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Abstract. Torsional vibration dampers (TVDs) are essential components for reducing the 
torsional vibration of a vehicle power transmission system (VPTS). This paper presents a new 
parameter optimization method for designing TVDs. The method combines the modal inertia and 
energy methods by adjusting the modal inertia method using an adjustment factor that is optimized 
using the energy method. The optimization of TVD parameters seeks to minimize the maximum 
torsional elastic potential energy of the rear axle near the resonance speed, so that the design 
variables can be optimized by a manual search process. The proposed method is employed to 
optimize the parameters of single-stage, two-stage parallel, and two-stage series TVDs coupled to 
a model VPTS. The damping effects of TVDs optimized by the modal inertia method, the energy 
method, and the proposed method were compared and analyzed, and the calculation efficiencies 
of the methods were evaluated. Results show that the proposed method provides better damping 
effects than the modal inertia method, and also provides far better computing efficiency than the 
energy method. 
Keywords: torsional vibration, torsional vibration damper, adjustment factor, parameter 
optimization, computing efficiency. 

1. Introduction 

Torsional vibration is a significant type of vibration that generally occurs in vehicle power 
transmission systems (VPTSs). Severe torsional vibration can greatly affect not only the driving 
comfort of a vehicle, but also the durability of vehicle components. In addition, the noise,  
vibration, and harshness (NVH) performance requirements of vehicles are subject to increasingly 
severe constraints, and commonly employed clutch torsional vibration dampers (TVDs), which 
are relatively inexpensive, may not conform to modern damping requirements. Moreover, dual 
mass flywheel type TVDs, which provide better NVH performance, are too expensive for use in 
economical passenger vehicles. As a result, equipping VPTSs with economical and suitably 
high-performance TVDs has become increasingly urgent. 

From a design perspective, TVDs provide a better damping effect with increasing moment of 
inertia (abbreviated henceforth as inertia) under optimally tuned conditions [1], and under constant 
inertia conditions, the damping effect can be improved by dividing a single-stage TVD into a 
multi-stage TVD comprising some number of stages [2]. However, providing an ever-increasing 
inertia requires increasing the mass of the components, which runs counter to the requirements for 
designing lightweight vehicles. In addition, increasing the number of TVD stages generally 
increases the costs, and each TVD stage requires additional space, which introduces additional 
design and installation challenges. From this perspective, improving current design optimization 
methods provides a necessary avenue for designing relatively low cost TVDs that meet both 
design specifications and damping performance requirements.  

Current TVD designs have widely employed rubber components due to their low cost and 
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convenience. At present, comprehensive investigations have been conducted to optimize and 
match the kinetic parameters of rubber TVDs [2-7]. However, these investigations have mainly 
focused on suppressing the torsional vibrations of crankshafts. The operational principles of TVDs 
are similar to those of dynamic vibration absorbers (DVAs) and tuned mass dampers (TMDs), 
where a matched TVD facilitates anti-resonance in the VPTS, and greatly reduces vibration at the 
nature frequency. Nonetheless, intense vibration may occur in the TVD. 

Research regarding the vibration suppression of undamped and damped systems with a single 
degree of freedom (SDOF) have been well-established, and evaluation criteria have primarily 
included the suppression of their vibration amplitudes (ܪஶ) [8], nonlinear responses [9], energy 
over their entire frequency range (ܪଶ) [10], transient responses [11] and their accelerations [12], 
and the suppressed frequency bandwidth and stability of the main system [13]. However, studies 
regarding the vibration suppression of systems with multiple degrees of freedom (MDOF) started 
relatively late. Lagrange’s interpolation algorithm has been utilized to calculate the system transfer 
function [14], and optimization was conducted using the damped least square feasible direction 
method. However, only dynamic systems with no more than 8 degrees of freedom (DOF) could 
be effectively studied due to the poor computing power at that time and the limited calculation 
accuracy of the Lagrange interpolation algorithm. More recently, single or multiple vibration 
modes of a main system were suppressed by rationally optimizing the parameters of one or more 
DVAs according to a minimum power flow criterion [15]. Ozer and Royston [16] employed 
invariant point theory developed by Den Hartog for undamped MDOF systems to establish 
equations for the optimal parameters of DVAs through Sherman-Morrison matrix inversion  
theory. Thus, a semi-analytical optimal design method was developed. Ozer and Royston [17] 
again utilized matrix inversion theory to further investigate suppressing the vibrations of a damped 
MDOF system by optimizing the parameters of DVAs based on the weighted and minimized 
responses of SDOF or more DOF. Vakakis and Paipetis [18] utilized the polynomial method to 
minimize the transmissibility between two DOF to optimize the parameters of DVAs in an 
undamped MDOF system. Kitis et al. [19] proposed a method for optimizing the parameters of 
dual DVAs by minimizing the transmissibility between two DOF for a damped MDOF system. 
Cunniff [20] employed the Newton iteration method to search the maximum vibration responses 
of a main system, and the optimal parameters of DVAs were obtained by optimization using the 
quasi-Newton Method. Marano et al. [21] achieved multi-objective optimization by minimizing 
the maximum standard deviation of the acceleration of a SDOF and the failure probability of 
TMDs in damped MDOF systems. Lavan and Daniel [22] proposed a fast-converging and efficient 
method to minimize the total mass of multiple TMDs, and the allowable acceleration of each DOF 
was employed as a constraint for the suppression of multiple vibration modes in three dimensions 
for irregularly shaped buildings (an MDOF system). 

Regarding the parameter optimization of TVDs for systems with MDOF, we note that, while 
minimizing the vibration amplitude peak of a SDOF can certainly reduce the vibrational energy 
of a main MDOF system, the optimum damping effect of TVDs on the other DOF cannot be 
assured. In addition, minimizing the sum of the vibration amplitude peaks of all DOF will certainly 
suppress the vibration of every SDOF; however, phase differences between each SDOF will 
prevent each SDOF from simultaneously attaining a maximum response. Therefore, this method 
cannot guarantee the full absorption of the vibrational energy of the entire system over any single 
period of oscillation.  

Currently, the modal inertia and energy methods are most widely employed for the parameter 
optimization of TVDs when the vibration control of the overall VPTS or several DOF is taken as 
the evaluation criterion. According to Den Hartog’s optimally tuned condition, an MDOF system 
in the modal inertia method is equivalent to a modal system based on the mode shape employed 
to match its TVD, and an analytical solution can be obtained efficiently without calculating 
vibration responses [2, 23]. However, the influence of damping effects between DOF is not taken 
into account, which is not appropriate for a damped MDOF system such as a VPTS. Therefore, 
the TVD parameters obtained by the modal inertia method does not represent an optimal solution 
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when damping effects are taken into account. In contrast, the energy method considers the 
influence of damping by means of calculating responses. However, while this provides an optimal 
solution when damping effects are taken into account, it does so with a much lower computational 
efficiency. As a result, obtaining an optimal solution requires considerable time, particularly a 
multi-stage TVD resonating on a main system with a large number of DOF. 

In this paper, we combine the advantages of the modal inertia and energy methods and mitigate 
their disadvantages by adjusting the modal inertia method using an adjustment factor that is 
optimized using the energy method. Our work is based on a modeled VPTS of a front-engine, 
rear-drive vehicle. Through the proposed approach, a reasonable matching between a TVD and 
the VPTS are realized, and the torsional vibration amplitude and maximum torsional elastic 
potential energy (TEPE) of the VPTS are reduced. 

2. MDOF torsional vibration model of a VPTS 

Due to the complicated structure of a VPTS, the lumped mass method was utilized to simplify 
the torsional vibration model, which means that a forced vibration model was established by taking 
the engine output torque as the excitation source. In accordance with the principle of simplification 
and equivalent calculation method [3], the inertia of each SDOF, the torsional stiffness, and 
damping coefficient beginning with the intermediate shaft of the gearbox were rendered equal to 
the engine crankshaft, depending on the transmission ratio of the gear wheels. Accordingly, a  
39-DOF torsional vibration model was established, as shown in Fig. 1. The definitions of the 
inertia terms for the different components of the VPTS represented by each SDOF are listed in 
Table 1. 

 
Fig. 1. VPTS torsional vibration model 

The torsional vibration equation of the VPTS is: ߠܬሷ + ሶߠܥ + ߠܭ = ܶ, (1)

where θ, ߠሶ , and ߠሷ  represent angular displacement, angular velocity and angular acceleration 39×1 
column vectors, respectively. ܶ  represents the column vector of the excitation torque, i.e.,  ܶ = [0,0,0,0, ହܶ, 0, ଻ܶ, 0, ଽܶ, 0, ଵܶଵ, 0, ⋯ ,0]ଷଽ×ଵ் , and ܬ ܥ , , and ܭ  represent the 39×39 inertia  
matrix, the torsional damping matrix, and the torsional stiffness matrix, respectively, which are 
expressed as follows: 

ܬ = ൦ܬଵ ଶܬ     ଷଽܬ    ⋰     
൪, (2)
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ܥ =
ێێۏ
ێێێ
ۍ ଵܥଵܥ−      ଵܥ−ଵܥ + ସܥ−ଶܥ ହܥ+ସܥ⋰ଶܥ−   + ଷ଻ܥ−ହᇱܥ

ଷ଻ܥ⋰ହܥ−   + ଷ଼ܥ
ଷ଼ܥ−ଷ଼ܥ−     

    
ଷ଼ܥ + ۑۑےଷଽܥ

ۑۑۑ
ې
, (3)

ܭ = ێێۏ
ۍێ ଵܭ   ଵܭ−  ଵܭ−ଵܭ + ଷ଻ܭ−ଶܭ ଷ଻ܭ⋰ଶܭ−    + ଷ଼ܭ−   ଷ଼ܭ−    ଷ଼ܭ

ଷ଼ܭ    + ۑۑےଷଽܭ
(4) .ېۑ

Table 1. Definitions of the different DOF 
Symbol Definition ܬଵ Inertia of the torsion damper at the free end of the engine crankshaft ܬଶ, ܬଷ, ܬଵଷ, and ܬଵସ Inertia values of the stepped shafts ܬସ, ܬ଺, ଼ܬ ݅) ௜ܭ ଷଽ Equivalent inertia of wheels and the entire vehicleܬ ଷ଼ Inertia values of the two half-axlesܬ ଷ଻ andܬ ଷ଺ Inertia of the differential mechanismܬ ଷହ Inertia values of the main reducer driving and driven bevel gearܬ ଷସ andܬ ଷଷ Inertia of the rear universal jointܬ ଷଶ Inertia values of the rear half shaftܬ ,ଷଵܬ ,ଷ଴ܬ ଶଽ Inertia of the intermediate universal jointܬ ଶ଼ Inertia of the intermediate splineܬ ଶ଻ Inertia of the front half shaftܬ ଶ଺ Inertia of the front universal joint and internal splineܬ ଶହ Inertia values of the output shaft of the gearboxܬ ଶସ, andܬ ,ଶଷܬ ,ଶଶܬ ଶଵ Inertia values of the intermediate shaft of the gearboxܬ ଶ଴ andܬ ଵଽ Inertia values of the driven part of the clutch and input shaft of the gearboxܬ ଵ଼, andܬ ,ଵ଻ܬ ,ଵ଺ܬ ଵହ Inertia values of the flywheel and driving part of the clutchܬ ଵଵ Inertia values of the 4 cylinder crank-connecting rod mechanismsܬ ଽ, andܬ ,଻ܬ ,ହܬ ଵଶ Inertia values of the main journalܬ ଵ଴, andܬ , = 1, 2, …, 38) Torsional stiffness between various DOF ܭଷଽ Torsional stiffness of tires ܥ௜ (݅ = 1, 2, …, 38) Torsional damping coefficient between various DOF ܥଷଽ Torsional damping coefficient of tires ܥହᇱ ଻ᇱܥ , ଵଵᇱܥ ଽᇱ, andܥ ,  External damping coefficients of the 4 cylinder piston crank-connecting rod 

mechanisms 

The output torque of each cylinder can be presented according to a Fourier series expansion to 
determine each harmonic excitation torque. Considering that the firing order is 1-3-4-2, the output 
torque values of the four cylinders can be derived as follows: 

ହܶ = ଴ܣ + ෍ ݐ߱݊)௡sinܣ + ߮௡)ஶ
௡ୀ଴.ହ , (5)

଻ܶ = ଴ܣ + ෍ ݐ߱)݊]௡sinܣ − (ߨ3 + ߮௡ஶ
௡ୀ଴.ହ ], (6)

ଽܶ = ଴ܣ + ෍ ݐ߱)݊]௡sinܣ − (ߨ + ߮௡ஶ
௡ୀ଴.ହ ], (7)
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ଵܶଵ = ଴ܣ + ෍ ݐ߱)݊]௡sinܣ − (ߨ2 + ߮௡ஶ
௡ୀ଴.ହ ]. (8)

Here, ܣ଴ represents the average output torque of a single cylinder, ܣ௡ represents the amplitude 
of the ݊th order torque, ߱ represents the excitation frequency, ݐ is time, and ߮௡ represents the 
phase angle of the ݊th order torque of the first cylinder (݊ = 0.5, 1, 1.5, 2, …). 

The harmonic superposition method was employed to solve for the vibration amplitude of each 
SDOF. As shown in Fig. 2, the vibration amplitudes at the input ends of the gearbox, driveshaft, 
and rear axle all peak at an engine speed of about 1500 rpm, which represents a resonance 
phenomenon in the VPTS. This phenomenon can be reduced by a TVD. 

 
Fig. 2. Amplitudes of different DOF 

 
Fig. 3. Third order mode shape of the VPTS 

Prior to optimization, a natural characteristics analysis was firstly conducted for the torsional 
vibration model. Here, an undamped free vibration model is generally utilized to simplify the 
calculation:  ߠܬሷ + ߠܭ = 0. (9)

The characteristic equation was solved to obtain the third order natural frequency (50.58 Hz) 
corresponding to the resonance rotation speed at about 1500 rpm. The corresponding mode shape 
is shown in Fig. 3, which indicates that the torsional vibration of the complete engine crankshaft 
(DOF ܬଵ-ܬଵହ) is inconspicuous, the clutch (DOF ܬଵହ and ܬଵ଺) undergoes large deformation due to 
its low torsional stiffness, which is much less than that of the other shaft segments, the vibration 
enlarges continuously as the transmission power passes through the input shaft (DOF ܬଵ଺-ܬଵଽ), 
intermediate shaft (DOF ܬଶ଴ and ܬଶଵ), and output shaft(DOF ܬଶଶ-ܬଶହ) of the gearbox, the complete 
driveshaft (DOF ܬଶ଺-ܬଷଷ) and main reducer (DOF ܬଷସ and ܬଷହ) vibrate increasingly violently, and 
the vibration decreases rapidly as the transmission power passes through the differential 
mechanism (SDOF ܬଷ଺), half-axles (DOF ܬଷ଻ and ܬଷ଼), and reaches the tires (SDOF ܬଷଽ). 

In an MDOF system, the SDOF having the largest amplitude is equipped with a TVD to absorb 
the greatest amount of vibrational energy. According to the vibration characteristics of the model 
VPTS and actual situations, a TVD can be optionally equipped at the back end (SDOF ܬଷଶ) of the 
driveshaft. The mechanical model is shown in Fig. 4, where ܬ௧௩ௗᇱ ௧௩ௗᇱܭ , , and ܥ௧௩ௗᇱ  represent the 
equivalent inertia, torsional stiffness, and torsional damping coefficient of the crankshaft for the 
TVD, respectively. Then, the torsional vibration equation is established as follows: ܬସ଴×ସ଴ߠሷସ଴×ଵ + ሶସ଴×ଵߠସ଴×ସ଴ܥ + ସ଴×ଵߠସ଴×ସ଴ܭ = ସܶ଴×ଵ. (10)
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Fig. 4. Mechanical matching model of the TVD 

 
Fig. 5. TVD and modal inertia 

3. Description of modal inertia and energy methods 

3.1. Modal inertia method 

The modal inertia method regards the MDOF system as a SDOF system in the vibration mode 
according to the equivalent vibrational energy [23]. By assuming a harmonic solution  ߠ௜ = Θ௜sin(߱ݐ), where ߠ௜ is the vibration response and Θ௜ is the vibration amplitude of the ݅th 
DOF. Hence, the velocity of the ݅th DOF is ߠሶ௜ = Θ௜߱cos(߱ݐ), and the kinetic energy of the 
MDOF system is ெܶ = ଵଶ ∑ ௜ଷଽ௜ୀଵܬ  ሶ௜ଶ. Assuming an installation of the TVD on the ݆th DOF, and theߠ
motion of the ݆th DOF can be replaced by SDOF ܬ௦, such that the kinetic energy is ௝ܶ = ଵଶ  ,ሶ௝ଶߠ௦ܬ
assuming that ௝ܶ = ெܶ, the equivalent inertia (modal inertia) is obtained as follows: 

௦ܬ = 1Θ௝ଶ ଵΘଵଶܬ) + ଶΘଶଶܬ + ⋯ + ଷଽΘଷଽଶܬ ). (11)

The relative vibration amplitude of each SDOF in the vibration mode for an undamped system 
can be represented by the mode shape ൣݕଵ ⋯ ௝ݕ ⋯  :ଷଽ൧், which yieldsݕ

௦ܬ = ௝ଶݕ1 ଵଶݕଵܬ) + ଶଶݕଶܬ + ⋯ + ଷଽଶݕଷଽܬ ). (12)

A mechanical model of ܬ௦ subjected to unit harmonic excitation coupled to a TVD is shown in 
Fig. 5, where the modal stiffness (ܭ௦) can be calculated by the expression ߱௡ = ඥܭ௦ ⁄௦ܬ , and ߱௡ 
represents the natural frequency of the main system. The optimal torsional stiffness (ܭ௧௩ௗ) and 
damping coefficient (ܥ௧௩ௗ) of a single-stage TVD can be solved from analytic solutions obtained 
in accordance with Den Hartog’s optimally tuned formula [2, 3]: ߱௔߱௡ = 11 + ߤ ௖ܥ௧௩ௗܥ    , = ඨ 1)8ߤ3 + ଷ, (13)(ߤ

where: ߱௔ = ඥܭ௧௩ௗ ⁄௧௩ௗܬ  represents the natural frequency of the TVD, ߤ = ௧௩ௗܬ ⁄௦ܬ  represents the 
ratio of the inertia of the TVD to ܬ௦; and ܥ௖ =  .௧௩ௗ߱௡ represents the critical damping coefficientܬ2

3.2. Energy method 

In this method, the torsional stiffness and torsional damping coefficient of the TVD are taken 
as design variables, and as the constraint condition, the torsional vibration torque of each shaft 
section in the torsional vibration system should be less than the corresponding allowable torque. 
Because the torsional vibration of the rear axle dominates the overall NVH performance, the 
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objective function seeks to minimize the maximum TEPE of the rear axle (beginning with 
component ݅ = 33), which is equipped with a TVD. The optimization model is as follows: min               ܭ)ܧ௧௩ௗ, (௧௩ௗܥ = max൫ܨ௝൯,      ݆ = 1,2, ⋯ , ଵܨ,݉ = maxఠୀఠభ଴ஸ௧ஸ భ் ൝ ෍ 12 ௜ܭ ∗ (ݐ)௜ߠ] − ଶଷ଼[(ݐ)௜ାଵߠ

௜ୀଷଷ + 12 ଷଽܭ ∗ ଶൡ(ݐ)ଷଽߠ ,
ଶܨ = maxఠୀఠమ଴ஸ௧ஸ మ் ൝ ෍ 12 ௜ܭ ∗ (ݐ)௜ߠ] − ଶଷ଼[(ݐ)௜ାଵߠ

௜ୀଷଷ + 12 ଷଽܭ ∗ ଶൡ(ݐ)ଷଽߠ ௠ܨ⋮                                                           , = maxఠୀఠ೘଴ஸ௧ஸ ೘் ൝ ෍ 12 ௜ܭ ∗ (ݐ)௜ߠ] − ଶଷ଼[(ݐ)௜ାଵߠ
௜ୀଷଷ + 12 ଷଽܭ ∗ ଶൡ(ݐ)ଷଽߠ .ݏ, ,௧௩ௗܭ)ܩ                         .ݐ (௧௩ௗܥ ≤ 0,

 (14)

Here, ܨ௠ is the maximum TEPE of the rear axle when ߱ = ߱௠, ܧ is the maximum TEPE of 
the rear axle near the resonance speed. we also note that the corresponding frequency ߱ near the 
resonance speed was divided into ݉ – 1 equal parts, i.e., ߱ଵ, ߱ଶ, … , ߱௠, which represents an even 
number of points; and ௠ܶ is the time period of the torsional vibration system when ߱ = ߱௠. The 
crankshaft completes two revolutions during a single excitation period, and the 0.5th order 
excitation has the largest time period in multiple frequency excitation; therefore  ௠ܶ = ,௧௩ௗܭ)ܩ ,Finally .(0.5߱௠)/ߨ4  ௧௩ௗ) represents the inequality constraints. The responses ofܥ
various-order excitation torque are superimposed to obtain the response of each SDOF based on 
the linear superposition principle: 

ସ଴×ଵߠ = ෍ ܺ௡݁௜(௡ఠ௧ାఝ೙)ஶ
௡ୀ଴.ହ , (15)

where ܺ௡  represents the column vector of the vibration amplitudes subjected to the ݊th order 
excitation torque of the torsional vibration system. The corresponding steady-state solution of 
vibration responses is given by the imaginary part of Eq. (15). 

4. The proposed method 

To consider the damping effect between various shaft sections, the MDOF system can be 
equivalent to a SDOF system, as shown in Fig. 6, in which ܥ௦ is the modal damping coefficient. 
The value of ܥ௦ can be obtained in accordance with the equal dissipated energy for the MDOF 
system and the equivalent SDOF system in the vibration mode. The dissipated energy of the 
MDOF system in the vibration mode can be obtained as follows: 

ଵܹ = ෍ ௡(Θ௜߱ߨ௜ܥ − Θ௜ାଵ)ଶଷ଼
௜ୀଵ + ௡Θଷଽଶ߱ߨଷଽܥ + ௡Θହଶ߱ߨହᇱܥ + ௡Θଽଶ߱ߨଽᇱܥ+       ௡Θ଻ଶ߱ߨ଻ᇱܥ + ଵଵᇱܥ ௡Θଵଵଶ߱ߨ . (16)

The dissipated energy of the SDOF system is given by: 

ଶܹ = ௡Θ௝ଶ. (17)߱ߨ௦ܥ

By equating ଵܹ and ଶܹ, we obtain the expression for ܥ௦: 
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௦ܥ = ∑ ௜ݕ)௜ܥ − ௜ାଵ)ଶଷ଼௜ୀଵݕ + ଷଽଶݕଷଽܥ + ହଶݕହᇱܥ + ଻ଶݕ଻ᇱܥ + ଽଶݕଽᇱܥ + ଵଵᇱܥ ௝ଶݕଵଵଶݕ . (18)

 

 
Fig. 6. Equivalent damped SDOF system 

 
Fig. 7. TVD and an equivalent damped SDOF 

As for a damped MDOF system subject to a harmonic torque, we assume a harmonic solution ߠ௜ = Θ௜sin(߱ݐ +  ௜ is the phase angle of the ݅th DOF. Hence, the velocity of the ݅thߙ ௜), whereߙ
DOF is ߠሶ௜ = ߱Θ௜cos(߱ݐ + ௜), and the kinetic energy of the MDOF system is ெܶߙ = ଵଶ ∑ ௜ଷଽ௜ୀଵܬ  .௜ଶߠ
Assuming that the TVD is installed on the ݆th DOF, and the motion of the ݆th DOF can be replaced 
by a vibrational SDOF. On the basis of energy-equivalence principle described in section 3.1, the 
inertia of the SDOF can be obtained as follows: 

ఠܬ = 1หΘ௝หଶ ቆܬଵ|Θଵ|ଶcosଶ(߱ݐ + ݐ߱)ଵ)cosଶߙ + (௝ߙ + ݐ߱)ଶ|Θଶ|ଶcosଶܬ + ݐ߱)ଶ)cosଶߙ + (௝ߙ + ⋯
+ ݐ߱)ଷଽ|Θଷଽ|ଶcosଶܬ + ݐ߱)௡)cosଶߙ + (௝ߙ ቇ. (19)

When ߱ = ߱௡,  discrepancies develop between the actual relative vibration amplitude 
relationships of various DOF and the mode shape, and the damping effect may lead to a decrease 
in the relative vibration. By assuming that the ݆th DOF has the largest vibration amplitudes in 
undamped and damped MDOF systems, we obtain: |Θଵ|ଶหΘ௝หଶ > ௝ଶݕଵଶݕ ,     |Θଶ|ଶหΘ௝หଶ > ௝ଶݕଶଶݕ , …,    |Θଷଽ|ଶหΘ௝หଶ > ௝ଶݕଷଽଶݕ . (20)

The viscous damping effect induces phase differences between various DOF, and we note from 
Eq. (19) that ܬఠ  varies with respect to ݐ  during a period of oscillation (i.e., ܶ = ߱/ߨ2 ). 
Consequently, the TVD optimized by the modal inertia method is inaccurate from the perspective 
of equivalent energy. 

In Fig. 7, we assume that there is a set of optimal parameters of ܬఠ, ܭఠ, and ܥఠ can provide 
the TVD with best damping effect for MDOF system. Assume that the relationship of ܬఠ and ܬ௦ is 
given by: ܬఠ = ௦, (21)ܬߚ

where ߚ is defined as adjustment factor. To ensure that ߱௡ and damping ratio (ܥ௦ ⁄(௦߱௡ܬ2) ) do 
not change, the ܭ௦ and ܥ௦ are also adjusted proportionately with respect to ܬ௦, thus: ܭఠ = ఠܥ     ,௦ܭߚ = ௦. (22)ܥߚ

For an undamped MDOF system, the TVD with parameters optimized by the modal inertia 
method splits the original energy peak of the main system into two smaller and equal peaks. 

Js

Ks

 Cs
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However, for a damped MDOF system, the modal inertia method cannot provide two smaller 
energy peaks of equal height. In Fig. 7, ܬఠ may be considered as being adjusted properly to provide 
two smaller energy peaks of the same height. A TVD is employed to absorb excess system energy, 
and the modal inertia is adjusted to absorb more energy. From this perspective, the appropriate 
adjustment factor ߚ can be optimized by minimizing the maximum TEPE of the rear axle near the 
resonance speed. 

For the optimization of TVD parameters in Fig. 7, a numerical optimization method is 
generally employed to minimize the maximal vibration amplitude of ܬఠ, thus to ensure that all 
peak values are of equivalent heights. Through calculation, the expression for the parameters of 
the TVD in terms of ߚ can be obtained: ܭ௧௩ௗ = ௧௩ௗܥ     ,(ߚ)݂ = (23) .(ߚ)݃

The substitution of Eq. (23) into Eq. (14) yields the following TEPE optimization model  
for ߚ: min               (ߚ)ܧ = max൫ܨ௝൯,      ݆ = 1,2, ⋯ , ଵܨ,݉ = maxఠୀఠభ଴ஸ௧ஸ భ் ൝ ෍ 12 ௜ܭ ∗ (ݐ)௜ߠ] − ଶଷ଼[(ݐ)௜ାଵߠ

௜ୀଷଷ + 12 ଷଽܭ ∗ ଶൡ(ݐ)ଷଽߠ ,
ଶܨ = maxఠୀఠమ଴ஸ௧ஸ మ் ൝ ෍ 12 ௜ܭ ∗ (ݐ)௜ߠ] − ଶଷ଼[(ݐ)௜ାଵߠ

௜ୀଷଷ + 12 ଷଽܭ ∗ ଶൡ(ݐ)ଷଽߠ ௠ܨ⋮                                           , = maxఠୀఠ೘଴ஸ௧ஸ ೘் ൝ ෍ 12 ௜ܭ ∗ (ݐ)௜ߠ] − ଶଷ଼[(ݐ)௜ାଵߠ
௜ୀଷଷ + 12 ଷଽܭ ∗ ଶൡ(ݐ)ଷଽߠ .ݏ, (ߚ)ܩ                         .ݐ ≤ 0.

 (24)

5. Optimization of ࢼ 

5.1. Optimization of single-stage TVD parameters 

Based on the VPTS torsional vibration model presented in Section 2, the value of ܬ௦ calculated 
by Eq. (12) is 0.0058 Kg·m², and the value of ܥ௦ calculated by Eq. (18) is 0.1159 N·m·s/rad. By 
assuming that the value of ߤ is 0.3. The TVD parameters were calculated using Eq. (23) and the 
maximum TEPE near the resonance speed of the rear axle was calculated by Eq. (24), and the 
results are listed in Table 2 for different values of ߚ. The maximum TEPE decreases continuously 
while ߚ increases from 1 to 1.9, and increases when ߚ = 2.0. Thus, we preliminarily conclude that 
the optimal ߚ is close to 1.9. The maximum TEPE was calculated for ߚ values 1.89 and 1.91, and 
the maximum TEPE was found to obtain a minimum when ߚ = 1.9. 

The energy method given by Eq. (14) provides the following optimized TVD parameters: ܭ௧௩ௗ = 121.4572 N·m/rad, ܥ௧௩ௗ = 0.1840 N·m·s/rad, and the maximum TEPE is 0.0235 J. The 
optimized parameters obtained using the modal inertia method, the energy method, and the 
proposed method were substituted into Eq. (10), and the calculated vibration amplitudes at the 
input end of the rear axle (main reducer) are shown in Fig. 8. The figure indicates that the 
amplitude of the damped system employing TVD parameters optimized by the proposed method 
is further reduced at approximately 1500 rpm and increases slightly between 1000-1300 rpm 
compared with the amplitude when employing the TVD parameters optimized by the modal inertia 
method. On the other hand, the amplitude increases slightly between 1200-1500 rpm and decreases 
slightly between 1500-1700 rpm and is essentially equivalent at all other speeds compared with 
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the amplitude when employing the TVD parameters optimized by the energy method. 

Table 2. Optimized single-stage TVD parameters obtaining the smallest maximum TEPE value ܭ ߚ௧௩ௗ (N·m/rad) ܥ௧௩ௗ (N·m·s/rad) Maximum TEPE (ܬ) 
1 100.0081 0.2347 0.0314 

1.2 106.9978 0.2396 0.0297 
1.4 113.6095 0.2335 0.0266 
1.6 119.0559 0.2258 0.0258 
1.8 123.5345 0.2199 0.0244 
1.9 125.5297 0.2161 0.023765 
2.0 127.3565 0.2129 0.0241 

1.89 125.3525 0.2160 0.023781 
1.91 125.7167 0.2158 0.023801 

The proposed method obtains a better optimal solution than the modal inertia method, and 
within a much shorter time using a manual search of the adjustment factor than the energy method. 
From comparison tests, the proposed method is found to require less than 2 min of the computing 
time, but the energy method consumes 30 min. As such, the computing efficiency increased 
greatly while simultaneously ensuring a near optimal damping effect. 

 
Fig. 8. Vibration amplitudes at the input end of the rear axle for the undamped VPTS  

and damped VPTS employing TVD parameters optimized by the various methods 

5.2. Optimization of parameters for two-stage parallel and series TVDs 

In addition to single-stage TVDs, the proposed method is also applicable for the optimization 
of parameters for multi-stage TVDs. For enhancing the damping effect, a single-stage TVD may 
be converted into a two-stage parallel or series TVD, whose mechanical models are shown in  
Fig. 9. In contrast, the mechanical model of the matched MDOF system is shown in Fig. 10, whose 
torsional vibration equation is: ܬூ,ସଵ×ସଵߠሷ + ሶߠூ,ସଵ×ସଵܥ + ߠூ,ସଵ×ସଵܭ = ସܶଵ×ଵ, (25a)ܬூூ,ସଵ×ସଵߠሷ + ሶߠூூ,ସଵ×ସଵܥ + ߠூூ,ସଵ×ସଵܭ = ସܶଵ×ଵ. (25b)

In Fig. 9, a two-stage TVD will induce two new resonance frequencies near the original 
resonance frequency of ܬఠ. The presence of three close peaks tends to trap the optimization results 
in local attractive basins, which results in a less than optimal damping effect. A comparisons of 
the damping effects of the two-stage TVDs with parameters optimized using the local optimization 
solver and the global optimization solver are shown in Fig. 11 when ߚ = 1, where the excited 
frequency ratio represents ߱ ߱௡⁄ , and the vibration amplitude ratio represents the ratio of the 
vibration amplitude of ܬఠ to its static deflection (1 ⁄௦ܭ ).  
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a) Two-stage parallel TVD 

 
b) Two-stage series TVD 

Fig. 9. Mechanical models of two-stage TVDs and an equivalent damped SDOF 

 
a) Two-stage parallel TVD 

 
b) Two-stage series TVD 

Fig. 10. Mechanical models of the matched MDOF system including a two-stage TVD 

 
Fig. 11. Comparison of damping effects for the two-stage TVDs optimized  

by the local and global optimization solvers 

Fig. 11 shows that only two peaks are obtained due to the local optimization of the two-stage 
parallel TVD, which represents a much lower damping effect than when using the global 
optimization solver, and the damping effect of the two-stage series TVD with parameters 
optimized using the local optimization solver is slightly weaker than that when employing the 
global optimization solver. It must be noted that, the results of two-stage TVD parameter local 
optimization are strongly correlated to the initial values selected, and thus a global optimization 
solver must be employed. 

The optimization strategy is as follows: the total inertia of the two-stage TVDs remains 
unchanged and equal to the inertia of a single-stage TVD for optimization each time the value of ߚ is changed. The optimal parameters of the two-stage parallel and series TVDs and the maximum 
TEPE obtained based on Eq. (25) for different values of ߚ are listed in Tables 3 and 4, respectively. 
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It must be noted that, the torsional damping coefficient of rubber is generally between  
0.05-0.4 N·m·s/rad, which should be the range of damping coefficient for optimization. 

For the two-stage parallel TVD, the maximum TEPE decreases continuously with increasing ߚ from 1 to 2.1, and then increases for ߚ = 2.2. Thus, we preliminarily conclude that the optimal 
value of ߚ is close to 2.1. The maximum TEPE was calculated for ߚ ranging from 2.09 to 2.06, 
and the maximum TEPE obtained a minimum value when ߚ = 2.07. 

For the two-stage series TVD, the maximum TEPE decreases continuously with increasing ߚ 
from 1 to 1.9, and then increases for ߚ = 2.0. Thus, we preliminarily conclude that the optimal 
value of ߚ is close to 1.9. The maximum TEPE was calculated for ߚ ranging from 1.89 to 1.87, 
and the maximum TEPE obtained a minimum value when ߚ = 1.88. 

The damping effects of the TVD with parameters optimized by the modal inertia method and 
the proposed method were compared, and the vibration amplitudes at the input end of the rear axle 
are shown in Fig. 12. The figure indicates that the amplitude near 1500 rpm has decreased 
considerably, but a small increase is observed in the range 1000-1250 rpm compared with the 
damping effect of the TVD with parameters optimized by the modal inertia method. The 
improvement in the damping effect of the two-stage series TVD is particularly obvious for a very 
small increase at engine speeds below the resonance speed.  

The following optimization model is employed for optimizing the parameters of a two-stage 
TVD using the energy method: min               ܭ)ܧ௧௩ௗଵ, ,௧௩ௗଵܥ ,௧௩ௗଶܭ ,௧௩ௗଶܥ (ଵߤ = max൫ܨ௝൯,   ݆ = 1,2, ⋯ , ଵܨ,݉ = maxఠୀఠభ଴ஸ௧ஸ భ் ൝ ෍ 12 ௜ܭ ∗ (ݐ)௜ߠ] − ଶଷ଼[(ݐ)௜ାଵߠ

௜ୀଷଷ + 12 ଷଽܭ ∗ ଶൡ(ݐ)ଷଽߠ ,
ଶܨ = maxఠୀఠమ଴ஸ௧ஸ మ் ൝ ෍ 12 ௜ܭ ∗ (ݐ)௜ߠ] − ଶଷ଼[(ݐ)௜ାଵߠ

௜ୀଷଷ + 12 ଷଽܭ ∗ ଶൡ(ݐ)ଷଽߠ ௠ܨ⋮                                                  , = maxఠୀఠ೘଴ஸ௧ஸ ೘் ൝ ෍ 12 ௜ܭ ∗ (ݐ)௜ߠ] − ଶଷ଼[(ݐ)௜ାଵߠ
௜ୀଷଷ + 12 ଷଽܭ ∗ ଶൡ(ݐ)ଷଽߠ .ݏ, ,௧௩ௗଵܭ)ܩ                         .ݐ ,௧௩ௗଵܥ ,௧௩ௗଶܭ ,௧௩ௗଶܥ (ଵߤ ≤ 0.

 (26)

Table 3. Optimized results of the two-stage parallel TVD shown in Fig. 9(a) ܭ ߚ௧௩ௗଵ 
(N·m/rad) 

 ௧௩ௗଵܥ
(N·m·s/rad) 

 ௧௩ௗଶܭ
(N·m/rad) 

 ௧௩ௗଶܥ
(N·m·s/rad) 

 ଵߤ
 (௦ܬ/௧௩ௗଵܬ)

Maximum 
TEPE (ܬ) 

1 56.4522 0.0841 51.1461 0.0981 0.1123 0.0295  
1.3 63.8788 0.0804 55.1059 0.0869 0.1202 0.0263 
1.6 66.3371 0.0742 60.1855 0.0835 0.1198 0.0248 
1.9 68.6973 0.0700 63.4844 0.0798 0.1211 0.0236 
2.0 69.9358 0.0696 63.9309 0.0777 0.1227 0.0233 
2.1 70.5329 0.0688 64.7748 0.0768 0.1231 0.0232 
2.2 64.1367 0.0571 71.5671 0.0843 0.1093 0.0236 

2.09 69.3900 0.0669 65.6768 0.0779 0.1207 0.0231 
2.08 72.4229 0.0722 62.8787 0.0744 0.1274 0.023090 
2.07 72.3477 0.0721 62.8873 0.0739 0.1271 0.023077 
2.06 70.1110 0.0691 64.6312 0.0773 0.1226 0.023106 

The problem of local convergence also exists when using the energy method. The tendency 
for the optimization results to become trapped in local attractive basins can observed in Fig. 13, 
where the damping effects of the two-stage TVDs with parameters optimized using the energy 
method with local optimization may be weaker than the damping effects obtained when the 
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parameters are optimized with global optimization. Thus, a global optimization solver must again 
be employed, and the optimization results are listed in Table 5. 

Table 4. Optimized results of the two-stage series TVD shown in Fig. 9(b) ܭ ߚ௧௩ௗଵ 
(N·m/rad) 

 ௧௩ௗଵܥ
(N·m·s/rad) 

 ௧௩ௗଶܭ
(N·m/rad) 

 ௧௩ௗଶܥ
(N·m·s/rad) 

 ଵߤ
 (௦ܬ/௧௩ௗଵܬ)

Maximum 
TEPE (ܬ) 

1 129.6381 0.0637 26.7104 0.1074 0.2008 0.0286 
1.3 137.5174 0.0508 26.3674 0.0879 0.2156 0.0253 
1.6 142.4851 0.0508 24.6342 0.0716 0.2288 0.0233 
1.9 146.2299 0.0506 22.9260 0.0606 0.2380 0.0219 
2.0 147.2810 0.0506 22.4464 0.0576 0.2405 0.0220 

1.89 146.1278 0.0506 23.0416 0.0610 0.2377 0.021908 
1.88 145.9189 0.0500 22.7837 0.0606 0.2378 0.021885 
1.87 145.9189 0.0500 22.7837 0.0606 0.2377 0.021915 

Table 5. TVD parameter results optimized by the energy method with global optimization 

 ௧௩ௗଵܭ 
(N·m/rad) 

 ௧௩ௗଵܥ
(N·m·s/rad) 

 ௧௩ௗଶܭ
(N·m/rad) 

 ௧௩ௗଶܥ
(N·m·s/rad) 

 ଵߤ
 (௦ܬ/௧௩ௗଵܬ)

Maximum 
TEPE (ܬ) 

Two-stage 
parallel 
TVD 

54.1103 0.0503 64.0730 0.0931 0.1087 0.0228 

Two-stage 
series TVD 125.6472 0.0546 16.8626 0.0763 0.2330 0.0216 

 

 
Fig. 12. Comparison of damping effects for the 

modal inertia and proposed methods 

 
Fig. 13. Comparison of damping effects for the 

energy method with local and global optimizations 

The damping effects of the two-stage parallel and series TVDs optimized by the modal inertia 
method, the energy method with global optimization, and the proposed method were compared, 
and the vibration amplitudes at the input end of the rear axle are shown in Fig. 14. We can observe 
that the energy method with global optimization provided a slightly better damping effect than the 
proposed method in the 1300-1500 rpm range, although the proposed method generally produced 
a better damping effect for engine speeds greater than 1500 rpm. 

The energy method with global optimization has very low computing efficiency, particularly 
for the large number of DOF of the main system, such that the method requires about 4 h 
computation time when the 2nd and 4th order torques which are only considered as the main 
causes for torsional vibration. The multiple design variables must be optimized by the energy 
method using a complex model like that shown in Fig. 1, for which the vibration responses must 
be solved. In contrast, the proposed method translates the multiple design variables into a single 
optimal design variable ߚ obtained by global optimization on the basis of the simplified model in 
Fig. 9, which provides low complexity and high computing efficiency, and requires about only 
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10 min. In addition, it is far more efficient to apply global optimization to the model in Fig. 9 than 
in the VPTS model shown in Fig. 1. 

 
a) Two-stage parallel TVD 

 
b) Two-stage series TVD 

Fig. 14. Comparison of damping effects by different methods 

6. Practical applicability of the proposed damping technique 

The proposed method can be improved at the condition that the natural frequency of the 
vibration system closes to the boundaries of excitation frequency domain. Fig. 15 shows a damped 
SDOF model consists of ܬ௦, ܭ௦, and ܥ௦, and subjected to unit harmonic excitation coupled to a 
TVD. If ߱௡ closes to the lower bound of ߱, the height of the right peak can be adjusted lower than 
that of the left peak, the reason for this is that the probability of ߱ reaches the left peak frequency 
is largely less than that of the right peak.  

 
Fig. 15. TVD and a damped SDOF system 

 
a) ߱௡ close to lower boundary 

 
b) ߱௡ close to upper boundary 

Fig. 16. TVD parameters optimization for the conditions that ߱௡ close to boundaries of ߱ 
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Through comparative calculation, the value of ߚ could be selected as 1.8. Then the graph of 
vibration amplitude ratio of ܬ௦ against ߱ ߱௡⁄  is shown in Fig. 16(a). In contrast, if ߱௡ closes to the 
upper bound of ߱, the height of the left peak can be adjusted lower than that of the right peak, and ߚ could be selected as 0.65. Then the vibration amplitude graph is shown in Fig. 16(b). 

The modal inertia method and the energy method cannot adjust the heights of the two peaks in 
these special conditions, and the proposed method after improvement can provide different peak 
heights as required by adjusting β. 

Dr. Xiaodong Tan handled the work of writing the full manuscript. Dr. Lin Hua worked out a 
technology scheme of using torsional vibration damper to solve the problem of torsional vibration 
of the vehicle, and revised the manuscript at last. Dr. Chihua Lu put forward the main innovation 
point, and implemented parameters optimization by MATLAB programming. Dr. Can Yang 
established the torsional vibration model. Dr. Yongliang Wang plotted the plane graphics, and 
organized the optimization data, and created the tables. Dr. Sheng Wang translated the Chinese 
manuscript into English. 

7. Conclusions 

By considering the inherent torsional vibration characteristics of the entire VPTS as the 
starting point, we combined the modal inertia method with the energy method to propose a new 
method for optimizing the parameters of a TVD. These three methods were applied for optimizing 
the parameters of single-stage, two-stage parallel, and two-stage series TVDs for the model VPTS 
shown in Fig. 1. The proposed method provides peak values of equivalent heights (excluding the 
special conditions described in the research extension) in the energy curve by adjusting ߚ, and the 
local convergence is not existed when the TVD parameters listed in Tables 3 and 4 are in the 
condition of global convergence solutions. In addition, the proposed method has been accepted by 
the cooperative enterprise, and the production and performance test of TVDs are now being 
considered. Due to limited space, these contents will be discussed in the following research. 

The main conclusions are as follows: 
1) The vibration amplitude at the input end of the rear axle for TVD parameters optimized 

using the proposed method may increase slightly for engine speeds less than the original resonance 
speed relative to that obtained for TVD parameters optimized using the modal inertia method. 
Moreover, the vibration amplitude growth rate may rise gradually along with increasing ߚ. 

2) The method proposed in this paper combines the advantages of high computing efficiency 
provided by the modal inertia method and the excellent damping effect of the TVD using 
parameters optimized by the energy method with global optimization. On the other hand, the 
disadvantages of insufficient damping effect provided by the TVD using parameters optimized by 
the modal inertia method and the poor computing efficiency of the energy method with global 
optimization are both avoided. These merits make the proposed method very practical and 
effective in engineering applications, which can be extended to the optimal design of DVAs and 
TMDs coupled to an MDOF system. 

3) The merits of the proposed method are increasingly apparent as the number of DOF of the 
system increases, particularly when employed for the parameter optimization of multi-stage TVDs 
coupled to the system. However, the advantages are not particularly obvious when a single-stage 
TVD is coupled to a system with a smaller number of DOF. 
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