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Abstract. Empirical mode decomposition (EMD) is an adaptive, data-driven technique for 
processing and analyzing various types of non-stationary vibrational signals. EMD is a powerful 
and effective tool for signal preprocessing (denoising, detrending, regularity estimation) and 
time-frequency analysis. This paper discusses pattern discovery in signals via EMD. New 
approaches to this problem are introduced. In addition, the methods expounded here may be 
considered as a way of denoising and coping with the redundancy problem of EMD. A general 
classification of intrinsic mode functions (IMFs) in accordance with their physical interpretation 
is offered and an attempt is made to perform classification on the basis of the regression theory, 
special classification statistics and a clustering algorithm. The main advantage of the suggested 
techniques is their capability of working automatically. Simulation studies have been undertaken 
on multiharmonic vibrational signals. 
Keywords: empirical mode decomposition, vibrational signals, intrinsic mode function, signal 
preprocessing, pattern discovery, classification, regression theory, classification statistics. 

1. Introduction 

Empirical mode decomposition (EMD) [1] is a technique specially developed for analyzing 
various kinds of non-stationary signals. Its uniqueness, power and effectiveness have already been 
demonstrated by its successful applications to many important problems encountered in 
processing biomedical, financial, geographical, acoustic, vibrational, hydroacoustic and other 
types of signals. The chief advantage of EMD is its adaptivity. In other words, the decomposition 
is performed in accordance with the local features (extrema, zero-crossings, inflection points) and 
internal structure (various kinds of modulation, presence of noise, etc.) of a signal. EMD has 
already been demonstrated to be very efficient for such ubiquitous tasks as denoising, detrending, 
time-frequency analysis, multiresolution and multiband analysis. Due to their high adaptivity all 
EMD-based methods can provide better results than their multiple existing alternatives (wavelet 
analysis, singular value decomposition). Aside from the advantages outlined above, this crucial 
property (adaptivity) allows one to interpret components, extracted as a result of EMD, in terms 
of different knowledge domains. 

EMD represents an arbitrary signal with finite energy as a collection of IMFs and a final 
residual (either a constant or the mean trend). The main idea behind the whole decomposition 
procedure is that at each step a new IMF, which is a detailed component highlighting 
high-frequency effects, is extracted. Along with this IMF, a new residual, highlighting 
low-frequency effects, is formed, and subsequently used for extracting the remaining IMFs. Thus, 
an IMF is a fast oscillating component reproducing high-frequency details, whereas a current 
residual is a slowly oscillating one (in comparison with an IMF), responsible for low-frequency 
details. Provided that a current residual has at least one maximum and one minimum, 
decomposition proceeds. Otherwise, the IMF extraction is terminated and a final monotonous 
residual is formed. The two necessary conditions a function must satisfy in order to be counted as 
an IMF are as follows [1]: 

1) The number of local extrema (maxima ܰ୫ୟ୶  and minima ܰ୫୧୬ ) and the number of  
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zero-crossings ௭ܰ of the function must be the same or differ at most by one: ܰ୫ୟ୶ + ܰ୫୧୬ = ௭ܰ or ܰ୫ୟ୶ + ܰ୫୧୬ = ௭ܰ ± 1. (1)

2) The local mean, defined as a half-sum of two envelopes, the first of which interpolates local 
maxima (upper envelope ܷ(݇)), and the second – local minima (lower envelope ܮ(݇)), must be 
equal to zero at any point: 0.5 ⋅ ሾܷ(݇) + ሿ(݇)ܮ = 0,    ݇ = 1, ܰ, (2)

where ܰ is signal length. Possible existing ways of interpolation (including the original spline 
method used in this paper) are explored in [1]. 

The key role in EMD is played by the sifting process, which is iterative and directed at 
extracting an IMF satisfying the two necessary conditions. While sifting components, those which 
do not have properties Eq. (1) and Eq. (2) are not taken into account. The number of iterations for 
each IMF depends on the symmetry of a current residual and a specially designed stopping rule. 
When decomposition is finished, a signal may be reconstructed including all the components 
derived or sometimes deliberately excluding some of them from consideration (for example, if 
they are redundant). In general, the summation index in the reconstruction formula does not have 
to vary over all possible values of indices (from the first to the last) but belongs to the so-called 
index set ܫ. This modification is intended to preserve those IMFs which represent typical patterns  
(to be discussed) of the observed signal. 

1.1. IMF classification 

Although much work on EMD and its applications to different signals has already been done 
[1, 3], a general classification for different kinds of obtained IMFs has not been introduced yet. 
Therefore, we would like to draw attention to this problem because not only does it have 
theoretical significance, but it also gives an opportunity to develop more effective techniques in 
order to cope with many problems of signal processing (pattern discovery, denoising, etc.). All 
IMFs may be divided into two big groups: 

• Significant IMFs – including noise-like IMFs and IMF-patterns; 
• Trend-like IMFs – including true trend-like IMFs and compensating (spurious) IMFs. 
Significant IMFs always have an exact origin (their appearance may be explained using the 

observed signal) and characterize signal’s internal structure and features inherent of a signal. 
According to the suggested classification, significant IMFs comprise noise-like IMFs and 
IMF-patterns. The former is caused exclusively by unwanted and contaminating noise in the 
original signal. Such IMFs are frequently dealt with since noise’s presence is almost inevitable in 
practice. This group of IMFs usually consists of several components each approximating noise 
with different accuracy. Due to a wide spectrum and oscillating nature, noise-like IMFs are found 
at initial decomposition levels, as follows from the dyadic filter bank structure [1]. It is quite 
obvious that such components are undesirable; nevertheless, their origin may be established and 
they may usually be identified. IMF-patterns, on the contrary, represent components connected 
with a useful (wanted) signal and their extraction is one of the main objects of EMD. These 
patterns often contain unique distinguishing information about the given signal and make this 
signal different from other similar ones.  

Trend-like IMFs always complete decomposition and have the lowest average frequencies 
among the extracted IMFs. They belong to a separate category of components because very often 
they have no physical interpretation or direct relation to the original signal, unlike the significant 
IMFs introduced above. If a signal has the mean trend, this trend may be extracted after analyzing 
such IMF types. For example, if we simulate a pure monoharmonic signal added to a slowly 
varying polynomial (the degree range being 3-5) and subject this mixture to EMD, we will obtain 
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true trend-like IMFs approximating this polynomial. 
Spurious trend-like IMFs, which may be also called compensating IMFs, are a result of EMD’s 

shortcomings and arise only for this reason. There are several main modifications of EMD [1], all 
of which may turn out to be responsible for such IMFs. The main reasons for their appearance are 
some negative effects of cubic spline interpolation (end effects, undershoots, overshoots), 
calculation errors, and inappropriate sifting criteria. Such IMFs must be removed because they do 
not usually carry any substantial information about a signal. What is more, they cause redundancy 
and may consume additional memory resources during computer processing. The name 
“compensating” implies that their sum is close to zero, therefore, they virtually compensate each 
other. In order to avoid them and prevent the distortion of the whole decomposition some 
preprocessing ought to be carried out. There are special techniques for suppressing large end 
oscillations – mirroring extrema, zero-padding, signal extension, etc. The sifting criterion should 
be selected very carefully. Also, it is possible to use other ways of interpolating extrema or 
construct one envelope connecting all maxima and minima instead of two separate ones. 

The example in Fig. 1 elucidates the new notions (IMF types) introduced for the purpose of 
understanding EMD’s performance in greater depth. The vibrational signal is a biharmonic one 
consisting of two monoharmonics with equal unit amplitudes and frequencies differing by a factor 
of 2. This frequency ratio has been chosen with the view of revealing the EMD’s dyadic filter 
bank structure. In the remainder of the paper we will assume that signals are embedded in additive 
noise which follows Gaussian distribution with mean zero and some standard deviation (here 
standard deviation is 0.1). 

After running EMD 10 IMFs and the final residual are obtained. The first six IMFs are  
noise-like. IMFs 7 and 8 in Fig. 1 are the corresponding monoharmonics appearing in  
frequency-descending order. These two monoharmonics are IMF-patterns since they contain 
information about the pure original signal. Finally, the last three components are compensating 
ones, their sum being very close to zero. They are meaningless since they do not provide any 
information about the signal but only cause redundancy. 

The proposed classification of IMFs is not only an attempt to replenish the insufficient amount 
of the existing EMD theory but also a powerful and reliable means of solving some very important 
practical goals: 1) Removing noise (denoising); 2) Discovering typical patterns; 3) Eliminating 
compensating IMFs and avoiding redundancy. 

 
Fig. 1. EMD of a biharmonic signal (the signal is plotted first) 

The problem of denoising has been addressed in a number of publications and several 
techniques have been tested. For example, EMD-thresholding, which acts to remove noise by 
analyzing IMF samples independently and either setting to zero those that are small in magnitude 
(hard-thresholding) or reducing the magnitudes of some samples attributed to noise, which we 
wish to remove (soft-thresholding). Furthermore, there is an energy estimation approach [1]. All 
of them require initial parameters which are often difficult to select accurately. Here we propose 
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new methods based on the classification above, special criteria and numerical identification of 
noise-like components. They are mostly devoid of any tuning, work automatically and may be 
deduced rigorously. So far, a wide range of pattern discovery techniques has been introduced  
[1, 3], but the vast majority of them are too specific and provide adequate results only in particular 
knowledge domains making it difficult for experts in other fields to adapt all these methods. 
Concerning redundant IMF removal, it has been addressed in [3] with an idea of parabolic (instead 
of spline) envelope interpolation and specifying the location of extrema. However, this method 
might prevent them from arising but it does not guarantee that they will not appear, in which case 
it will be necessary to recognize and remove them. Thus, in an attempt to offer a more effective 
and flexible solution of all these problems simultaneously we will try new methods based on the 
classification offered and the criteria covered in the previous section. 

1.2. Regression-based IMF classification 

In this section, we are going to offer an approach to pattern discovery partly borrowed from 
the regression theory and providing an opportunity of numerical identification of various kinds of 
IMF. Hence, it will be possible to determine the IMF’s type by means of a statistic specially 
designed for this purpose. This approach seems the most promising for further investigation 
among all the ones expounded in the present paper since it possesses the highest classification 
accuracy and may be deduced rigorously from some basic equations of EMD and statistics. 

The procedure begins by representing a signal’s model in the way corresponding to the 
standard classical regression problem: ݏ = ߚݔ + ݁, (3)

where ݏ denotes the vector containing samples of the original signal, ݔ is a matrix of regressors, ߚ is a vector of unknown coefficients, each specifying the weight of a particular regressor, ݁ is 
white Gaussian noise ܰ(0;   .(ଶߪ

Consider the connection between the extracted IMFs and the observed signal (originally 
introduced in [1]): 

(݇)ݏ =  ܿ(݇)ெିଵୀଵ + ெ(݇). (4)ݎ

The first term may be regarded as an approximation of the original noise since it has the largest 
average frequency and is most strongly affected by noise. Under this assumption, we arrive at: 

(݇)ݏ = ݁(݇) +  ܿ(݇)ெିଵୀଶ + ெ(݇). (5)ݎ

Now one more specification is required. It is known that EMD’s convergence has yet not been 
proven rigorously apart from some particular cases, which cannot be generalized. Even though the 
convergence problem, in a strict mathematical sense, is acknowledged to be one of the drawbacks 
of EMD, it is still possible to elaborate EMD and slightly reduce this problem. In view of these 
facts, convergence is usually understood in engineering sense, i.e. the maximum absolute 
difference between the original signal and the sum of all extracted components is a very small 
quantity, often indistinguishable from zero. Hence, one sensible approach to this problem is to 
introduce special coefficients for each IMF, which are calculated via the least-squares method. 
These weight coefficients aim at improving the accuracy of signal reconstruction: 

(݇)ݏ = ݁(݇) +  ܿ(݇)ெିଵୀଶߚ + ெ(݇), (6)ݎெߚ
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where ߚ is a vector of coefficients to be discovered. The equation above may take a more familiar 
vector-matrix form: ݏ = ߚܥ + ݁, (7)

where ܥ is a matrix whose columns store IMF samples (the number of columns is less by one than 
the number of components obtained after EMD because the first IMF, being noise approximation, 
is not included in this matrix). The least-squares estimate of vector ߚ is reduced to: ߚ෨ = (8) .ݏ்ܥଵି(ܥ்ܥ)

For model coefficients, it is possible to provide an interval estimate, i.e. to find the boundaries 
to which a particular regression coefficient is delimited with the given confidence probability ܲ 
(in our example, ܲ = 0.95). The boundaries of the confidence interval (ܫܥ) are defined as: ߚ ∈ ቂߚ෨ − ; ଵሽି(்ܥܥ)ఊඥሼݐ ෨ߚ + ଵሽቃ, (9)ି(்ܥܥ)ఊඥሼݐ

where ߚ, ߚ෨ are the true value of ݅th regression coefficient and its estimate, respectively, and ݐఊ 
is a fractile of ݐ-distribution. 

The next and final step is the most significant. All coefficients may be subjected to a statistical 
significance test as is often done in the classical regression problem: 

ଵܶ = หߚ෨หቄඥሼܸିଵሽ ⋅ ቅ, (10)ߪ

where ܸ is a covariance matrix of IMFs calculated as ܸ = ்ܥܥ ߪ ,  is an estimate of standard 
deviation of noise. It is necessary to consider two alternative hypotheses. One of them states that 
a coefficient is equal to zero (is statistically insignificant) – null hypothesis ܪ, whereas the other 
one states the opposite (nonnull hypothesis ܪଵ). Significance may be tested by the statistics given 
above, which has t-distribution if hypothesis ܪ is valid. However, in our case all coefficients are 
apriori significant because all components are included in signal reconstruction with non-zero 
weight coefficients. Thus, the null hypothesis is rejected. However, the results obtained after 
calculating Eq. (10) (Table 1) suggest that this statistic may be regarded as a classification statistics, 
assigning IMFs to one of the three groups and allowing us to achieve the aims of discovering 
patterns, denoising and eliminating spurious IMFs. In order to find a suitable estimate ߪො  for  
Eq. (10) it is possible to employ the one originally proposed in wavelet context and known as 
median absolute deviation (MAD): ߪ = 1.4826 ⋅ ሾ݉݁݀݅ܽ݊ሼ݁ − ݉݁݀݅ܽ݊ (݁)ሽሿ. (11)

The MAD estimator is robust against large deviations and should therefore reflect noise 
standard deviation (s.d.). The results of calculations for the multiharmonic signal (in Fig. 1) are 
given in Table 1.  

Judging from the results for ଵܶ, as seen in Table 1, an important conclusion may be drawn: the 
values of the statistics are significantly different for various IMF types – for IMF-patterns and all 
the rest (noise-like and trend-like) ones. On the basis of the values (shown in bold in Table 1) 
obtained for the 6th, 7th and 8th IMFs (which correspond to pure monoharmonics in the 
vibrational signal) we may declare that they belong to IMF-patterns, while all the rest are either 
noise-like or trend-like IMFs. Cluster-analysis [4] performs this classification automatically, 
which is another advantage of the whole method. For instance, the well-known ݇-means and EM 
algorithms are quite suitable here with the number of clusters equal to 2. In the end, two groups 
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(clusters) will be found to accord with IMF types. In some cases, for a more detailed classification, 
the number of clusters may be set at 3 in order to obtain three separate clusters containing  
IMF-patterns, noise-like IMFs and trend-like IMFs, respectively. The column containing CI 
lengths in Table 1 also requires attention since CI lengths are different for the considered types of 
IMFs. These lengths do not depend on a particular value of any coefficient see Eq. (9) and they 
are the smallest for IMF-patterns (equal to 0.002). Thus, this parameter may also be an attribute 
in the classification procedure. 

Table 1. ܫܥ parameters and ଵܶ values (the s.d. estimate is 0.2876) 
IMF No. ܫܥ ߚ lower boundary  ܫܥ upper boundary ܫܥ length ܸିଵ·103 ଵܶ·10-4 

2 0.956 0.945 0.967 0.022 7 0.166 
3 0.908 0.887 0.928 0.041 13 0.079 
4 0.894 0.861 0.928 0.067 21 0.047 
5 0.987 0.980 0.994 0.014 5 0.256 
6 0.998 0.997 0.999 0.002 0.2 4.933 
7 1.002 1.001 1.003 0.002 0.3 4.628 
8 0.999 0.998 1.000 0.002 0.3 4.468 
9 1.001 0.967 1.034 0.067 21 0.059 
10 1.029 0.974 1.084 0.110 33 0.039 
11 1.049 0.864 1.233 0.369 112 0.012 

2. Conclusions 

Finally, we will now draw together the ideas discussed above in order to describe the outcome 
and relevance of the research. A new IMF classification algorithm for an arbitrary decomposition 
has been offered, which allows one to assign all the extracted components to different groups 
depending on their physical interpretation and connection with noise, patterns or trend  
components. We employed the regression theory in order to classify components automatically. 
As a result, it is possible to perform pattern discovery in vibrational signals, denoising and 
eliminating spurious, redundant and computationally expensive compensating IMFs.  

Pattern discovery, denoising, removing compensating IMFs may be regarded as separate parts 
of the preprocessing and signal structure analysis. However, time-frequency analysis, carried out 
on the basis of Hilbert spectrum usually follows EMD. The relevance of this spectrum strongly 
depends on how accurately IMF preprocessing has been carried out. Provided that noise has been 
removed and spurious IMFs have been identified, Hilbert spectrum will be a powerful and reliable 
tool for analyzing a signal in time-frequency domain. Otherwise it may lead to completely 
erroneous and misleading conclusions about a true time-frequency distribution. After discovering 
typical patterns, they may be mapped via Hilbert spectrum to study their structure in a more 
detailed way. 
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