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Abstract. The dynamics of a shock-vibrating system is analyzed. The system consists of a pair of 
bodies of friction, one of which is under the effect of an external periodic force; the vibration of 
one of the bodies is limited by a rigid obstacle, and the hereditary-type dry friction forces during 
their interaction are taken into account. A numerical-analytical approach using the mathematical 
apparatus of the point mapping method is implemented to analyze the phase portrait structure of 
the mathematical model as a function of the characteristics of the sliding and state friction forces, 
as well as of the type and position of the vibration limiter. Based on the character of changes in 
the bifurcation diagrams, the authors have determined the main laws of changes in the motion 
regimes (occurrence of random complexity periodic motion regimes and possible transfer to chaos 
via the period doubling process) when changing the parameters. Analytical results with and 
without a vibration limiter are compared. 
Keywords: mathematical model, Poincare map, bifurcation diagram, time-dependent static 
friction, chaos. 

1. Introduction 

А. Yu. Ishlinskiy and I. V. Kregelskiy [1] introduced a hypothesis that a friction coefficient is 
not a constant, but a monotonously increasing function of the duration time of the contact of two 
bodies. After a considerable delay, the hypothesis gained attention of both Russian and foreign 
scientists (see [2-7] and the related references). It was shown that already in the simplest 
autonomous systems accounting for hereditary-type dry friction forces [2-4] there exist periodic 
motions of random complexity, as well as chaos, which is not observed in such systems not 
accounting for the heredity of dry friction forces. In the present work, a simplest non-autonomous 
system, accounting for a vibration limiter, is considered. 

1.1. Mathematical model 

The physical model that served as a basis for constructing the mathematical model represents 
a load of mass m placed on a rough belt moving with constant velocity ܸ, Fig. 1(a). 

  
Fig. 1. A physical model of the system 

The load is secured with rigidity spring ݇ to a fixed support, Fig. 1(a). The load is acted upon 
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by a friction force and periodic external force ݂(ݐ). The motion of the load in the direction of the 
motion of the belt is limited by a wall situated at distance ‘ܽ’ from the equilibrium state of the 
load when the belt is at halt. It is known [8] that in a mathematical model of such a kind of system, 
not accounting for the external force, the wall or the heredity of the dry friction force, there exists 
only one stable limiting cycle in its phase space. It is assumed in the present work that sliding 
friction coefficient ݂∗ is a constant value, whereas the state friction coefficient, according to the 
hypothesis of А. Yu. Ishlinskiy and I. V. Kragelskiy [1], is a continuous non-decreasing function 
of time ݐ of a prolonged contact (identity of the velocities of the load and the belt) of these bodies 
Fig. 1(b). In the present work, Coulomb-Hammonton friction is taken as a mathematical model of 
sliding friction forces. The impact against the wall is assumed to be instantaneous, with restoring 
coefficient ܴ. 

The mathematical model of the system in question can be written as: ݉ݔሷ + ݔ݇ = (ݐ)݂ − ሶݔ)݊݃݅ݏ݂ܲ∗ −  ܸ ሶݔ    ,( ≠  ܸ ݔ     , < ݔܿ|(1) ,ܽ − |(ݐ)݂ ≤ ݂(ݐ)ܲ,     ݔሶ =  ܸ ݔ     , < ሶݔ(2) ,ܽ ା = ሶݔܴ− ݔ     ,ି = ሶݔ     ,ܽ ି > 0, (3)

where the first equation describes the law of the motion of the body, taking account of sliding 
friction coefficient ∗݂, with a velocity differing from the velocity of the belt; the second inequality 
postulates the ratio of forces providing the motion of the belt at a velocity equal to the velocity of 
the belt, accounting for the form of the coefficient of friction of relative rest (CFRR) – ݂(ݐ) 
(Fig. 1(b)). The third equation describes the model of an impact of the load against the wall. 

Introducing dimensionless time ߬ = ,߱ݐ  variable ߦ = /݇ݔ ∗݂ܲ  and parameter  ߠ(߬) = ܸ√݇݉/( ∗݂ܲ), system Eqs. (1)-(3) can be rewritten as: ߦሷ + ߦ + sign൫ߦሶ − ൯ߠ = ሶߦ    ,(߬)ܨ ≠ ߦ     ,ߠ < |ߦ|(4) ,ܾ ≤ 1 + ሶߦ     ,ߝ = ߦ    ,ߠ < ሶାߦ(5) ,ܾ = ߦ     ,ሶିߦܴ− = ሶିߦ     ,ܾ > 0, (6)

where ܾ = ܿܽ/ ∗݂ܲ, (߬)ߝ  = ( ݂(߬) − ∗݂)/ ∗݂, ߝ  = ,(߬)ߝ  and ܨ(߬) = ݂(߬/߱)/( ∗݂ܲ)  is 
dimensionless external force. 

1.2. The phase space structure 

As the system is non-autonomous and described by a second-order differential equation of a 
variable structure, its state is triplet ൛ߦ, ,ሶߦ ߬ൟ,  and the phase space is, accordingly, 
three-dimensional. Any trajectories in it can exist only within half-space ߦ ≤ ܾ. The phase space 
is divided by plane Π(ߦሶ = (ߠ  into subspaces Φଵ(ߦ, ሶߦ > ,ߠ ߬),  Φଶ(ߦ, ሶߦ < ,ߠ ߬)  and  Φଷ(ߦ, ሶߦ = ,ߠ ߬) , in which the behavior of phase trajectories is described by the following 
equations, respectively: ߦሷ + ߦ + 1 = ሶߦ    ,(߬)ܨ ≠ ߦ     ,ߠ < ሶାߦ     ;ܾ = ߦ     ,ሶିߦܴ− = ሶିߦ     ,ܾ > ሷߦ(7) ,0 + ߦ − 1 = ሶߦ    ,(߬)ܨ ≠ ߦ    ,ߠ < ሶାߦ    ;ܾ = ߦ    ,ሶିߦܴ− = ሶିߦ    ,ܾ > ߦ|(8) ,0 − |(߬)ܨ ≤ 1 + ሶߦ    ,ߝ = ߦ    ,ߠ < ሶାߦ    ;ܾ = ߦ    ,ሶିߦܴ− = ሶିߦ    ,ܾ > 0. (9)

It can be shown that in plane П there exist a plate of sliding motions [8-9] П, limited by curves Γଵ and Γଶ: 

Γଵ: ൜ߦ = 1 + ߦ    ,(߬)ܨ ≤ ሶߦ,ܾ = ,ߠ  (10)
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Γଶ: ൜ߦ = −1 + ߦ     ,(߬)ܨ ≤ ሶߦ,ܾ = ,ߠ       (11)

Fig. 2 depicts a projection of a phase space onto plane ሼߦ,  .ሶሽ for a zero external forceߦ

 
Fig. 2. A projection of a phase space 

1.3. Dynamics of the system 

In what follows, it is assumed that (ݐ)ܨ =  and dimensionless functional relation of ,(ݐΩ)cosܣ
CFRR ߝ(߬), where ߬ is time of prolonged contact, is a piecewise-continuous function of the 
form: 

(߬)ߝ = ቐߝ∗߬,    ߬ ≤ ∗ߝ = ݂∗ − ∗݂∗݂ ߬     ,∗ߝ,  .∗ߝ  (12)

As the mapping point almost invariably gets onto the sliding motion plate, the dynamics of the 
system can be analyzed by studying either the properties of the point mapping of boundary Гଵ(Гଶ) 
onto itself, or the properties of a numerical sequence, with its elements being equal to times ߬, ݇ = 1,2,3 … . Motions with prolonged stops (MPS) along plane Пс  are shown in Fig. 3 with  
arrows. 

 
Fig. 3. A portrait of phase trajectories with prolonged stops  

Let ݅ܯ(߬݅, ݅ ,(݅ߦ = 0,1, … , ݊ be a sequence of points along surface П, not belonging to the 
sliding motion plate and defined by Eq. (10) for ݅ = 2݇ < ݊ , ݇ = 1,2, …  and Eq. (11) for  ݅ = 2݉ + 1 < ݊, ݉ = 0,1, …, the coordinates of initial point 0ܯ being ߬ = ߬, ߦ = 1 + ሶߦ ,(,߬)ߝ = ,߬)1+݊ܯ Then one can find such n that point .ߠ   will invariably belong toܯ following (ߦ
sliding motion plate Пܿ , and its motion will be defined by Eq. (9) as long as relation  |ߦ − |(߬)ܨ = 1 + ߝ ሶߦ , = ߠ ߦ , < ܾ +ሶߦ ; = −ሶߦܴ− ߦ , = ܾ −ሶߦ , > 0  holds. Let ߒା  be a point 
transform of points ܯଶାଵ → ଶାଶܯ , ݇ = 0,1,2, . . < ݊,  and ିߒ  a transform of points  ܯଶ → ݉ ,ଶାଵܯ = 1,2, . . < ݊. It is evident that mapping point ܯାଵ(߬,  ) will get onto theߦ
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sliding motion plate after n transforms of the form Τଵ(݆, ݈, ݊) = ((Τି )(Τା))[/ଶ], ݈, ݆ = 0,1, . . . ݊. 
Then the equations relating two successive times ߬,, ߬ାଵ, of the motion of the mapping point 
along the sliding motion plate up to the ‘floating boundary’ can be written as: (−1)݅݅ + =       ൫߬݇+1,ܿ൯ߝ݅݅(1−) Ωܣ ቀsin൫Ω߬ାଵ,൯ − sin൫Ω߬൯ቁ − AΩsin൫Ω߬ାଵ,൯ + ൫߬ାଵ,ܤ − ߬൯       +ߦ൫߬, ߬ଵ, . . . , ߬, ߬,൯,    ݅݅ = 1,2, (13)

where ߬ (߬ାଵ > ߬) are determined from the solutions of the following system of equations: 

ቊߦାଵ(߬ାଵ) = ଶିଵcos(߬ାଵ)ܥ + ଶsin(߬ାଵ)ܥ + (−1),ߠ(߬ାଵ) = ଶିଵsin(߬ାଵ)ܥ− + ,ଶcos(߬ାଵ)ܥ ሶߦ < (−1)ߠ(߬ାଵ) ,   ݅ = 1,2. (14)

Introducing into consideration functions: ߰(߬) = (߬)ߝ− + Ωܣ ቀsin(Ω߬) − sin൫Ω߬൯ቁ − Ωsin(Ω߬)ܣ + ൫߬ܤ − ߬൯, (15)߶(߬) = 1 − (−1)ߦ(߬, ߬ଵ, . . . , ߬, ߬),     ݆ = 1,2, …,    (݆ − 1) < (߬)ߝ < 2݆. (16)

One can write the following relation between the two successive times ߬ , ߬ାଵ  of the 
combined motion of the body and the belt (MPS): ߰(߬ାଵ) = ߶(߬݇), (17)

where ݆ is number of points ܯ ∉ Π.  
To analyze the dynamics of the system in question using Poincare function, a software product 

has been developed on a Java platform, which makes it possible to compute, for various 
parameters of the system, phase trajectories, type of Poincare functions and bifurcation diagrams. 

1.4. Results of numerical experiments 

Fig .4 shows bifurcation diagrams demonstrating the dynamic effect of the wall on the 
behavior of the system. The horizontal axis corresponds to the variable parameter, the vertical one 
shows the duration of the combined motion of the body with the belt. In Fig. 4, the velocity of the 
belt was assumed to depend on the time according to the cosinusoidal law. A variable parameter 
in these diagrams is frequency of the time-dependence of the velocity of the belt. Fig. 4(a) depicts 
a bifurcation diagram of the system without a wall. In constructing the diagram, the external force 
was taken to be equal to zero, the velocity of the belt to be described by function  ߠ = 1.41 + 0.1cos(Φݐ), and parameter ߝ∗ of piecewise-linear function of CFRR to be equal to 3. 
Figs. 4(b) and Fig. 4(c) differ from Fig. 4(a) only in the presence of a wall. In both diagrams, the 
value of the velocity recovery coefficient during the impact is chosen to be 0.5, whereas the 
coordinate of the wall is 4.025 and 4.05, respectively. Fig. 4(d) shows the effect of changing the 
coordinate of the wall on one of the cross-sections of Fig. 4(a). In Fig. 4(d), all the parameters 
coincide with those chosen for Fig. 4(a), the value of Φ being equal to 3.22. Figs. 4(e) and Fig. 4(f) 
present diagrams on the coordinate of the wall and the velocity recovery coefficient during the 
impact for the same parameter values, respectively. The velocity of the belt was chosen to be 1. 
The external force function is expressed as (ݐ)ܨ = 0.25cos(2ݐ), parameter ߝ∗ of piecewise-linear 
function of CFRR is equal to 3, the wall coordinate ܾ = 2, coefficient ܴ = 0.5. 

Fig. 5 depicts phase portraits and Lamerey diagrams for two sets of parameter values 
corresponding to two cross-sections of Fig. 4(f). Lamerey diagrams are constructed based on the 
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durations of combined motion of the body and the belt. Figs. 5(a) and 5(b) correspond to the 
following parameter values: parameter ߝ∗ (SFRR) is equal to 3, velocity of the belt is equal to 1, 
the external force is variable (ݐ)ܨ = 0.25cos(2ݐ) , wall coordinate is 2, coefficient ℛ = 0.7. 
Figs. 5(c) and 5(d) differ only in the value of coefficient ℛ = 0.75. It is evident from Fig. 5 that 
for the value of coefficient ℛ = 0.7 the system has a stable limiting cycle with three stops of the 
form OHBOHBOHB, i.е., the first stop “O” is followed by an impact against the wall “H” and 
then by portion “B” in half-space ߦሶ <  ,which is followed by two more similar turns of OHB ,ߠ
and then the cycle is repeated. For ܴ = 0.75, the behavior of the system is chaotic. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Fig. 4. Bifurcation diagrams for various values of parameter ܾ – the position of the vibration limiter 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 5. Phase portraits and the chart Lameria 

2. Conclusions 

The dynamics of a non-autonomous shock-vibrating system consisting of a pair of bodies of 
friction has been studied using a numerical-analytical approach, implementing the mathematical 
apparatus of the point mapping method, accounting for hereditary-type dry friction forces in the 
presence of a vibration limiter. The specificity of the approach is in that a point mapping is formed 
not classically (mapping Poincare surface onto itself), but based on the duration of the relative rest 
of the load and the belt, which considerably simplified the process of point mapping and its 
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detailed analysis. 
Based on the character of changes in the bifurcation diagrams, the authors have determined 

the main laws of changes in the motion regimes (occurrence of random complexity periodic 
motion regimes and possible transfer to chaos via the period doubling process) when changing the 
parameters of the vibration system. 
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