areas is essential for 
the execution time of a program. Memory allocation on the NUMA-node, which is not local to the 
node, on which RCL-server is running, leads to severe overheads when RCL-server addresses to 
the variables allocated on remote nodes. RCL also has no mechanism of automatic selection of 
processor cores for server thread and working threads with considering the structure of computer 
system and existing affinity. The processor affinity greatly effects on the overheads caused by 
localization of access to the global variables. Therefore, user threads should be executed on the 
processors cores, located as more “close” to the processor core of RCL-server. In the existing RCL 
implementation user have to choose processor core for RCL-server and working threads by hands. 
Thus, the tools for automation of this procedure is the actual problem. 

This work proposes the algorithm of RCL-locks initialization, which realizes memory affinity 
to the NUMA-nodes and RCL-server affinity to the processor cores, and the algorithm of 
sub-optimal affinity of working threads to the processor cores. The algorithms consider the 
hierarchical structure of multi-core CS and non-uniform memory access in NUMA-systems to 
minimize critical sections execution time. 

 
Fig. 1. Remote core locking (RCL) 

2. RCL optimization algorithms 

Let there is multi-core CS with shared memory, including ܰ processor cores: ܲ = ሼ1, 2, … , ܰሽ. 
Computer system has hierarchical structure, which can be described as a tree, comprising ܮ levels 
Fig. 2. Each level of the system is represented by individual type of structural elements of CS 
(NUMA-nodes, processor cores and multilevel cache-memory). We introduce the notation:  ܿ௟௞ – the number of processor cores, owned by childs of an element ݇ ∈ ሼ1, 2, … , ݊௟ሽ from the 
level ݈ ∈ ሼ1, 2, … , ሽܮ ݎ ; = ,ሺ݈݌ ݇ሻ  – the first direct parent element ݎ ∈ ሼ1, 2, … , ݊௟ିଵሽ  for an 
element ݇, located on the level ݈; ݉ – the number of NUMA-nodes of multi-core CS; ݆ = ݉ሺ݅ሻ – 
number ݆ ∈ ሼ1, 2, … , ݉ሽ of NUMA-node, containing a processor core ݅; ݍ௜ – the set of processor 
cores, belonging to the NUMA-node ݅. 

For the memory affinity optimization and RCL-server processor affinity optimization we 
propose the algorithm RCLLockInitNUMA of initialization of RCL-lock Fig. 3(a). The algorithm 
considers the non-uniform memory access and is performed during the initialization of RCL-lock. 

On the first stage (lines 2-10) we compute the number of cores which is not busy by the  
RCL-server and used on each of NUMA-node. Further (lines 12-18) we compute the summary 
number of NUMA-nodes with the RCL-servers. If there is only one such node, we set the memory 
affinity to this node (lines 19-21). The second stage of the algorithm (lines 23-34) includes the 
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search of sub-optimal processor core and the affinity of RCL-server to it. If there is only one not 
busy by RCL-server processor core in the system, set the affinity of the RCL-server to the next 
already occupied processor core (lines 23-24). One core is always free to run working threads on 
it. If there are more than one free processor core in the system, we search the least busy  
NUMA-node (line 26) and set the affinity of RCL-server to the first free core in this node  
(lines 27-32). The algorithms are finished by call of function of RCL-lock initialization with 
selected affinity. 

 
Fig. 2. An example of hierarchical structure of multi-core CS ܰ ܮ ,8 = = 5, ݉ = 2, ܿଶଷ ;ሺ3݌ ,2 = 4ሻ = 2, ݉ = 2, ݉ሺ3ሻ = 1 

 
Fig. 3. Algorithms RCLLockInitNUMA and RCLHierarchicalAffinity 

RCLLockInitNUMA RCLHierarchicalAffinity 
1 /* Compute the number of free cores. */ 1 if ISREGULARTHREAD(thr_attr) then 
2 node_usage[1, …, m] = 0 2   core_usage[1, …, N] = 0 
3 nb_free_cores = 0 3   for i = 1 to N do 
4 for i = 1 to N do 4     if ISRCLSERVER(i) then 
5   if ISRCLSERVER(i) then 5       nthr_per_core = 0 
6     node_usage[m(i)] = node_usage[m(i)] + 1 6       l = L 
7   else 7       k = i 
8     nb_free_cores = nb_free_cores + 1 8       core = 0 
9   end if 9       /* Search for the nearest core. */ 
10 end for 10       do 
11 /* Try to set memory affinity to the node. */ 11         /* Find the first covering element. */ 
12 nb_busy_nodes = 0 12         do 
13 for i = 0 to m do 13           clk_prev = clk 
14   if node usage[i] > 0 then 14           k = p(l; k) 
15     nb busy nodes = nb busy nodes + 1 15           l = l – 1 
16     node = i 16         while clk = clk_prev or l = 1 
17   end if 17         /* When the root is reached, increase 
18 end for 18              the number of threads per core. */ 
19 if nb_busy_nodes = 1 then 19         if l = 1 then 
20   SETMEMBIND(node) 20           nthr_per_core = nthr_per_core + 1 
21 end if 21           obj = i 
22 /* Set the affinity of RCL-server. */ 22         else 
23 if nb_free_cores = 1 then 23           /* Find the first least busy core. */ 
24   core = GETNEXTCORERR() 24           for j = 1 to clk do 
25 else 25             if core_usage[j] ≤ nthr_per_core then 
26   n = GETMOSTBUSYNODE(node_usage) 26               core = j 
27   for i = 1 to qn do 27               break 
28     if not ISRCLSERVER(i) then 28             end if 
29       core = i 29           end for 
30       break 30         end if 
31     end if 31       while core = 0 
32   end for 32       SETAFFINITY(core, thr_attr) 
33 end if 33       core_usage[core] = core_usage[core] + 1 
34 RCLLOCKINITDEFAULT(core) 34       return 
  35     end if 
  36   end for 
  37 end if 

a b 
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For the optimization of thread affinity, we propose the algorithm RCLHierarchicalAffinity 
Fig. 3(b). The algorithm takes into account the structure of CS to minimize the execution time of 
programs with RCL. That algorithm is executed each time when parallel thread is created. 

On the first stage (line 1) we check if the thread is not RCL-server. For each of thread we 
search all the RCL-servers (lines 3-4) executed in the system. After that when first processor core 
with RCL-server is found, this core becomes the current element (lines 6-7) and we search the 
nearest free processor core for the affinity of created thread (lines 4-35). In the beginning of the 
algorithm processor core with no attached threads is the free core (line 5). On the first stage of the 
core search we find first covering element of hierarchical structure. Covering element includes 
current element and contains more number of processor cores than it (lines 12-16). When the 
uppermost element of hierarchical structure is reached we increment the minimal number of 
threads per core (the free core now is the core with more number of attached threads)  
(lines 19-21). When the covering element is found we search first free core in it (lines 24-29) and 
set the affinity of created thread to it (line 32). Wherein for this core the number of threads 
executed on it is increased (line 33). After the affinity of the thread is set the algorithm is finished 
(line 34). 

3. Experimental results 

The experiments were conducted on the nodes of computer clusters Oak and Jet of Center of 
parallel computational technologies of Siberian state university of telecommunications and 
information sciences. The node of Oak includes two quad-core processors Intel Xeon E5620. The 
ratio of rate of access to local and remote NUMA-nodes are 21 to 10. The node of cluster Jet is 
equipped by quad-core processor Intel Xeon E5420. On the computing nodes, the operating 
systems CentOS 6 (Oak) and Fedora 21 (Jet) are installed. The compiler GCC 5.3.0 was used. 

The benchmark performs iterative access to the elements of integer array of length ܾ = 5×108 
elements inside the critical sections, organized with RCL. The number of operations ݊  .݌/108 =
As the operation in the critical section we used the increment of a variable by 1. As the access 
patterns three patterns were used: sequential access (on each new iteration choose the element, 
following the previous one), strided access (choose the element with the index more by ݏ = 20 
than the previous one), random access (randomly choose the element). Number ݌ of parallel 
threads was varied from 2 to 7 (7 – number of not busy by RCL-server cores on the computing 
node) in the first experiment and from 2 to 100 in the second one. The throughput ܾ =  of the ݐ/݊
structure was used as an indicator of efficiency (here ݐ is time of benchmark execution). 

We compared the efficiency of the algorithms RCLLockInitDefault (current RCL-lock 
initialization function) and RCLLockInitNUMA. Also, we compared the affinity of the threads 
obtained by the algorithms RCLHierarchicalAffinity with other random arbitrary affinities.  

The Fig. 4 depicts the throughput ܾ of critical section with number ݌ of working threads. We 
can see that the algorithm RCLLockInitNUMA minimizes by 10-20 % the throughput of critical 
section at random access to the elements of test array and at strided access. In these access patterns 
data is not cached in the local cache of processor core, on which RCL-server is running. Therefore 
RCL-server address to the RAM directly, wherein the access rate depends on data location in local 
or remote NUMA-node. The effect is perceptible at the number of threads comparable to the 
number of processor cores Fig. 4(a), as like for greater number of threads Fig. 4(b) and 
significantly do not change when the number of threads is changing. The fixed affinity of threads 
to processor cores insignificantly affect to the throughput. 

The Fig. 5 represent the experimental results of different affinities for the benchmark. The 
algorithm RCLHierarchicalAffinity significantly increases critical section throughput. The effect 
of the algorithms depends on number of threads (up to 2.4 times at ݌ = 2, up to 2.2 times at ݌ = 3, 
up to 1.3 times at ݌ = 4, up to 1.2 times at ݌ = 5 and an access pattern (up to 1.5 times at random 
access, up to 2.4 times at sequential access and up to 2.1 times at strided access). 
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a) 

 
b) 

Fig. 4. Efficiency of the algorithms of RCL-lock initalization, cluster Oak. ܽ– ݌ = 2,…, 7,  ܾ– ݌ = 2,…, 100. 1 – RCLLockInitNUMA, sequential access, 2 – RCLLockInitDefault,  
sequential access, 3 – RCLLockInitNUMA, strided access, 4 – RCLLockInitDefault, strided access,  

5 – RCLLockInitNUMA, random access, 6 – RCLLockInitDefault, random access 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 5. Threads affinity efficiency comparison, cluster Oak. ܽ– ݌ = 2, ܾ– ݌ = 3, ܿ– ݌ = 4, ݀– ݌ = 5.  
 – RCLLockInitDefault, random access,  – RCLLockInitDefault, sequential access, 

 – RCLLockInitDefault, strided access,  – RCLLockInitNUMA, random access, 
 – RCLLockInitNUMA, sequential access,  – RCLLockInitNUMA, strided access, 

 – working thread,  – RCL-server,  – thread allocating the memory 

4. Conclusions 

We proposed the algorithm RCLLockInitNUMA of initialization of RCL-lock with 
considering the non-uniform memory access in multi-core NUMA-systems and the algorithm 
RCLHierarchicalAffinity of sub-optimal thread affinity in hierarchical multi-core computer 
systems. The algorithm RCLLockInitNUMA increases by 10-20 % at the average the throughput 
of critical sections of parallel multithreaded programs based on RCL at random access and strided 
access to the elements of arrays on the NUMA multi-core systems. The optimization is reached 
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by means of minimization of number of addresses to remote memory NUMA-segments. The 
algorithm RCLHierarchicalAffinity increases the throughput of critical section up to 1.2-2.4 times 
for all access templates on some computer systems. The algorithms realize the affinity with 
considering all the hierarchical levels of multi-core computer systems. The developed algorithms 
are realized as a library and may be used to minimize existing programs based of RCL. 
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