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Abstract. Blast-induced ground vibration (BIGV) is an undesirable environmental issue in and 
around mines. Usage of a high amount of explosive causes ground vibrations that are harmful to 
the nearby habitats and dwellings. In this paper, an attempt has been made to monitor the BIGV 
with low-cost wireless sensor network (WSN) and prediction of peak particle velocity (PPV) using 
an artificial neural network (ANN) technique at ACC Dungri limestone mine, Bargarh, Odisha, 
India. Eleven blasts PPV were recorded at different locations using wireless sensor network 
prototype system. The data has been transmitted by ZigBee (IEEE 802.15.4) protocol. The results 
are very promising and the recorded PPV varies from 0.191 mm/s to 8.60 mm/s. A three-layer, 
feed-forward back propagation neural network consists of 6 input parameters, 5 hidden neurons, 
and one output parameters were trained. Obtained results were compared based on correlation of 
determination (R2) and standard error between recorded and predicted values of PPV. 
Keywords: ground vibration monitoring, wireless sensor network, peak particle velocity, 
multivariate regression analysis, artificial neural network. 

1. Introduction 

Extensive research has been carried out on blasting and its adverse effects on nearby important 
structures. Blasting is an essential component for fragmentation of the overburden and mineral 
deposits. It is a more economical process for mining rock excavation. However, a fragmentation 
accounts for only 20-30 % of the total amount of explosive energy used and remaining large 
quantity of explosives energy during charging can result in undesirable scenarios like fly rocks, 
back breaks, over breaks, extreme noise and vibration impacts on communities [1]. Extreme levels 
of structural vibration triggered by ground vibration from blasting can result in damage to or 
failure of structures [2]. Ground vibrations are acoustic waves that propagate through the rock. 
They differ from the ground vibrations caused by earthquakes in terms of seismic source, the 
amount of available energy and traveled distances [3]. The generated seismic waves can damage 
the surrounding structure and livelihood thus it is essential to monitor and predict the blast-induced 
ground vibration in mines. Ground vibration is influenced by a number of parameters such as 
explosives characteristics and blast design [4]. Normally, PPV is one of the most important 
parameters adopted for evaluation of ground vibration and associated damage. Different 
researchers were proposed a number of vibration prediction equations and all these equations 
estimate the PPV mainly based on two parameters: maximum charge used per hole and distance 
between blast face [5]. If the numbers of influencing parameters are more, ANN is the most 
popular tool used for prediction of PPV. 

The existing systems like Instantel Minimate plus, Micromate, Blastmate-II are generally used 
to monitor ground vibrations in mines [6]. The existing blast-induced ground vibration monitoring 
systems are of wire-based systems for acquiring and transferring the field data. In addition, the 
wire-based systems can only be applied to a limited area and the system becomes incapable if 
damages occur to the wires, which happens frequently [7]. The conventional vibration sensors 
composed as depicted in Fig. 1 is designed to simultaneously measure vibration and noise. 
Depending on the type, it has 1 to 8 input channels. Generally, in a surface mine, maximum one 
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blast has been done per day. So, the problem with conventional vibration sensors is that if vibration 
needs to measure at several points (different positions), requires additional geophone sensors, 
which are expensive or if single geophone has considered, data collection was tedious and  
time-consuming. 

 
Fig. 1. Blast mate III (Instantel, Canada) [6] 

To mitigate drawbacks and limits of existing monitoring systems, introduced a wireless-based 
monitoring system based on small vibration sensors with ZigBee (IEEE 802.15.4 standard) 
protocol. A tri-axis wireless MEMS capacitive sensor (ADXL 345, ±16 g range and sensitivity 
32 mV/g) has considered for the experimental verification through signal processing. Novelty 
work of this paper describes the background of the development of the system and the way of 
installation at Dungri mine and investigate the response of the prototype system while blasting. 
The PPV has been measured with WSN and the obtained results closely match with the ANN 
predicted PPV.  

2. Case study 

The case study was conducted at Dungri limestone mine which is situated in the Bargarh 
district of Odisha, India. The village Dungri is located at a distance of 850 meters from the active 
mine (Quarry No 6). The Dungri Limestone mine has a longitude of 83°32’57.4” and latitude of 
21°41’24”. The Dungri area is situated in the rich mining belt of Bargarh. It is an entity of ACC 
Limited. Figs. 2 shows the location map of ACC Dungri limestone mine.  

 
a) 

 
b) 

Fig. 2. Map of Dungri limestone mine of ACC Ltd and nearby residential areas 

3. Blasting practices at the mine 

The Dungri limestone mine is fully mechanized mine being operated by drill and blast method 
for primary breakage and rock breaker for the handling of oversize fragmentation. Atlas Copco 
makes D50 and Sandvik make TITON 500 drill machine are being used for regular drilling and 
blasting operation with 9 to 10 m bench height. Burden varied between 3-3.5 m, spacing between 
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4-5 m and quantity of charge per hole between 40-60 kg for 115 mm hole diameter. Accordingly, 
the stemming column in the blast holes also varies between 2.5m-3m. Staggered pattern and the 
square grid pattern of holes are drilled. The blast hole depth is 10 meter including 10 % sub grade 
drilling. The non-electric (NONEL) system of initiation (TLDs 17/250 ms and 25/250 ms) has 
been used for blasting in combination with ANFO and cast booster weighing 150 gm. In the case 
of watery hole during the rainy season and in the lower bench, large diameter slurry explosive 
cartridge (Aqua dyne and super gel) is used for blasting. Each blast is monitored for ground 
vibration and fragmentation and necessary care has been taken based on the report obtained. In 
blasting, two to three rows of holes are blasted at a time and maximum 60 holes are blasted at a 
time with proper initiation, charging pattern and charge per delay. Ground vibration has been 
maintained at 3.00 mm/s within 300 meters of the blasting site. A sample initiation pattern given 
below depicts the basting of each hole one after another. General blasting pattern followed in the 
mine and charging pattern are shown in Figs. 3, respectively. 

 
a) 

 
b) 

Fig. 3. Charging pattern followed at Dungri mine, ACC 

Delay is set in such a way that each hole gets the adequate free face and blasted at a time. 
Hence, optimum fragmentation with reduced ground vibration is achieved. The mine is equipped 
with two explosive magazines of 5.6 ton each and an ammonium nitrate store house of 45-ton 
capacity. The detonator storage capacities of the magazines are 30,000 and each one road van of 
2.6-ton capacity is used for transportation of explosive. 

4. Wireless sensor system for real-time monitoring blast-induced ground vibration 

Over past decades, wireless sensor network (WSN) plays a key role in structural health 
monitoring (SHM), seismic wave monitoring and tunnel blast vibration monitoring. A WSN 
consisting of multiple sensor nodes that are connected wirelessly to a sink node (central node). 
Kim et al developed a vibrating wire WSN to monitor the tunnel construction with ZigBee 
protocol [8]. Induced vibrations in structures and ground are generally measured with micro 
electro mechanical system (MEMS) type accelerometers sensor. Each node has IEEE 802.15.4 
standard ZigBee protocol module. The range of wireless transfer is limited to 100 m [9]. Kurytnik 
et al described the feasibility of implementing ZigBee sensor network for measuring vibration 
parameters [10]. Limit values for BIGV are recommended in the standard by Directorate General 
of Mines Safety (DGMS) circular No.7 of 1997 in India. The permissible PPV of ground vibration 
at sensitive structure should be below 5 mm/s [11]. If blasting is conducted at a mine site, where 
there are buildings or other structures nearby, the ground vibration must be monitored. Presently, 
it has been carried out using specialized measuring equipment. Typically, the general purpose 
devices are available for measuring the peak ground acceleration (PGA), PPV and FFT spectrum 
of ground vibration signals. The device commonly used for measurement is Instantel Minimate 
plus [6]. It has two geophone sensors and one microphone sensor for monitoring ground vibrations 
and air noise. Geophone sensors are installed on the ground surface with the help of spikes and 
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data has been collected and stored in the memory of monitoring device. If the vibration limit 
exceeded, it shows afterward. Some of the high-cost devices also utilize wireless communication 
network for downloading vibration monitoring reports from the device or sending alerts, but the 
measurement data is not normally transferred in real time. Thus, to overcome the problems of 
existing device, a WSN prototype system has been developed for real- time monitoring of BIGV. 

5. Development of prototype system 

The goal of the prototype system is used as a real-time monitoring system and moreover 
inexpensive than the other devices currently available. The developed system consists of a sensor 
node and a sink node. the sensor node is based on a tri-axis MEMS accelerometer sensor (ADXL 
345, ±16 g range and sensitivity 32 mV/g), an 8-bit AVR microcontroller and a 2.4 Ghz radio 
module with a 250 kbits/s data rate shown in Fig. 4. The Micro-electromechanical systems 
(MEMS) capacitive sensor (ADXL 345) having stationary fingers inside the proof mass attached 
to the spring of particular stiffness as shown in Fig. 5. The sensitivity and bandwidth of the sensor 
will decide by proof mass and the stiffness of the spring and they are inversely related to each 
other. The capacitance changes because of the air gap changes and results in a change in output 
voltage of the differential amplifier [12]. The sensitivity and the frequency [13] of the 
accelerometer are given by Eqs. (1), (2): 

Sensitivity =  1
Applied acceleration, (1) 

݂ = ߨ12 ඨ ݇݉ , (2) 

where ݂  is resonance frequency of structure and, ܥଵ  and ܥଶ  are the capacities of gaps then  ∆ܥ = –ଵܥ  ଶ, ݇ is the stiffness of spring and ݉ is the proof of mass. The mathematical equationܥ
for the calculation of the acceleration for different values of displacement and frequency is shown 
in Eqs. (3) as: ݃ =  (3) ,ݔଶ݂ߨ

where ݃  is acceleration due to gravity and ݔ  is the displacement. An inexpensive MEMS 
accelerometer sensor (ADXL 345) with a high range (±16 g) is used for measuring the acceleration 
of vibrations. The signal comes out from the sensor is filtered with analog low pass filter with a 
50 Hz cut-off frequency and 200 Hz sampling frequency. A 16-bit A/D converter is used to convert 
the analog signal into digital form.  

 
Fig. 4. Illustration of sensor node  

in the developed WSN system 

 
Fig. 5. MEMS Capacitive type  

accelerometer sensor [14] 
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The AVR microcontroller consumes low power for measuring, data transfer and monitoring 
of the node function: controlling the wake-up and sleep nodes of the node. A 2.4 GHz radio 
module ZigBee is used with maximum 250 kbit/s transfer rates for transferring the data wirelessly 
from a sensor node to sink node with a range about 300 m outdoors. Sink (Receiver) node has one 
ZigBee module to receive information from the source node and stored in PC. Here, the ZigBee 
modules were configured with X-CTU software. After successful analysis of the BIGV of the 
sensor, it is subjected to real-time field monitoring at ACC Dungri mine. 

6. Data processing of developed prototype system 

To get more accurate vibration signal, the monitoring signal must be processed. The signal 
process includes the following. 

1) Removing the direct current (DC),  
2) Denoising, 
3) Filtering. 

6.1. Removing the DC 

The DC component signal was represented by a mathematical expression when the parameter 
conversed, and it should be removed from the original signal. Assume the vibration signals as 
follows: ݕ = ሼ݅ݕሽ, ሺ݅ =  0, 1, … , ܰ − 1ሻ. (4) 

And the mean value obtained in the form: 

ഥ ݕ = 1ܰ  ேିଵݕ
ୀ . (5) 

Remove the mean value and, the resulting signal sequences is as follows: ݕത = ሼ ܻ − = ത ሽ,    ሺ݅ݕ  0, 1, … , ܰ − 1ሻ, (6) 

where ܰ is the number of sample data points. 

6.2. Denoising 

the signal should be denoised to decrease the influence of interference signals and smooth 
vibration curve. This paper deals with the vibration signals by using the average method. The 
calculation formula is as follows: 

ݔ =  ℎே
ୀିே ,    ሺ݅ =  1, 2, … , ݉ሻ, (7) 

where ݕ is sampling data and ݔ is the results after denoising and ݉ are the numbers of data points. ℎ is the weighted average factor. and the average factor should meet the following equation:  

 ℎே 
ୀିே = 1. (8) 
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6.3. Digital filtering 

The digital filter can filter out the noise signal or false signal and improve the signal-to-noise 
ratio, reduce the interference signal, and separate the frequency components. Frequency-domain 
the analysis is adopted in the digital filtering. The expression for the frequency-domain analysis 
method is: 

ܻሺ݊ሻ  =  ሺ݇ሻேିଵܪ
ୀ ܺሺ݇ሻ݁ଶగ/ே, (9) 

where ܺ is the discrete Fourier transform of the input signal ݔ and ܪ are the frequency response 
of the filter function. ௗ݂ as the lower limit frequency and ௨݂ as upper limit frequency and ∆݂ as 
the frequency resolution. The response function of the bandpass filter is: ܪሺ݇ሻ  = ቄ1,    ሺ ௗ݂  ݇∆݂  ௨݂ሻ,0.  (10) 

According to Eqs. (9-10), the interference signal can be filtered by establishing a MATLAB 
program. 

7. Installation and outcomes of prototype at mine site 

The developed prototype was installed at different monitoring points(distances) from the blast 
face at ACC Dungri limestone mine. The mine plan of blasting vibration measuring points 
(represented as numbers 1, 2, 3, 4) is shown in Fig. 6. Eleven blast peak particle velocity were 
recorded at each marked monitoring point with WSN prototype system along with Minimate plus 
device depicts in Figs. 7. 

 
Fig. 6. Representation of different locations of the blast site 

 
a) 

 
b) 

Fig. 7. Installation of prototype along with Minimate plus device at different locations 
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The initial blasting event’s PPV captured at a distance of 500 m from blast face with the WSN 
prototype system on 8th March 2016.the design blasting pattern consists of 64 holes and each hole 
depth of 10 m with a charge of 50 kg per hole. Spacing and the burden is 4 m and 3 m. After 
blasting, the particle velocities values recorded and plotted in MATLAB shown in Fig. 8(a) and 
the PPV observed at 1.62 mm/sec. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

 
i) 

 
j) 

 
k) 

Fig. 8. a) Recorded PPV at 500 m distance, b) recorded PPV at 150 m distance, c) recorded PPV  
at 300 m distance, d) recorded PPV at 200 m distance, e) recorded PPV at 400 m distance, f) recorded  

PPV at 500 m distance, g) recorded PPV at 600 m distance, h) recorded PPV at 750 m distance,  
i) recorded PPV at 150 m distance, j) recorded PPV at 500 m distance, k) recorded PPV at 150 m distance 

Similarly, the second blast PPV recorded at a distance of 150 m from blast face with 67 holes. 
Each hole depth of 10 m with a charge of 50 kg per hole on next day i.e., 9th March 2016. Spacing 
and the burden is 5 m and 4 m. After blasting, the recorded values are plotted in MATLAB shown 
in Fig. 8(b). the PPV observed at 4.16 mm/sec. the third blast PPV recorded at a distance of  
300 m from blast face with 99 holes. Each hole depth of 10 m with a charge of 50 kg per hole. 
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Spacing and the burden is 3 m and 4 m and The PPV is 3.52 mm/sec on 10th March 2016.The 
same process can be continued for all reaming blast events. Peak particle velocity (PPV) were 
recorded at different locations (monitoring points) from blast face and shown in Figs. 8(c)-8(k). 

Table 1 depicts eleven recorded PPV with influenced parameters like distance, hole depth, 
charge per hole, spacing and burden on various days. the existing results were shown, the PPV at 
150 m monitoring point was 8.60 mm/sec higher than other measuring points. 

Table 1. Recorded PPV at various distances 

S. 
No Date Distance 

 in m (ܦ)

Hole 
depth 
(HD) 
in m 

Charge 
per hole 
(ܳ௫ ) 
in Kg 

Burden 
 in (ܤ)

m 

Spacing 
(ܵ) in m 

Number 
of holes 

(ܰ) 

Peak particle 
velocity 
(PPV) 

(mm/sec) 
1 8/03/2016 500 10 50 3 4 64 1.62 
2 9/03/2016 150 10 50 4 5 67 4.16 
3 10/03/2016 300 10 50 4 3 99 3.52 
4 11/03/2016 200 10 50 3 4 15 2.52 
5 12/03/2016 400 9 55 3 5 80 2.05 
6 14/03/2016 500 9.5 55 4 3 40 1.33 
7 15/03/2016 600 10 30 3 4 96  0.873 
8 16/03/2016 750 9.5 36.46 2.5 4 55  0.191 
9 17/03/2016 150 9.5 50 4 3 130 8.60 
10 18/03/2016 500 10 50 4 3 58 3.10 
11 19/03/2016 150 9 34.6 4 3 63 6.10 

8. Artificial neural network for predict ground vibration 

ANNs are computational models based on the biological neural networks functioning. In 
ANNs process, the information flows through interconnected elements called as neurons placed 
in distinct layers of the network. Multilayer perceptron (MLP) is the best type of ANNs consists 
of minimum three layers called as an input layer, an output layer, and intermediate or hidden layers 
[15]. Every layer of ANNs consists of at least one node. The lines between the nodes represent the 
process of flow of information from one node to the next. In this paper ANNs approach aimed to 
compare the ground vibrations measured and predicted by the analytical program with the real 
data. Several predictor equations have been proposed by various researchers to predict ground 
vibration prior to blasting, but these are site specific and not generally applicable beyond the 
specific conditions. for prediction of peak particle velocity, Neural network has many approaches, 
one of is Back-propagation neural network. 

8.1. Back-propagation neural network 

A neural network must be trained before interpreting new information. Numerous algorithms 
are existing to train the neural network. One of the popular methods is Back-propagation. It gives 
effective learning process and least error. The Feed-forward back-propagation neural network 
(BPNN) contains two or more layers called input layer, hidden layer, and an output layer, as shown 
in Fig. 9. Every layer incorporates a number of processing elements(neurons) and each element is 
associated with the following layer through weights [5]. While train the neural network, 
information is processed from the input layer to output layer through the hidden layer. At the 
output layer, the predicted and measured values are compared and the found error sent back 
through the back-pass network for updating the individual weights of the connections and biases 
of the individual elements. The procedure has repeated for all train pairs to get a minimum 
mean-square error (MSE) and root-mean square error (RMSE) by using gradient descent 
algorithm [16, 17]. 



2836. MONITORING OF BLAST-INDUCED GROUND VIBRATION USING WSN AND PREDICTION WITH AN ANN APPROACH OF ACC DUNGRI 
LIMESTONE MINE, INDIA. PRASHANTH RAGAM, D. S. NIMAJE 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAR 2018, VOL. 20, ISSUE 2. ISSN 1392-8716 1059 

 
Fig. 9. Back-propagation neural network [16] 

9. Network architecture 

One of the objectives of the present work predicts the PPV from influence parameters such as 
distance, hole depth, spacing, burden and charge per hole. Here, Feed-forward network is 
considered as this architecture is reported to be suitable for problem-based on problem 
identification. A three-layer, feed-forward back propagation neural network consists of 6 input 
parameters, 5 hidden neurons, and one output parameters were trained. The number of input 
parameters taken was six for ANN and Multivariate regression analysis (MVRA). They were 
distance, hole depth, charge per hole, burden, spacing, and a number of holes. MVRA is a one of 
the well-known method used to derive the relationship between a dependent variable and one or 
more independent variables. MVRA model was developed based on the same input-independent 
variables and output-dependent variables as used in ANN model. This resulted in the following 
equation:  ܸܲܲ = 15.33644 − 0.00874 ሺܦ, ݉ሻ − 0.75903 ሺܦܪ, ݉ሻ − 0.00965 ሺܳmax, ,ܤሻ      +0.035712 ሺ݃ܭ ݉ሻ– 0.84386ሺܵ, ݉ሻ + 0.027468ሺܰሻ. (11) 

Table 2. Error calculation of PPV predicted of ACC by ANN and MVRA 
S. 
No 

Recorded 
PPV 

Predicted PPV by 
ANN 

Standard 
error 

Predicted PPV by 
MVRA 

Standard 
error 

1 1.62 1.4166 0.2034 0.9698 0.6502 
2 4.16 3.9887 0.1713 2.9968 1.1632 
3 3.52 3.8264 0.3064 5.0004 1.4804 
4 2.52 2.2262 0.2938 3.9994 1.4794 
5 2.05 2.4248 0.3748 0.9898 1.0602 
6 1.33 1.4988 0.1688 2.9854 1.6554 
7 0.873 0.4962 0.3768 1.9684 1.0954 
8 0.191 0.4122 0.2212 2.0012 1.8102 
9 8.60 8.0008 0.5992 6.1288 2.4712 
10 3.10 3.6254 0.5254 4.9866 1.8866 
11 6.10 6.6888 0.5888 4.1212 1.9788 

Table 2 shows the error calculation of PPV predicted by both ANN and MVRA. It shows that 
the error generated from a prediction in ANN is lesser than the statistical analysis. The maximum 
and minimum error generated by ANN was 0.5992 and 0.1688 respectively whereas the maximum 
and minimum error generated by MVRA was 2.4712 and 0.6502 respectively. Figs. 10-11 show 
the regression analysis of ANN and MVRA. The coefficient of determination (ܴଶ) determined by 
ANN & MVRA was 0.9763 and 0.5246 respectively. Figs. 12-13 show the line graph comparison 
between the recorded and predicted PPV by ANN and MVRA and Figs. 14-15 depict the line and 
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bar graph comparison between the recorded and predicted PPV by ANN and MVRA.  

 
Fig. 10. Regression analysis between recorded  

and ANN predicted PPV 

 
Fig. 11. Regression analysis between recorded  

and MVRA predicted PPV 
 

 
Fig. 12. Recorded vs. ANN predicted PPV 

 
Fig. 13. Recorded vs. MVRA predicted PPV 

 

 
Fig. 14. Comparison of PPV predictor models 

 
Fig. 15. Comparison of PPV 

Table 3. Predicted PPV at various distances from the source of blasting  
for different weights of explosive charge per blast 

Total charge per blast (kg) Predicted PPV (mm/sec) at different distances (m)  
At 100 m At 200 m At 400 m At 600 m At 800 m At 1000 m At 2000 m 

750 3.53 3.01 2.55 1.67 1.24 1.02 0.56 
1500 4.02 3.22 2.64 1.73 1.27 1.08 0.59 
2000 4.11 3.41 2.68 1.78 1.33 1.12 0.61 
3000 4.20 3.63 2.72 1.84 1.36 1.18 0.64 
4000 4.44 3.73 2.78 1.88 1.42 1.23 0.67 
5000 4.62 3.81 2.85 1.92 1.50 1.29 0.73 
6000 4.86 3.89 2.91 1.95 1.60 1.33 0.77 
7000 4.93 4.02 2.96 1.99 1.72 1.37 0.79 
8000 6.21 5.11 4.01 3.04 2.82 1.42 0.81 
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10. Results and discussion 

Back propagation ANN model with Levenberg-Marquardt training algorithm was considered 
and concluded that ANN model is more appropriate for prediction of PPV to protect surrounding 
environment and structure in the limestone mines. The parameters such as explosive and distance 
as input and PPV as output were considered in cases of ANN and predictor models. All the 
empirical equation shows less correlation value than that by ANN approach. Hence it is concluded 
that the ANN approach has strong potential to predict the PPV. The predicted PPV at different 
monitoring points around the mine are predicted shown in Table 3. 

11. Conclusions 

The final developed prototype system is a MEMS-based accelerometer sensor that can be 
installed in the mines as a wireless sensor network to monitor PPV of a blast-induced ground 
vibration. Eleven blast PPV values are captured at different distances from blast face. The real 
time data has been transmitted and monitored at the office. The PPV at 150 m monitoring point 
was recorded higher than other measuring points. ANN predicted PPV closely matches with the 
results of measured data. The results obtained by ANN are highly encouraging and satisfactory. 
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