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Abstract. Different description results will be obtained when apply hidden Markov model 
(HMM) to the two different channel signals from the same data collection point respectively. 
Besides, wrong fault diagnosis result might be obtained because fault feature information would 
not be described comprehensively by using only one single channel signal. In theory, two channel 
signals collected form the same data collection point will contain much more fault information 
than the single channel signal contain, but the coupled phenomenon might occur between the two 
channel signals. Coupled hidden Markov model (CHMM) is the improved method of HMM and 
it can fuse the information of two channel signals from the same data collection point efficiently, 
so much more reliable diagnosis result could be obtained by using CHMM than by using HMM. 
Stated thus, the fault diagnosis method of rolling element bearing based on wavelet kernel 
component analysis (WKPCA)-CHMM is proposed: Firstly, use WKPCA as fault feature vectors 
extraction method to increase the efficiency of the proposed method. Then apply CHMM to the 
extracted fault feature vectors and satisfactory fault diagnosis result is obtained at last. The 
feasibility and advantages of the proposed method are verified through experiment. 
Keywords: WKPCA, CHMM, rolling element bearing, fault diagnosis. 

1. Introduction 

HMM has been used in fault diagnosis of rotating machinery widely [1-5]. However, it could 
not solve the multi-channel data fusion problem. Many machine condition monitoring techniques 
have been proposed based on multi-channel data acquisition system [6]. The current data fusion 
techniques are mainly classified into three categories: data-level fusion, feature-level fusion and 
decision-level fusion. Vibration and current signals were fused basing on Dempster-Shafer (DS) 
to improve the diagnostic accuracy [7]. Some vibration parameters such as RMS, peak and peak 
to peak were used in the detection defects in the bearing [8]. In order to obtain better diagnostic 
result, the waterfall fusion model was adopted by fusing information from two different kinds of 
sensors: the accelerometer and load cell [9]. CHMH [10] was first proposed as a novel sensory 
fusion architecture to solve the data fusion problem in audio-visual speech recognition (AVSR). 
Xie [11] proposed a coupled hidden Markov model approach to video-realistic speech animation 
and realistic facial animations driven by speaker independent continuous speech was realized. In 
paper [12] the dependent faults occurring over time were diagnosed successfully by the proposed 
coupled factorial hidden Markov model method. In paper [13] the spatial and temporal dynamics 
in multi-channel electrocorticographic (ECoG) time series was investigated using CHMM. 
Though CHMM has been used widely in the above stated aspects, very few papers presented its 
using in fault diagnosis of rolling element bearing. The CHMM was used in rolling element 
bearing fault diagnosis and performance degradation assessment respectively in paper [14] and 
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paper [15], and satisfactory experiment analysis results were obtained. So the using of CHMM in 
fault diagnosis of rolling element bearing is studied and the WKPCA is used as feature extraction 
method in the paper. 

2. Wavelet kernel principle component analysis 

Various feature parameters are expected to be obtained so as to reflect the running state of the 
machinery comprehensively. However, the efficiency of the subsequent intelligent diagnosis will 
be decreased greatly when too many feature vectors are used as the input vectors. Besides, some 
of the feature parameters are redundant and useless which will decrease the accuracy of intelligent 
diagnosis to some extent. Principle components analysis (PCA) and the improved PCA 
method-kernel principle component analysis (KPCA) [16, 17] are the common used linear and 
non-linear feature dimensionality reduction methods to solve the above contradiction. The 
schematic diagrams of PCA and KPCA can be referred to Fig. 1 and Fig. 2. KPCA not only owns 
the virtues of PCA, but also can analyze the non-linear problems which PCA could not. Besides, 
the KPCA has other advantages which can be referred to the paper [18]. Though KPCA improve 
the PCA greatly, there are still some defects in the traditional KPCA: firstly, the selection of kernel 
function in the traditional KPCA is based on experience. Secondly, there is not criterion for 
selection of the relative parameters of kernel function. Any functions can be fitted by the wavelet 
function [19] in theory, so in the paper a novel features reduction method named WKPCA is 
proposed: the wavelet function is used as the kernel function instead of the common used radial 
basis function (RBF) in KPCA, and the wavelet function can increase the non-linear mapping 
ability of KPCA greatly. The relative definitions and theory of WKPCA are given as the following. 
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Fig. 1. The schematic diagram of PCA 
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Fig. 2. The schematic diagram of KPCA 

Definition 1 [20]: Kernel is a function ܭ  which satisfies the following equation for any  ݔ) ݔ ∈ ܴ): 
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,ݔ)ܭ (ᇱݔ = ,(ݔ)߶ۦ (1) ,ۧ(ᇱݔ)߶

where ݔᇱ represents the transpose and ߶(. ) represents a mapping from the data space ܴ to the 
feature space ܨ, and the relationship of them can be shown as following: ߶: ݔ ↦ (ݔ)߶ ∈ (2) .ܨ

It not only can calculate the inner product more efficiently but also need not calculate mapping ߶ process explicitly. The kernel function must satisfy the requirement of Mercer [21]. 
Theorem 1 [22]: Supposing ܭ is a continuous symmetric function ܭ ∈ ஶ(ܴܮ × ܴ) which 

makes the integral operator ܶ: ଶ(ܴ)ܮ → ) :ଶ(ܴ)ܮ ݂ܶ)(⋅) = න ,⋅)ܭ ோݔ݀(ݔ)݂(ݔ , (3)

to be positive. That is to say the following relationship can be obtained: න ,ݔ)ܭ ᇱ)మ⊗మݔ ᇱݔ݀ݔ݀(ᇱݔ)݂(ݔ)݂ ≥ 0. (4)

In Eq. (4), the ⊗ symbol represents convolution algorithm. ݔ)ܭ,  ᇱ) could be used as theݔ
representation of dot product in the feature space if the above conditions can be satisfied. 

The kernel function ݔ)ܭ, (ᇱݔ = ݔ)ܭ −  ᇱ) satisfies the requirement of Mercer which is givenݔ
in theorem 2. 

Theorem 2 [23]: If the translation invariant kernel function ݔ)ܭ, (ᇱݔ = ݔ)ܭ − (ᇱݔ  is an 
allowable kernel whose fourier transform (FT) must satisfy the following condition: [ܭ]ܨ(߱) = ଶି(ߨ2) න exp൫−݆(߱ ⋅ ൯(ݔ ݔ݀(ݔ)ܭ ≥ 0ோ . (5)

Wavelet function has the peculiar characteristics of multi-resolution analysis compared with 
the common used kernel functions such as RBF used in the traditional KPCA. The wavelet 
function can fit any function much more precisely, so the wavelet function is combined with PCA 
instead of the common used kernel function such as RBF, so much stronger non-linear mapping 
capability can be obtained. The combination of wavelet function with PCA is named wavelet 
kernel principal component analysis also called WKPCA for short. 

Supposing ߰(ݔ) ∈ ݔ ,ݔ ,ଶ(ܴ) is a mother wavelet functionܮ ∈ ܴ, and a translation invariant 
wavelet kernel function satisfying the requirement of Mercer can be constructed as following [22]: 

,ݔ)ܭ (ᇱݔ = ෑ ߰ ቆݔ − ᇱܽݔ ቇ
ୀଵ , (6)

where ܽ is the scale factor. 
The requirement of Mercer is not only satisfied but also the properties of the wavelet function 

are considered when the wavelet kernel function is being constructed. The wavelet construction 
kernel function meeting the wavelet framework conditions has obvious advantage because it takes 
into account the sparseness of the training data and the complexity of the constructed kernel 
functions. Mexican hat wavelet function is a kernel function meeting the wavelet framework 
conditions [24]. The Mexican hat wavelet function shown in Eq. (7) is used to construct the 
translation invariant kernel function: 
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(ݔ)߰ = (1 − ଶ)expݔ ቆ− ଶ2ݔ ቇ. (7)

The constructed translation invariant wavelet kernel function is shown in Eq. (8): 

,ݔ)ܭ (ᇱݔ = ෑ ൭1 − ቆݔ − ߙᇱݔ ቇଶ൱ exp ቆ− ݔ‖ − ଶߙᇱ‖ଶ2ݔ ቇ൩
ୀଵ ߙ)    , ∈ [ܽ, ܾ]). (8)

The proof of Mexican hat wavelet satisfying Theorem 2 is given as following. 
With regard to the Mexican hat wavelet shown in Eq. (9): 

(ݔ)ܭ = ෑ ߰ ൬ݔߛ ൰
ୀଵ = ෑ ቈቆ1 − ൬ݔߛ ൰ଶቇ exp ቆ− ଶߛ‖ଶ2ݔ‖ ቇ

ୀଵ . (9)

In Eq. (9), ߛ is the scale factor same as the meaning of ߙ shown in Eqs. (6) and (8). The 
Eq. (10) can be obtained: [ܭ]ܨ(߱) = /ଶି(ߨ2) න exp(−݆(߱ݔ))ݔ݀(ݔ)ܭோ  
      = /ଶି(ߨ2) න exp(−݆(߱ݔ)) ෑ ቈቆ1 − ൬ݔߛ ൰ଶቇ exp ቆ− ଶߛ‖ଶ2ݔ‖ ቇ

ୀଵோ  ݔ݀
      = ଶି(ߨ2) ෑ න ቆ1 − ൬ݔߛ ൰ଶቇஶ

ିஶ


ୀଵ exp ൭− ଶߛ‖ଶ2ݔ‖ − ݆(߱ݔ)൱  ݔ݀
      = ෑ ߱ଶ

ୀଵ ଷexp|ߛ| ቆ− ߱ଶߛଶ2 ቇ ≥ 0. 
(10)

From the above, the proof of Mexican hat wavelet satisfying Theorem 2 is obtained which can 
be used to construct the allowable kernel function. 

3. CHMM 

CHMM is constituted by multi-HMM chains which couple through cross-time and cross-chain 
conditional probabilities as illustrated in Fig. 3 and Fig. 4, and the CHMM can be regarded as a 
special case of dynamic Bayesian network. The observations of each chain in CHMM are decided 
by the corresponding state in the same chain. Besides, the unobservable state sequence can be only 
estimated by the observation sequence. The above two characteristics of CHMM are similar to 
HMM. Different from HMM, all the state variables in different chains may be contained at certain 
time slice in the states of the CHMM system. The states of all chains in the previous time slice 
decide the state in each chain. So much comprehensive fault diagnosis result of bearing can be 
obtained using CHMM because it has a potential to fuse data from multi-channel. The following 
is the basic theory introduction of a two-chain CHMM.  

1q 1tq  tq Tq

1o 1to  to To

 
Fig. 3. The schematic of HMM 
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Fig. 4. The schematic diagram of CHMM 

3.1. Elements of CHMM 

The chain index is represented by ܿ, i.e., ܋ = {1,2}. The total set of hidden states of each chain 
is represented as ܁ = ൛ ଵܵ, ܵଶ, … , ܵே ൟ. Let ܗ௧ = ,௧ଵ}  ௧ଶ} represent the observation vector and the
hidden state at time ݐ  is expressed as ܙ௧ = ,௧ଵݍ} {௧ଶݍ . The following expression describes the 
elements of CHMM: ߣ = ,ۯ) ۰,  .(ߨ

ۯ (1) = ൛ܽ,ൟ represents the state transition probability matrix. The system transfers from the 
state ܁ = { ܵభଵ , ܵమଶ } to the state ܁ = { ܵభଵ , ܵమଶ } with probability ܽ, which could be represented by 
the following equation: 

ܽ, = ܲ൫ܙ௧ାଵ = ௧ܙห܁ = ൯ܑ܁ = ෑ ܲ൫ݍ௧ାଵ = ܵ หܙ௧ = ൯ଶ܁
ୀଵ . (11)

(2) The observation probability matrix is expressed as ۰ = ൛ ܾ(ܗ௧)ൟ. The output ܗ௧ generated 
by each state ܁ = { ܵభଵ , ܵమଶ }  with a probability distribution function can used the following 
equation: 

ܾ(ܗ௧) = ܲ൫ܗ௧หܙ௧ = ൯܁ = ෑ ܲ൫ܗ௧หݍ௧ = ܵ ൯ଶ
ୀଵ . (12)

(3) The initial state distribution is ߨ =  ’and the calculated probability value of the system ,{ߨ}
initial state in ܵ = { ܵభଵ , ܵమଶ } is ߨ: 
ߨ = ଵܙ)ܲ = (܁ = ෑ ܲ൫ݍଵ = ܵ ൯ଶ

ୀଵ . (13)

The probability distribution of continuous observation can use the Gaussian mixed model 
(GMM) as follows: 

ܾ(ܗ௧) =  ,ݓ ,௧ܗ)ܰ ,ߤ , ∑, )ெೕ
ୀଵ ,  (14)
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where ܯ is the number of Gaussian mixtures of chain ܿ in state ܵ, ݓ,  is the weight for each 
Gaussian mixture, and ܰ(ܗ௧, ,ߤ , ∑, )  is a Gaussian density with mean vector ߤ,  and 
covariance matrix ∑, . 

3.2. CHMM' basic problems 

There are three basic problems existing for CHMM in real application: 
(1) Evaluation. How the observation sequence ۽ = ଶܗଵܗ} … ߣwith a given CHMM {்ܗ  is 

computed, i.e., ܲ(ߣ|۽)? 
(2) Decoding. Given the observation sequence ۽ = ଶܗଵܗ} …  how do we ,ߣ and a CHMM {்ܗ

select a hidden state sequence ܁ = ଶ܁ଵ܁} … ,۽|܁)ܲ܁ݔܽ݉ ,.to explain the process, i.e {்܁  ?(ߣ
(3) Learning. Given the observation sequence ۽ = ଶܗଵܗ} …  how do we adjust the model ,{்ܗ

parameters ߣ to maximize the probability ܲ(ߣ|۽)? 
Many algorithms such as Viterbi algorithm, forward-backward procedure and Baum-Welch 

method were proposed to solve the above problems. The reference [21] gives more details about 
the above algorithms. 

4. Experiment 

The flow chart of the proposed method based on WKPCA-CHMM is shown in Fig. 5 and the 
specific details of each step are given as following: 

Step 1: Data collection: collect the signals of the four states (normal state, outer race fault state, 
rolling element fault state and inner race fault state) of rolling element bearing using double 
channel accelerator sensors. 

Table 1. Time-domain statistics indexes 
Calculation formulas 

1 Peak ݔ = ,|(1)ݔ|}ݔܽ݉ ,|(2)ݔ| ⋯ ,  {|(ܰ)ݔ|
2 Ppvalue ݔି = ௫(݊)ݔ −  (݊)ݔ

3 Meanamp ݔ = 1ܰ  ேݔ
ୀଵ  

4 Rootamp ݔ = ൬1ܰ  ඥ|ݔ(݊)|ேୀଵ ൰ଶ
 

5 Root mean square ݔோெௌ = ඨ1ܰ  ଶ(݊)ேୀଵݔ  

6 Waveind ܵ = ݔோெௌݔ  

7 Pluseind ܫ =  ݔݔ

8 Peakind ܥ =  ோெௌݔݔ

9 Marginind ܮܥ = ݔோெௌݔ  

10 Skewness ܵ = 1ܰ  ቆݔ(݊) − ߪݔ ቇேୀଵ
ଷ
 

11 Kurtosis ܭ௨ = 1ܰ  ቆݔ(݊) − ߪݔ ቇேୀଵ
ସ
 

Remark: ݔ(݊) is time domain discrete signal ݔ = 1ܰ ∑ 1=݊ܰ(݊)ݔ ߪ  = ට ଵேିଵ ∑ (݊)ݔ) − ଶேୀଵ(ߤ  
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Step 2: Data separation and feature extraction: separate the data of the eight channel signals 
into 50 groups (The 1-40th groups are used as CHMM training data and 41th-50th groups are used 
as testing data) respectively and 400 groups are obtained in all. There are 1024 points in each 
group. Apply the eleven time-domain statistical indexes (The 11 indexes and their corresponding 
calculation formulas are shown in Table 1) and one time-frequency domain index (the wavelet 
packet energy entropy (WE) which will be stated in the following chapter) to each group data.  

Noting: The 11 indexes are the traditional common used time-domain statistical feature vectors 
and they can reflect the running state correctly when the fault signal is linear. The signals usually 
take on non-linear characteristic when fault occurs in machinery, so the time-frequency index is 
also need so as to capture the characteristic of the fault signal. In the paper, the wavelet packet 
energy entropy (WE) is used as time-frequency index which will be discussed in the Subsequent 
chapters. 

Step 3: Dimensionality reduction: apply WKPCA to the feature vectors obtained in step 2 in 
order to obtain dimensionality reduction feature vectors. 

Step 4: CHMM models training: use the dimensionality reduction training feature vectors to 
train four CHMM models (normal state CHMM, inner race fault state CHMM, outer race fault 
state CHMM and rolling element fault state CHMM). 

Step 5: Diagnosis: input the dimensionality reduction testing feature vectors into the trained 
four state CHMMs in step 4 and fault diagnosis results are obtained. 

 
Fig. 5. The framework of the proposed method 

 
Fig. 6. The test rig 

The test rig is shown in Fig. 6. The two ends of the shaft are supported by two rolling element 
bearings, and the right end is detachable which is convenient for replacement of the test rolling 
element bearings. The shaft is driven by AC motor and connected by coupling. The rated power 
of the AC is 1.1 kW. The test rig is equipped with hydraulic position and clamping device which 
are used in fixing the outer race of rolling bearing. The inner race, rolling element and outer race 
of the test rolling bearings are eroded with very tiny point corrosions respectively using Electrical 
Discharge Machining (EDM) technology to simulate the three kinds of faults of the rolling bearing. 
The type of the test rolling bearing is GB203. The outer race is fixed on the bench and the inner 
race rotates synchronously with the shaft in the test process. The rotation frequency of the shaft is ݂ = 12 Hz. The parameters and the rotation frequency of the test rolling element bearings are 
shown in Table 2. 
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Table 2. Rolling bearing’s parameters and the rotating frequency 
Type Pitch diameter ܦ (mm) Ball diameter ݀ (mm) Ball number ܼ (N) Contact angle ߙ (angle) 

GB203 28.5 6.747 7 0 
Feature frequency 
Shaft frequency 

Calculation formulas  ݂ = 6݊0 
Calculated result (Hz) 

12 
Remark: ݊ represent the shaft rotation speed 

One sensor is installed in the traditional vibration data collection method. In the paper the two 
accelerometers are installed in the same one bearing case synchronously, and the two installed 
directions are shown in Fig. 7. 

 
Fig. 7. The installation direction of the two sensors 

The four states of the test rolling bearings are carried on respectively and the corresponding 
time-domain waveforms of the two channel signals from the same data collection point of the four 
states are shown in Fig. 8. The sampling frequency is ௦݂ = 25.6 kHz. 

It is usually taking on non-gaussian and non-linear characteristic whatever the condition of the 
rolling bearings is (normal or fault). The time-frequency analysis method is a very effective 
non-linear and non-gaussian signal handling tool to extract the non-linear features buried in the 
original signal. In the paper, the wavelet packet energy entropy is used as the time-frequency 
indicator whose calculation process is shown as following: 

Apply the wavelet packet transform (WPT) to the original signal and the energies ܧ (݅ = 2ே, ܰ is the decomposition level) named wavelet packet energy on each node is obtained which is the 
division of the original signal in the time-frequency domain. In theory, much better 
frequency-domain performance could be obtained with the bigger value of ܰ . However, the 
amount of calculation will also be increased with the bigger value of ܰ. So, the value of ܰ is 
selected 3 as compromising here, and the satisfactory frequency-domain performance could be 
obtained with the following verification of experimental results. The wavelet packet energy 
entropy (WE) is defined as in Eq. (15): 

۔ۖەۖ
ܧܹۓ = −   ⋅ log(),ே

ୀଵ = ∑ܧ ேୀଵܧ .  (15)

In Eq. (15),  represents probability distribution. The Normalized wavelet packet energy and 
wavelet packet energy entropy results of the signals shown in Fig. 8 are summarized in Fig. 9. 



2722. FAULT DIAGNOSIS OF ROLLING ELEMENT BEARING BASED ON WAVELET KERNEL PRINCIPLE COMPONENT ANALYSIS-COUPLED HIDDEN 
MARKOV MODEL. HONGCHAO WANG, FANG HAO 

6000 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. DEC 2017, VOL. 19, ISSUE 8. ISSN 1392-8716  

 
a) The time-domain waveform of channel 1  

of normal state 

 
b) The time-domain waveform of channel 2  

of normal state 

 
c) The time-domain waveform of channel 1  

of outer race fault state 

 
d) The time-domain waveform of channel 2  

of outer race fault state 

 
e) The time-domain waveform of channel 1  

of rolling element fault state 

 
f) The time-domain waveform of channel 2  

of rolling element fault state 

 
g) The time-domain waveform of channel 1  

of inner race fault state 

 
h) The time-domain waveform  

of channel 2 of inner race fault state 
Fig. 8. The time-domain waveforms of the two channels signals  

from the same data collection point of the four states 

So, the dimensionality of training feature vectors of every channel is 4×50×12. Apply WKPCA 
to the 4×40×12 feature vectors of channel 1 and 2 respectively and the analysis results are shown 
in Fig. 10 and Fig. 11. In Fig. 12, the curves of classification result with the number of kernel 
principle components (PC) is given, and it is evident that the correction ratio would be almost 
unchanged when the number of PC varies from 3-12. Though in theory the correction ration will 
obtain the biggest value when the number of PC is selected 12 as shown in Fig. 12, the 
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classification speed will be decreased too much. So, the number is selected 3 as compromising to 
ensure the classification speed, and the classification correction is guaranteed at the same time. 
From the dimensionality reduction result it is evident that the dimensionality of the feature vectors 
is reduced to 4×40×3 respectively.  

 
a) The normalized energy of channel 1 

 
b) The normalized energy of channel 2 

 
c) The energy entropy of channel 1 

 
d) The energy entropy of channel 2 

Fig. 9. Normalized wavelet packet energy and wavelet packet energy entropy 

 
Fig. 10. The three principle components of the twelve features of the channel 1  

of the four states analyzed by WKPCA method 

From Fig. 10, it can be seen that, almost all of the four states’ sample vectors (* represents the 
sample vectors of normal state, + represents the samples vectors of outer race fault state, blue o 
represents the sample vectors of rolling element fault state and yellow o represents the sample 
vectors of inner race fault state) are classified correctly. Though small amount of sample vectors 
of outer race fault state and inner race fault state are misclassified in Fig. 11, most of the other 
sample vectors of the four states are classified correctly. In order to verify the advantage of 
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WKPCA over KPCA, the analysis result of the signals shown in Fig. 8 using KPCA are given in 
Fig. 13 and Fig. 14. The advantages of WKPCA over KPCA is obvious compared the Fig. 10 and 
Fig. 11 with Fig. 13 and Fig.14: Much more amount of sample vectors of the four states are 
misclassified compared Fig. 13 and Fig. 14 with Fig. 10 and Fig. 11. Besides, the better clustering 
result which has bigger classes distance and smaller intra-class distance is evident in Fig. 10 and 
Fig. 11 compared with the results obtained in Fig. 13 and Fig. 14. 

 
Fig. 11. The three principle components of the twelve features  

of the channel 2 of the four states analyzed by WKPCA method 

 
Fig. 12. The curves of classification result with the number of kernel principle components 

 
Fig. 13. The three principle components of the twelve features of the channel 1  

of the four states analyzed by KPCA method 

Use the 4×40×3×2 feature vectors as training feature vectors respectively and the normal state 
CHMM, outer race fault state CMHH, rolling element fault state CHMM and inner race fault state 
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CHMM diagnosis trained models are erected respectively. Then input the 4×40×3×2 feature 
vectors as testing feature vectors into the above four trained diagnosis models, and the diagnosis 
results are obtained and shown in Fig. 15(c) at last. From the Fig. 15(c) the ten groups of the 
testing feature vectors of the four states are classified corrected completely. 

 
Fig. 14. The three principle components of the twelve features of the channel 2  

of the four states analyzed by KPCA method 

In order to verify the advantage of CHMM over HMM, the diagnosis result based on WKPCA-
HMM of the two channel signals of the four states are also carried out respectively. Same as the 
above CHMM models training and testing process: firstly, use the 4×40×3×2  as training feature 
vectors respectively and the normal state HMM, outer race fault state MHH, rolling element fault 
state HMM and inner race fault state HMM diagnosis trained models of the two channel signals 
are erected respectively, then input the 4×10×3×2 feature vectors as testing feature vectors into 
the above eight trained diagnosis models, and the diagnosis results are obtained and shown in 
Fig. 15(a) and Fig. 15(b) respectively. Compared Fig. 15(a) and Fig. 15(b) with Fig. 15(c), the 
advantages of the proposed method are obvious: in Fig. 15(a) the are three groups of rolling 
element fault state testing feature vectors are misclassified as normal state. In Fig. 15(b) there is 
not only one group of rolling element fault state testing feature vector is misclassified as normal 
state but also there are three groups of outer race fault state testing feature vectors are misclassified 
as inner race fault state. Based on the above shown results, the advantage of CHMM over HMM 
in fault diagnosis of rolling element bearing is verified: the CHMM can fuse the information of 
two channels signals from the same data collection point efficiently and might also resolve the 
possible coupling phenomenon occurring between the two channel signals synchronously so much 
more reliable diagnosis result could be obtained compared with the HMM method. Besides, the 
dimension redundancy and dimension insufficient contraction is not only resolved but also the 
diagnosis efficiency and correction ratio are also increased because the WKPCA method is used 
as feature dimensionality method.  

Besides, the computation time and correction ratio of the other three relative methods 
(WKPCA-HMM, RKPCA-CHMM and CHMM without dimensionality reduced) and the 
proposed method (WKPCA-CHMM) are shown in Table 3. Based on Table 3 the advantages of 
the proposed are further verified. 

Table 3. The computation time and correction of the relative methods and the proposed method 
The name of methods Computation time (second) Correction ratio 

WKPCA-HMM 34.5 70 % 
RKPCA-CHMM 40.4 65 % 

CHMM 65.3 60 % 
WKPCA-CHMM 38.6 100 % 
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a) The diagnosis results of channel 1 signals of the four states based on WKPCA-HMM 

 
b) The diagnosis results of channel 2 signals of the four states based on WKPCA-HMM 

 
c) The diagnosis results of the two channels signals of the four states based on WKPCA-CHMM 

Fig. 15. The diagnosis results based on WKPCA-HMM and WPCA-CHMM 

5. Conclusions 

The paper presents an integrated WKPCA-CHMM method to realize the intelligent fault 
diagnosis of rolling element bearing. The advantage of CHMM over HMM is following: the 
CHMM can fuse the information of two channel signals from the same data collection point 
efficiently and might also solve the possible coupling phenomenon occurring between the two 
channel signals synchronously. The WKPCA is used as feature dimensionality reduction method 
for it is not only can solve the dimension redundancy and dimension insufficient contraction but 
also is much more flexible than RKPCA. The feasibility and validity of the proposed method is 
verified through experiment. Besides, the advantages of the proposed method over other relative 
methods are also verified and presented. 
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