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Abstract. Vibratory fatigue has been indicated to be one of the most frequently encountered 
problems in engineering practice. And it is inevitable that the mechanical components of machine 
are excited by random signals. Most of the random vibrations in nature contain non-Gaussian 
components. In order to reduce the failure and economic losses which is caused by vibration, 
random vibration testing is usually conducted in laboratory to verify whether the components can 
survive a particular random vibration or to identify weaknesses of items. In this paper, the 
vibratory fatigue damages of Gaussian random signals and non-Gaussian random signals to a 
particular system are discussed. The process and difference are illustrated by using a case study. 
Keywords: damage analysis, non-Gaussian, PSD, vibration testing, response. 

1. Introduction 

Normally, it is inevitable that the mechanical components of machine are excited by random 
signals in field [1]. And vibratory fatigue has been indicated to be one of the most frequently 
encountered problems in engineering practice [2]. In order to reduce the failure and economic 
losses which is caused by vibration, random vibration testing is usually conducted in laboratory 
to verify whether the components can survive a particular random vibration or to identify 
weaknesses of items. But the study has illustrated that the signal measured in field environment is 
non-Gaussian vibration, especially in the road transportation domain [3]. W. H. Connon and 
D. Charles points out that when vehicles are running on irregular roads, the random excitation 
placed on vehicles is often non-Gaussian. However, the most random vibration excitation in 
laboratory is modeled as Gaussian process conventionally. When the probability density function 
(PDF) is taken into consideration, it is obvious that the characteristic described by kurtosis and 
skewness between Gaussian signals and non-Gaussian signals are different. Skewness is used to 
describe the extent that the peak of the probability density function (PDF) deviates from the mean 
value. The kurtosis is introduced to describe the overall shape of a probability density function 
(PDF) and is the main variable used to identify the differences from Gaussian signals to 
non-Gaussian signals. In this paper, the kurtosis is only considered to identify the differences from 
Gaussian signals to non-Gaussian signals. The PDF of Gaussian signal is constant and the value 
is equal to 3. While compared to Gaussian signal, the probability density function (PDF) of 
non-Gaussian signal with kurtosis greater than 3, wider on both sides of the tail and the tail value 
is larger than the Gaussian signal, is called super-Gaussian signal. Non-Gaussian signal whose 
kurtosis is less than 3 is called the sub-Gaussian signal, the probability density function on both 
sides of the tail is narrower and the tail value of the signal is smaller in terms of Gaussian [16]. 
The results show that most of the fatigue damage is mainly caused by the amplitude between 2ߪ 
and 4[9] ߪ. Compared to Gaussian signal the tail of measured data’s PDF is wider and the middle 
is sharper [4],which will lead to totally different accumulated fatigue damage because most fatigue 
damage is caused by 2 to 4[5] ߪ.  

In this paper, the fatigue damages of Gaussian random signals and non-Gaussian random 
signals to a particular system under two vibrational inputs are discussed. No matter the two inputs 
are Gaussian random signals and non-Gaussian signals, the rain flow counting method is used to 
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count the fatigue. The process and difference are illustrated by using a case study. 

2. Non-Gaussian signal 

Gaussian stochastic process is defined as the amplitude ܺ(ݐ), and the PDF (ݔ) is shown as: 

,ݔ) (ݐ = (ݐ)ߪߨ2√1 exp ቊ− ሾݔ − (ݐ)ଶߪሿଶ2(ݐ)ߤ ቋ, (1)

where, the mean (ݐ)ߤ and the standard deviation (ݐ)ߪ are functions of time t. 
If a Gaussian process is ergodic, the mean (ݐ)ߤ and the standard deviation (ݐ)ߪ are constant 

to the variable ݐ and the amplitude PDF function is completely determined by (ݐ)ߤ and (ݐ)ߪ. The 
Eq. (1) can be simplified as: 

(ݔ) = ߪߨ2√1 exp ቊ− ሾݔ − ଶߪሿଶ2ߤ ቋ. (2)

Just the zero-mean Gaussian process is considered because a nonzero mean Gaussian signal 
can be obtained from a zero-mean Gaussian signal. When a Gaussian process has a zero mean 
value and is ergodic, the PDF (ݔ) of the instantaneous values (ݔ)ݔ that are realized over a long 
period of time is: 

(ݔ) = ߪߨ2√1 exp ቆ− ଶቇ, (3) ߪଶ2ݔ

where ߪ is standard deviation. And ߪଶ can be given by: 

2 ߪ = ሿ(ݐ)2ݔሾܧ = න ∞ݔ݀(ݔ)2ݔ
−∞ . (4)

According to Pasval’s theorem [15], for large durations ܶ, the variance ߪଶ is: 

2 ߪ ≈ 1ܶ න ܶݐ2݀ݔ
0 = න ∞݂݀(݂)ݔݔܩ

0 , (5)

where ܩ௫௫(݂) is the single-sided PSD. And It shows that PDF function of the zero mean Gaussian 
stochastic process can be fully determined, which means that the zero mean Gaussian stochastic 
process can be completely described by the PSD function. 

The second-order or higher-order statistics are called higher-order statistics. One useful 
method to establish how well a random process can be described by the higher order moments of 
Gaussian distribution computed. The higher-order statistics of the Gaussian distribution can be 
calculated by the second order moment as [18]: 

݉݇ = ൜ሾ1×3×5 ⋯×(݇ − 1)ሿ݇ߪ, ݇ = 2,4, ⋯ ,0, ݇ = 1,3, ⋯ . (6)

When it comes to non-Gaussian process, the higher order moments of the process defined as: 
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݉݇ = න ݔ݀(ݔ)݇ݔ =∞
−∞

1ܰ  ݆ܰ݇ݔ
݆=1 . (7)

According to Eq. (7), the mean value ߤ which is equal to ݉1 can be calculated by: 

= ߤ න ∞ݔ݀(ݔ)ݔ
−∞ = 1ܰ  ݆ܰݔ

݆=1 = ݉1. (8)

When the mean value ߤ is zero, the variance ߪଶ is: 

2 ߪ = න൫ݔ − ∞ݔ݀(ݔ)൯2 ߤ
−∞ = 1ܰ ൫݆ݔ − ൯2ܰ ߤ

݆=1 = 1ܰ  2݆ܰݔ
݆=1 = ݉2. (9)

It is difficult to find the definite distribution function to describe the amplitude probability 
distribution of non-Gaussian random signal [19, 20]. In order to quantitatively characterize 
non-Gaussian process, the normalized third order moment called skewness and the normalized 
fourth order moment called kurtosis are usually used [16]: 

ܵ = න ൬ݔ − ൰ஶ ߪ ߤ
ିஶ

ଷ ݔ݀(ݔ) = 1ܰ  ൬ݔ − ൰ଷே ߪ ߤ
ୀଵ = 1ܰ  ଷ ߪଷݔ

ே
ୀଵ = ݉ଷߪ ଷ , (10)

ܭ = න ቀݔ − ߪߤ ቁସஶ
ିஶ ݔ݀(ݔ) = 1ܰ  ൬ݔ − ൰ே ߪߤ

ୀଵ
ସ = 1ܰ  ସ ߪସݔ

ே
ୀଵ = ݉ସߪ ସ , (11)

where ܵ is the skewness and ܭ is the kurtosis. 
Only the third order moment and the fourth order moment are considered in this paper. For a 

strictly Gaussian distributed signal, the skewness is 0 and the kurtosis is 3. Any deviation from 
these indicates that the process is non-Gaussian [21, 22]. From the perspective of simulating 
non-Gaussian vibration, kurtosis is a more important parameter than skewness, because it 
represents the probability of peak values in time history.  

3. Numerical case study 

In the following section, a case is used to compare the damage of a multi-degree-of-freedom 
system excited by Gaussian signal and measured non-Gaussian signal, respectively. In this paper, 
two input signals are taken as examples. The measured Gaussian signals and the Gaussian signals 
with the same PDF values are taken into account to compare the damage of the simulated 
multi-degree-of-freedom system. In Fig. 1, a measured non-Gaussian random signal whose 
kurtosis value is 7.3605 and the Gaussian signal transformed from the measured non-Gaussian 
random signal are shown. 

The measured random signal can hardly be simulated by ordinary random vibration controller 
because the kurtosis equals 7.3605. The damage calculated from the measured non-Gaussian 
signal is compared to the damage computed from Gaussian signal, which have the same PSD. In 
order to obtain the damage calculated from Gaussian signal whose PSD is the same to the 
measured signal. PSD of the field data is calculated using pwelch method with 8192 points 
hanning window. Gaussian signal is generated using a smoothed PSD (see Fig. 2). Red line is the 
smoothed PSD from the field signal’s PSD (blue line). The PSD of Gaussian signal, which is 
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synthesized from smoothed PSD, is shown as green line (see Fig. 2). The PDF of field data and 
synthesized Gaussian signal with the same mean value and variance are shown in Fig. 2. 

 
Fig. 1. Field signal 

 
Fig. 2. PDF of synthesized Gaussian signal 

When the structure is subjected to vibration, we can begin to undertake the fatigue analysis of 
the structure if the weak point of structural and available fatigue theory has been determined. It is 
known that the structural weak point vibration response and structural fatigue theory is necessary 
to analyze the structure fatigue. In this paper, the field device is simulated as a  
four-degree-of-freedom system (as Fig. 3) for vibration fatigue analysis, and the parameter is 
shown as Table 1. It is assumed that the device is excited by two random vibration signals in the 
field environment. The inputs are working on ݉1, ݉4 and ݉3 is the weakest point. 

The response on ݉3 of the system can be computed when the inputs applied on ݉1 and ݉4 
are field data and synthesized Gaussian signal, respectively (see Fig. 3). For a structure, when the 
vibration response is available, the fatigue life can be evaluated according to the fatigue theory. 
According to the above-mentioned response, it is analyzed by rain flow counting method. The 
result when the input is Non-gaussian signal is shown as Fig. 4. And the result when the system 
is excited by synthetic gaussian signal is described as Fig. 5. It is obvious that the response of 
Non-gaussian signal will generate greater damage. 

 
Fig. 3. Four-degree-of-freedom system 
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Table 1. The parameter of the system 
Parameter Values Unit ݉1 10 kg ݉2 3 kg ݉3 8 kg ݉4 15 kg ݉௦ 50 kg ݇ଵ, ݇ଶ, ݇ଷ, ݇ସ, ݇ହ 10000 N/m ݇௦ 100000 N/m ܿଵ, ܿଶ, ܿଷ, ܿସ, ܿହ 10 Ns/m ܿ௦ 50 Ns/m 

 
Fig. 4. Damage analysis of non-Gaussian random vibration 

 
Fig. 5. Damage analysis of Gaussian random vibration 

4. Conclusions 

In this paper, the fatigue damages of Gaussian random signals and non-Gaussian random 
signals to a particular system under two vibrational inputs are discussed. As what can be seen in 
the case, it is not difficult to find that the fatigue damage of the non-Gaussian signal to the multi-
degree-of-freedom system exceeds the fatigue damage of the Gaussian signal. 
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