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Abstract. Using the equation of displacement compatibility, a novel method for describing the 
contact between pantograph and catenary is proposed in this paper. Then an interaction  
catenary-pantograph system capable of describing vertical vibration is established. Taking into 
account the frictional characteristic between pantograph and catenary, the Coulomb model is 
applied. Based on the continuum mechanics, the partial differential equations of the coupling 
system are set up. For facilitating numerical simulation, the dynamic equations are further 
discretized by the Galerkin method, in which the modes of the complicated system are obtained 
by the finite element method. Therefore, the ordinary differential equations of the coupling system 
are numerically solved and the corresponding dynamic behaviors at different running speeds are 
analyzed in terms of waveform. Moreover, the effects of the frictional characteristic on the contact 
force between pantograph and catenary are discussed in detail. By comparing the results with 
European standard EN50318, the novel contact method is proved to be valid and accurate. 
Keywords: displacement compatibility, contact, catenary-pantograph system interaction, 
frictional characteristic, dynamic behavior. 

1. Introduction 

As a high-efficiency, low-consumption and reliable transportation means, high speed railway 
is widely used and rapidly developed around the world, particularly in the Eurasia. Pantographs 
are mounted on the top of trains for collecting electric power from the catenary to provide traction 
for operation of the high-speed trains. During the running process, the uplift force acted on the 
pantograph ensures the contact between pantograph and catenary for the continuous power supply. 
Under this circumstance, the interactional oscillation of the pantograph-catenary system will  
occur. Unfortunately, higher speed increases susceptibility to serious oscillation, which causes the 
component wear, collect quality decrease and even contact loss [1]. It is evident that analyzing the 
interactional vibration mechanism of the pantograph-catenary system is one of the major concerns 
in the research field of pantograph-catenary interaction. 

Dynamic modeling of pantograph-catenary system includes three primary aspects, i.e., 
catenary modeling, pantograph modeling, and contact modeling of pantograph-catenary. In the 
past researches, the catenary is usually simplified as two Euler-Bernoulli beams and the 
pantographs are usually simplified as spring-damping-mass structures, which are the so called 
lumped mass models. Meanwhile, the contact is usually described by the penalty function method 
and the numerical simulation is conducted by the Newmark-ߚ, Runge-Kutta, and so on. Ockendon 
and Tayler [2] built the dynamic model of single overhead trolley wire suspended at equal intervals 
by stiff springs with a uniform motion pantograph, and then analyzed the motion of the model. To 
simulate the vertical motion of pantograph-catenary system, Arnold et al. [3] proposed a more 
accurate approach, in which the finite difference method was applied to discretize the partial 
differential equations of motion in space and the typical DAE techniques were applied to solve 
the ordinary differential equations. For facilitating the analytical investigation, Wu et al. [4, 5] 
considered the pantograph-catenary system as a time-varying single degree-of-freedom system, in 
which the overhead wire system was represented as an infinite periodically spring-supported  
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string. On this basis, they studied the stability and the dynamic behavior of the single  
degree-of-freedom system. 

With the rapid development of numerical simulation, the finite element method is widely used 
in the field of catenary modeling [6-9]. Considering the contact element by penalty method, 
Collina et al. [10] proposed an improved pantograph-catenary model, which included the finite 
element model of catenary with nonlinear element droppers and the lumped mass pantograph with 
the bending deformation of the collector heads by a modal superposition approach. Park et al. [11] 
optimized the design parameters of the pantograph by analyzing the dynamic behavior of the 
pantograph-catenary system. In order to solve the long time-consuming caused by the finite 
element method, Zhang and Mei et al. [12-14] proposed a hybrid method with finite element 
method and mode superposition technique to reduce the numbers of the motion equations and 
studied the influence of the overlap span on the interaction dynamic behaviors of  
pantograph-catenary system. In the reference [15], a mathematical model of catenary-pantograph 
system was developed to study the dynamic interaction of the catenary spans where the transition 
spans were overlapped. Song et al. [16] developed a modeling approach based on the analytical 
expressions of nonlinear cable and truss elements which could describe the intrinsic nonlinear 
characteristics and complicated structure of high-speed catenary. 

In order to simulate the actual structure of pantograph-catenary more accurately, the dynamic 
models of catenary, pantograph and contact gradually are becoming more precise. By using the 
absolute nodal coordinates of large deformation and the reference coordinates of rigid body, a 
precise dynamic model of pantograph-catenary system was established, where the pantograph was 
described by the multi-body and the flexible catenary was described by the nonlinear continuous 
beam [17-20]. According to the Hertz contact theory, Rauter et al. [21, 22] further achieved the 
integrated methodology to represent the contact between the finite element model of catenary and 
multi-body model of pantograph. In the reference [23], an improved stiffness model was used to 
calculate the catenary stiffness and the Lagrange multipliers was used to describe the contact 
during the modeling process of the simplified catenary-pantograph system. A hybrid simulation 
methodology called the ‘Hardware-in-the-loop’ in which a physical pantograph was set in 
interaction with a numerical model of the catenary which was ran in real time was proposed by 
Facchinetti [24]. Except for the classical methods, the above research works provided some other 
novel and efficient means for analyzing the dynamic characteristic of the pantograph-catenary 
system. 

Additionally, some professional software is developed to simulate the static and dynamic 
behaviors of the pantograph-catenary system, such as the PrOSA by Deutsche Bahn AG, the 
PantoCat by Instituto Superior Tecnico Lisboa, the PCRUN by Southwest Jiaotong University 
[25-27]. As a synthetic comparison of the simulation software from ten institutes in different 
countries, reference [28] pointed out the similarities and differences in the modeling approaches 
and gave a comprehensive presentation of the simulation results. 

As one of the crucial steps during the modeling process, the contact model is usually defined 
by the penalty method in the existing works. Due to the reason that there is no specific method for 
calculating the contact stiffness in the penalty method, the stiffness is treated as an empirical 
coefficient, which may cause the inaccurate simulation results. Therefore, the characterization of 
contact between pantograph and catenary is of practical significance. 

In view of this case, a novel method for describing the contact of pantograph-catenary is 
proposed by using the equation of displacement compatibility in this paper. Furthermore, the 
friction between pantograph head strip and contact wire is considered and described by the 
Coulomb model. Then a coupling dynamic model of pantograph-catenary is established and the 
corresponding dynamic characteristic is analyzed. Meanwhile, the effects of relevant parameters 
on the vibration response and contact force of the system are discussed. 
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2. Mathematical formulation 

In the actual railway system, there are three main types of catenary suspension structure, 
including simple catenary suspension, elastic catenary suspension and complicated catenary 
suspension. In this paper, a simple catenary suspension is considered and a coupling system of 
simple catenary and lumped mass pantograph is established, as shown in Fig. 1. The catenary 
model refers to the middle spans of one anchor span in which the overlapping span is neglected. 
Besides, the straight line is considered here instead of a curve line. 

 
Fig. 1. Schematic diagram of simple catenary- lumped mass pantograph system 

2.1. Simple catenary model 

The vibration equations of the simple catenary model are derived in this section. As shown in 
Fig. 2, the simple catenary model is mainly composed of messenger wires, contact wires and 
droppers. According to the mechanical characteristics of the parts above, the messenger wires and 
contact wires are described by the simple supported Euler-Bernoulli beams. The droppers are 
simplified as the nonlinear springs, whose tension stiffness is far greater than the compression 
stiffness. The messenger wires are suspended by the springs at supports.  

 
Fig. 2. Schematic diagram of simple catenary model 

On the basis of the infinitesimal method in the continuum mechanics, the vertical vibration 
equation of the messenger wire can be expressed as: 

ሷݓܣߩ  + ሶݓܥ  + ᇱᇱᇱᇱݓܫܧ + ܶݓᇱᇱ = −  ,ܨ −  ௭,ܨ
ୀଵ


ୀଵ , (1)

where ݓ  denotes the vertical displacement of the messenger wire, ߩ  denotes the density of 
messenger wire, ܣ  denotes the cross area of the messenger wire, ܥ  denotes the structural 
damping, ܫܧ denotes the bending stiffness, ܶ denotes the tensile force acted on the messenger 
wire, ܨ, includes the elastic force and gravity of the ݅th dropper. 
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It can be seen from Fig. 2 that the messenger wire is suspended by the supports which are 
modeled as springs. Therefore, the elastic force caused by the ݅th support can be written as: ܨ௭, = ݇௭ݓ,௭, × ݔ൫ߜ − ௭,൯, (2)ݔ

where ݇௭ denotes the suspension stiffness, ݓ,௭, denotes the vertical displacement of the catenary 
at the ݅th support, ߜ is the Dirac function, ݔ௭, is the location of ݅th support on the axis ݔ. 

Similarly, the vertical vibration equation of the contact wire is: 

ሷݓ௪ܣ௪ߩ ௪ + ሶݓ௪ܥ ௪ + ௪ᇱᇱᇱᇱݓ௪ܫܧ + ௪ܶݓ௪ᇱᇱ = −  ௪,ܨ + ݔ)ߜ − (ݐݒ
ୀଵ ௪, (3)ܨ

where the subscript ݓ denotes the parameters or variables of contact wire, ܨ௪ is the contact force 
of pantograph head acted on the contact wire, ݒ is the running speed of the train. 

The forces of the droppers, which are used to suspend the contact wire on the messenger wire, 
can be expressed as: ܨ, = ݔ)ߜ − (ݔ × ൬12 ݉ௗ,݃ + ௗ݂, + ݂,൰, (4)ܨ௪, = ݔ)ߜ − (ݔ × ൬12 ݉ௗ,݃ − ௗ݂, − ݂,൰, (5)

where ݔ denotes the location of ݅th dropper on the axis ݔ, ݉ௗ, denotes the mass of ݅th dropper 
and clamp, ݂, is the pre-tension of dropper due to the pre-sag caused by the self-weight of the 
catenary. 

Meanwhile, the expression of ௗ݂, satisfies: 

ௗ݂, = ቊ݇ௗ௧൫ݓ, − ௪,ݓ + ∆݈,൯,      ൫ݓ, − ௪,ݓ + ∆݈,൯ ≥ 0,݇ௗ൫ݓ, − ௪,ݓ + ∆݈,൯,      ൫ݓ, − ௪,ݓ + ∆݈,൯ < 0, (6)

where ݇ௗ௧ and ݇ௗ denote the tensile and compression stiffness of the droppers, respectively. ∆݈, 
denotes the initial elongation of ݅ th dropper caused by the pre-sag. ݓ,  denotes the vertical 
displacement of messenger wire at the location of ݅ th dropper, and ݓ௪,  denotes the vertical 
displacement of contact wire at the location of ݅th dropper. 

2.2. Lumped mass pantograph model 

It can be seen from Fig. 3 that pantograph model is composed of lumped masses, linear springs 
and dampers. According to the Newton’s second law, the vibration equations of lumped mass 
model of pantograph without car-body can be written as: 

ቐ݉ଵݕሷଵ + ܿଵݕሶଵ + ݇ଵݕଵ − ܿଵݕሶଶ − ݇ଵݕଶ = ௪ܨ− − ሷଶݕ,݉ଶܨ + (ܿଵ + ܿଶ)ݕሶଶ + (݇ଵ + ݇ଶ)ݕଶ − ܿଵݕሶଵ − ݇ଵݕଵ − ܿଶݕሶଷ − ݇ଶݕଷ = 0,݉ଷݕሷଷ + (ܿଶ + ܿଷ)ݕሶଷ + (݇ଶ + ݇ଷ)ݕଷ − ܿଷݕሶଶ − ݇ଷݕଶ = .ܨ  (7)

where ܨ is the static uplift force and ܨ is the equivalent vertical force from the frictional force. 
Please note that the actual pantograph includes a series of articulated bar linkages. Therefore, 
although the frictional force acted on the pantograph head is longitudinal, the moment caused by 
the frictional force is able to affect the vertical vibration of the pantograph. The specific equivalent 
process of ܨ is presented in Section 2.4. 
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Fig. 3. Lumped mass pantograph model 

2.3. Pantograph-catenary contact model 

When the loss of contact does not happen, the interaction of catenary and pantograph is 
achieved by the contact force ܨ௪ , as depicted in Eqs. (1-7). In this condition, the vertical 
displacement of pantograph head is equal to that of contact point on the contact wire, namely: ݕଵ = ,ݔ)௪ݓ ௫ୀ௩௧. (8)|(ݐ

In which ݒ is the running speed of the train. 
Taking the derivative of Eq. (8) with respect to time ݐ, the additional constraint condition of 

velocity and acceleration can be obtained, respectively: 

ሶଵݕ = ,ݔ)௪ݓ݀ ݐ݀(ݐ ቤ௫ୀ௩௧ = ,ݔ)௪ݓ߲ ݔ߲(ݐ ݐ݀ݔ݀ + ,ݔ)௪ݓ߲ ݐ߲(ݐ ቤ௫ୀ௩௧ = ௪ᇱݓ ݒ + ሶݓ ௪|௫ୀ௩௧, (9)ݕሷଵ = ௪ᇱݓ)݀ ݒ + ሶݓ ௪)݀ݐ ቤ௫ୀ௩௧ = ሷݓ ௪ + ሶݓݒ2 ௪ᇱ + ଶ|௫ୀ௩௧. (10)ݒ௪ᇱᇱݓ

According to Eqs. (8-10), Eq. (7) can be further written as: 

۔ۖەۖ
ሷݓ)ଵ݉ۓ ௪ + ሶݓݒ2 ௪ᇱ + ଶ)|௫ୀ௩௧ݒ௪ᇱᇱݓ + ܿଵ(ݓ௪ᇱ ݒ + ሶݓ ௪)|௫ୀ௩௧ + ݇ଵݓ௪|௫ୀ௩௧      −ܿଵݕሶଶ − ݇ଵݕଶ + ܨ = ሷଶݕ௪,݉ଶܨ− + (ܿଵ + ܿଶ)ݕሶଶ + (݇ଵ + ݇ଶ)ݕଶ       −ܿଵ(ݓ௪ᇱ ݒ + ሶݓ ௪)|௫ୀ௩௧ − ݇ଵݓ௪|௫ୀ௩௧ − ܿଶݕሶଷ − ݇ଶݕଷ = 0,݉ଷݕሷଷ + (ܿଶ + ܿଷ)ݕሶଷ + (݇ଶ + ݇ଷ)ݕଷ − ܿଷݕሶଶ − ݇ଷݕଶ = .ܨ  (11)

By substituting the expression of ܨ௪ obtained from the first equation of Eq. (11) into Eq. (3), 
the vibration equations of the pantograph-catenary system without loss of contact obey: 

ەۖۖ
۔ۖۖ
ሷݓܣߩۓۖۖ  + ሶݓܥ  + ᇱᇱᇱᇱݓܫܧ + ܶݓᇱᇱ = −  ,ܨ −  ௭,ܨ

ୀଵ


ୀଵ ሷݓ௪ܣ௪ߩ, ௪ + ሶݓ௪ܥ ௪ + ௪ᇱᇱᇱᇱݓ௪ܫܧ + ௪ܶݓ௪ᇱᇱ + ݉ଵ(ݓሷ ௪ + ሶݓݒ2 ௪ᇱ + ሶݓ)௪ᇱᇱ)|௫ୀ௩௧     +ܿଵݓଶݒ ௪ + ௪ᇱݓݒ )|௫ୀ௩௧ + ݇ଵݓ௪|௫ୀ௩௧ − ܿଵݕሶଶ − ݇ଵݕଶ = −  ௪,ܨ
ୀଵ ,݉ଶݕሷଶ + (ܿଵ + ܿଶ)ݕሶଶ + (݇ଵ + ݇ଶ)ݕଶ − ܿଵ(ݓ௪ᇱ ݒ + ሶݓ ௪)|௫ୀ௩௧ − ݇ଵݓ௪|௫ୀ௩௧     −ܿଶݕሶଷ − ݇ଶݕଷ = 0,݉ଷݕሷଷ + (ܿଶ + ܿଷ)ݕሶଷ + (݇ଶ + ݇ଷ)ݕଷ − ܿଶݕሶଶ − ݇ଶݕଶ = .ܨ

 (12)
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Then the dynamic responses of catenary and lumped mass pantograph can be obtained by 
numerically integrating of Eq. (12). Meanwhile, the displacement, velocity and acceleration of 
pantograph head can be obtained from Eqs. (8-10). Combining the vibration displacement of 
catenary with that of pantograph, the contact force can be further calculated in Eq. (11). 

As illustrated in Eqs. (9-10), when the pantograph head keeps contact with the catenary, the 
velocities and accelerations of pantograph head may not be uniform with that of contact point of 
contact wire. Thus, these phenomena may lead to the occurrence of loss of contact. Dealing with 
such complicated contact problem, the judgment for loss of contact is essential at every time step 
during the numerical integration. 

Let us define the (݅ − 1)th time step and ݅th time step as  ݐିଵ and ݐ, respectively. If loss of 
contact does not occur at ݐିଵ, the criterion of loss of contact depends on the sign of ܨ௪. For the 
case of ܨ௪ > 0, the loss of contact between catenary and pantograph does not happen at ݐ . 
Otherwise, the loss of contact occurs and then the coupling system of catenary-pantograph is 
decomposed into two independent systems at ݐ. 

At this moment, the vibration equations of independent catenary turn out to be: 

۔ۖەۖ
ሷݓܣߩۓ  + ሶݓܥ  + ᇱᇱᇱᇱݓܫܧ + ܶݓᇱᇱ = −  ,ܨ −  ௭,ܨ

ୀଵ ,
ୀଵߩ௪ܣ௪ݓሷ ௪ + ሶݓ௪ܥ ௪ + ௪ᇱᇱᇱᇱݓ௪ܫܧ + ௪ܶݓ௪ᇱᇱ = −  ௪,ܨ

ୀଵ .  (13)

And the vibration equations of independent pantograph are: 

ቐ݉ଵݕሷଵ + ܿଵݕሶଵ + ݇ଵݕଵ − ܿଵݕሶଶ − ݇ଵݕଶ = 0,݉ଶݕሷଶ + (ܿଵ + ܿଶ)ݕሶଶ + (݇ଵ + ݇ଶ)ݕଶ − ܿଵݕሶଵ − ݇ଵݕଵ − ܿଶݕሶଷ − ݇ଶݕଷ = 0݉ଷݕሷଷ + (ܿଶ + ܿଷ)ݕሶଷ + (݇ଶ + ݇ଷ)ݕଷ − ܿଶݕሶଶ − ݇ଶݕଶ = .ܨ , (14)

If loss of contact is recognized at ݐିଵ , namely ܨ௪ =  0, the relative value of ݕଵ  and ݓ௪(ݔ, ଵݕ ௪. Ifܨ  instead ofݐ ௫ୀ௩௧ is used to identify the loss of contact at|(ݐ − ,ݔ)௪ݓ ௫ୀ௩௧|(ݐ ≥ 0 
is satisfied, the pantograph resumes contact with the contact wire. Otherwise, the loss of contact 
remains. The detailed recognition process of loss of contact is depicted in Fig. 4. 

 
Fig. 4. Recognition process of pantograph-catenary contact 
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Compared with the traditional contact model, the advantage of the novel contact method is the 
application of displacement compatibility equations which can avoid the determination of the 
contact stiffness so as to improve the calculation accuracy to some extent. 

2.4. Frictional model for catenary-pantograph 

During the operation process of train, the strips of pantograph head move along the contact 
wire, which causes the sliding friction. Thus, the Coulomb model is used to describe the frictional 
characteristic, namely: 

ఓ݂ = ௪, (15)ܨߤ

where ߤ denotes the Coulomb frictional coefficient of strip-contact wire. 
Although the direction of frictional force is longitudinal, the moment generated by the 

frictional force would actually affect the vertical vibration of pantograph-catenary system. In the 
view of this point, the detailed illustration of the effect of frictional force is introduced in this 
section. 

Similar with the frictional force in this paper, some of the aerodynamic forces acted on the 
pantograph are also longitudinal in reference [29]. Under the action of aerodynamic force, a 
vertical constraint is added on the top of the upper arm and the corresponding constraint force is 
calculated. According to the principle of vertical static balance, the constraint force and uplift 
force are equal in magnitude and opposite in direction. Therefore, the equivalent process from 
aerodynamic force to uplift force is accomplished. 

Based on the principle of virtual work, another method for estimating the uplift force is 
provided in the reference [30]. However, the research object mentioned in the above two papers 
is a single-degree-of-freedom pantograph system with articulated frame and the deflection of the 
pantograph head suspension is neglected. 

 
Fig. 5. Schematic diagram of pantograph frame 

 
Fig. 6. Force analysis of pantograph upper arm 

Using the particular equivalent method mentioned in the reference [29], the longitudinal 
frictional force is converted to the vertical uplift force, which acts on the pantograph head. The 
single-degree-of-freedom pantograph system with articulated frame is shown in Fig. 5, in which ߠ is the only degree-of-freedom known as the rising angle of pantograph. ߛ ,ߚ ,ߙ can be expressed 
by the relative location and geometric characteristics of ߠ and the length of arms. The detailed 
derivations of geometric relations are illustrated in appendix. 

Fig. 6 shows the force analysis of the upper arm, where ܨ denotes the constraint force, ఓ݂ 
denotes the frictional force when the pantograph runs with opening stomata, ܨଵ and ܨଶ denote the 
internal force of lower arm and lower link, respectively. Therefore, the equations of static 
equilibrium can be expressed as: 
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۔ۖەۖ
ۓ ௫ܨ = 0,    − ఓ݂ − ଵܨ cos ߠ − ଶܨ cos ߛ = 0, ௬ܨ = 0, ଶܨ    sin ߛ + ଵܨ sin ߠ − ܨ = 0, (ܨ)ܯ = 0, ଼ܮܨ      cos ߙ − ఓ଼݂ܮ sin ߙ + ଶܨ sin ଽܮߛ cos ߚ + ଶܨ cos ଽܮߛ sin ߚ = 0. (16)

Referring to Eq. (15), the relation between ܨ and ఓ݂ can be obtained by solving Eq. (16), so 
that: ܨ = ܨ− = − ܯܣ ఓ݂ = − ܯܣ ௪, (17)ܨߤ

where ܣ and ܯ respectively obey: ܣ = ଼ܮ sin ߙ sin(ߛ − (ߠ − ଽܮ sin ߠ sin(ߚ + (18) .(ߛ

And: ܯ = ଼ܮ cos ߙ sin(ߛ − (ߠ + ଽܮ cos ߠ sin(ߚ + ܣ(19) .(ߛ ⁄ܯ  is called the transfer coefficient. When the pantograph runs with closing stomata, the 
direction of frictional force ఓ݂ is reversed: 

ܨ = ܨ− = ܯܣ ఓ݂ = ܯܣ ௪. (20)ܨߤ

3. Discretization of simple catenary model 

In this section, the Galerkin method is used to discretize the partial differential equations of 
catenary. During the discretization, the main vibration mode functions are essential and should 
satisfy the boundary conditions of catenary. According to the mechanics of vibration, the solutions 
of vibration equations of catenary can be expressed as: 

ݓ =  ߮,(ݔ)
ୀଵ (21) ,(ݐ),ݍ

௪ݓ =  ߮௪,(ݔ)
ୀଵ (22) ,(ݐ)௪,ݍ

where ߮,(ݔ) and ߮௪,(ݔ) are the assumed mode, ݍ,(ݐ) and ݍ௪,(ݐ) are the mode coordinates of 
messenger wire and contact wire, ݉ is the modal truncation order, respectively. 

According to the references [28, 31], the structure parameters of catenary are shown in  
Table 1. The span of the catenary is 15 and the dropper position vector in each span is  
[3.375 10.125 16.875 23.625 30.375 37.125 43.875 50.625] (m). For each dropper, the tensile 
stiffness is ݇ௗ௧ = 106 N/m and the compressive stiffness is generally in 1/100 order of magnitude 
with tensile stiffness [31]. Obviously, the main mechanical characteristic of dropper is tensile 
strength rather than compressive strength. Additionally, the stiffness of messenger wire 
suspension is ݇௭ =  0.5×106 N/m. Since the catenary structure is relatively complicated, the 
analytical expressions of mode functions can hardly be derived. Therefore, the finite element 
method is applied to obtain the numerical mode functions of catenary by modal analysis. It can be 
seen from Fig. 7 that the first four modes are exhibited with bending vibration. 
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Table 1. Parameters of catenary model 
Physical parameter Messenger wire Contact wire 
Tensile force ܶ (N) 14000 20000 

Linear density ܣߩ (kg/m) 0.605 1.33 
Length of one span l (m) 54 54 

Damping coefficient ܿ (N.s/m) 0.03 0.03 

Substitute Eqs. (21-22) into Eq. (12) and Eq. (13), then multiply both sides of the equations by ߮,(ݔ) and ߮௪,(ݔ) and take the integration of the equations with respect to ݔ at the interval ሾ0, ݈ሿ and ሾ0, ݈௪ሿ. 
Based on the above steps, the ordinary differential equations can be obtained and written in 

matrix form as: ܙۻሷ + ሶܙ۱ + ܙ۹ = (23) ,ۿ

where ۻ is the mass matrix, ۱ is the damping matrix, ۹ is the stiffness matrix, ۿ is the discretized 
force vector, ܙ is the modal coordinates vector. 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 7. The first four modes of the ten-span catenary: a) first mode, b) second mode,  
c) third mode and d) fourth mode 

4. Verification of contact model for catenary-pantograph 

In order to examine the validity of contact model, the verification is conducted referring to the 
European standard EN50318. The reference model, which includes a ten-span catenary and a 
binary-lumped-mass pantograph, is considered in the EN50318. Meanwhile, the running speed is 
set to 250 km/h and 300 km/h, respectively. In order to reduce the effects of initial condition and 
system boundary on the numerical results, the 5th and 6th spans are selected for analyzing the 
contact force and vibration response. 

The statistical results of pantograph-catenary system and the European standard EN50318 are 
shown in Table 2. The simulation results in this paper are within the allowance of EN50318, 
including the mean contact force, standard deviation and so on. Therefore, the novel contact model 
is proved to be valid. 
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Table 2. Comparison of simulation results in this paper and EN50318 reference model 

Statistical index This paper  
ݒ) = 300 km/h) 

EN50318  
ݒ) = 300 km/h) 

This paper  
ݒ) = 250 km/h) 

EN50318  
ݒ) = 250 km/h) 

Mean contact force (N) 115.85 110-120 117.41 110-120 
Standard deviation (N) 32.84 32-40 26.33 26-31 
Max. statistic value (N) 214.37 210-230 196.4 190-210 
Min. statistic value (N) 17.33 -5-20 38.42 20-40 

Max. real value (N) 213.47 190-225 181.95 175-210 
Min. real value (N) 41.48 30-55 57.58 50-75 

Max. uplift at support (mm) 61.77 55-65 54.5 48-55 
Percentage of the loss of contact (%) 0 0 0 0 

 

 
a) 

 
b) 

 
c) 

Fig. 8. Response of the pantograph-catenary system at the speed ݒ = 300 km/h: a) contact force,  
b) displacement of pantograph head and c) displacement of support 

 
a) 

 
b) 

 
c) 

Fig. 9. Response of the pantograph-catenary system at the speed ݒ = 250 km/h: a) contact force,  
b) displacement of pantograph head and c) displacement of support 
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Fig. 8 and Fig. 9 show the contact force, displacement of pantograph head, and uplift of contact 
wire at support at the running speed 300 km/h and 250 km/h, respectively. By comparing Fig. 8 
with Fig. 9, it is evident that the contact of pantograph-catenary becomes serious and the vibration 
displacement of pantograph head gradually becomes intense with the increase of running speed. 
In addition, the uplift displacement of support achieves the maximum value at ݔ = 240 m when 
the running speed is 250 km/h or 300 km/h. 

5. Results and discussions 

By the Runge-Kutta method, the dynamic characteristic of the pantograph-catenary system is 
numerically analyzed. It should be emphasized that, during the integration process, the contact 
status of pantograph-catenary and the slacken status of dropper need to be judged in every time 
step. 

5.1. Dynamic characteristics of a catenary-pantograph system 

After verifying the contact model proposed in this paper, the dynamic characteristic of 
pantograph-catenary system shown in Figs. 2-3 is further analyzed in this section. 

According to reference [31], the structure parameters of lumped mass model and frame model 
for pantograph are shown in Table 3 and Table 4, respectively. The parameters of catenary model 
illustrated in Table 1 remain unchanged. 

Table 3. Structure parameters of lumped mass model for pantograph 
Physical parameter Value ݉ଵ, ݉ଶ, ݉ଷ (kg) 8.5, 4.63, 4.8 ݇ଵ, ݇ଶ, ݇ଷ (N/m) 6045, 5400, 1 ܿଵ, ݇ଶ, ݇ଷ (N.s/m) 10, 5, 32 ܨ (N) 152 

Table 4. Structure parameters of frame model for pantograph 
Physical parameter Value Physical parameter Value ܮଵ (mm) 2006 ܮଶ (mm) 247 ܮଷ (mm) 104 ܮସ (mm) 1640 ܮହ (mm) 1382 ܮ (mm) 128 ܮ (mm) 467 ∠ܤܦܣ (rad) 1.35 ∠ܥܤܦ (rad) 1.04   

Based on the above analysis in Section 2.4, the running direction of pantograph (opening and 
closing stomata), rising angle of pantograph and frictional coefficient are the principal factors for 
determining the uplift force.  

In order to study the effects of frictional force on the dynamic characteristic of pantograph-
catenary system, three cases of friction are conducted, including opening stomata (with frictional 
force), closing stomata (with frictional force) and no frictional force. Keeping the other parameters 
constant, the rising angle ߠ is set to 45°, running speed v is set to 300 km/h, frictional coefficient ߤ is set to 0.3 [32].  

By the Runge-Kutta method, the numerical results of the 6th-10th spans in the fifteen-span 
catenary are obtained and filtered in the frequency range of [0, 20] (Hz). The contact forces and 
vibration displacements of pantograph head in the three cases of friction are shown in Figs. 10-12. 
The maximum value, minimum value, mean value, standard deviation of contact force, and 
displacement of pantograph head are shown in Table 5 and Table 6, respectively. 

To some extent, the frictional force can affect the dynamic characteristics of the 
pantograph-catenary system. The mean values and standard deviations of contact force and 
pantograph head displacement in the condition of opening stomata with a rising angle of 45° are 
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larger than that in the condition of no frictional force. The main reason lies in that, for the case of 
opening stomata with a rising angle of 45°, the direction of moment caused by frictional force is 
in accordance with that of rising moment. In other words, the equivalent uplift force generated by 
the frictional force enhances the interaction between pantograph and catenary under the condition 
of opening stomata with a rising angle of 45°. 

On the contrary, the mean values and standard deviations of contact force and pantograph head 
displacement in the condition of closing stomata with a rising angle of 45° are less than that in the 
condition of no frictional force. When the direction of moment caused by frictional force is 
opposite to that of rising moment, the equivalent uplift force weakens the interaction between 
pantograph and catenary. 

 
a) 

 
b) 

Fig. 10. Response of the pantograph-catenary system without friction:  
a) contact force and b) displacement of pantograph head 

 
a) 

 
b) 

Fig. 11. Response of the pantograph-catenary system with friction and opening stomata:  
a) contact force and b) displacement of pantograph head 

 
a) 

 
b) 

Fig. 12. Response of the pantograph-catenary system with friction and closing stomata:  
a) contact force and b) displacement of pantograph head 
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Table 5. Statistics of contact force of pantograph ܨ௪ 

Statistical index Contact force 
without friction 

Opening stomata, contact force 
with friction  

Closing stomata, contact force 
with friction 

Max. real value (N) 260.66 272.6 246.3 
Min. real value (N) 38.30 26.12 36.25 

Mean value (N) 151.39 157.9 146.9 
Standard deviation (N) 43.43 45.4 40.54 

Table 6. Statistics of displacement of pantograph ݕଵ 

Statistical index Displacement 
without friction 

Opening stomata, displacement 
with friction 

Closing stomata, displacement 
with friction 

Max. real value (m) 0.093 0.095 0.089 
Min. real value (m) 0.046 0.048 0.044 

Mean value (m) 0.068 0.071 0.066 
Standard deviation (m) 0.014 0.014 0.014 

5.2. Analysis of varying parameters 

Experimental results [32, 33] show that, at the speed of 140-170 km/h, the frictional coefficient 
between carbon strip and copper contact wire varies from 0.24 to 0.35 in the condition of 
alternating current of 0-240 A. Besides, the frictional coefficient increases slightly with the 
increase of sliding velocity and decreases slightly with the increasing of local temperature.  

 
a) 

 
b) 

Fig. 13. Effect of frictional coefficient ߤ: a) mean contact force and b) standard deviation 

 
a) 

 
b) 

Fig. 14. Effect of rising angle ߠ: a) mean contact force and b) standard deviation 

Therefore, the effect of frictional coefficient on the contact force needs to be discussed in detail. 
The variation of frictional coefficient is set to ߤ =  0.1-0.8. As shown in Fig. 13, when the 
pantograph runs at the speed of 300 km/h with closing stomata, the mean value and standard 
deviation of contact force increase gradually with the increase of frictional coefficient. 

Furthermore, the relation between mean value and standard deviation of contact force and 
rising angle is shown in Fig. 14, in which the variation of rising angle is set to ߠ = 10°-50°. It is 
evident that the mean value and standard deviation of contact force increase slightly in the range 
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of ߠ =  10°-25°. However, they decrease with the increase of rising angle in the range of  ߠ = 25°-50°. 
The above phenomena suggest that the friction of pantograph-catenary can not only intensify 

the wear between pantograph head strip and contact wire, but also directly affect the dynamic 
interaction of pantograph-catenary. 

6. Conclusions 

In this paper, a novel contact model between pantograph and catenary has been proposed by 
using the displacement compatibility. Based on the contact force model and the Coulomb 
frictional model, the vertical dynamic characteristic of pantograph-catenary system has been 
investigated. Meanwhile, the effects of frictional coefficient and rising angle have been discussed. 
According to the numerical results, the following conclusions can be obtained: 

1) By comparing with the European standard EN50318, the contact model is proved to valid 
and accurate. 

2) Reducing the friction between pantograph and catenary can not only reduce the wear of 
components but also effectively enhance the performance of coupling system. 

3) The dynamic characteristic of pantograph-catenary system is partly determined by the rising 
angle. 

This work can enrich our understanding to the mechanical mechanism of contact between 
pantograph and catenary, and may promote the investigation of pantograph-catenary. 
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Appendix 

଼ܮ = ටܮଵଶ + ଷଶܮ − ଽܮ ,ܤܦܣ∠ଷcosܮଵܮ2 = ටܮଶଶ + ଷଶܮ − ߙ ,ܤܦܥ∠ଷcosܮଶܮ2 = ߨ − ܣܤܦ∠ − ܥܤܦ∠ + ߚ ,ߚ = cosିଵ ቆܮଽଶ + ହଶܮ − ହܮଽܮଵଶ2ܮ ቇ − ߛ ,ߛ = ߨ − ߝ − cosିଵ ቆܮଵଶ + ଵଵଶܮ − ଵଵܮଵܮସଶ2ܮ ቇ − cosିଵ ቆܮଵଶ + ହଶܮ − ହܮଵܮଽଶ2ܮ ቇ ߝ , = tanିଵ ܮܮ ଵܮ , = ටܮସଶ + ଵଵଶܮ − ଵଵܮସܮ2 cos(ߝ + (ߠ ଵଵܮ , = ටܮଶ + ଶܮ ܣܤܦ∠ , = cosିଵ ቆܮଷଶ + ଶ଼ܮ − ଼ܮଷܮଵଶ2ܮ ቇ ܥܤܦ∠ , = cosିଵ ቆܮଷଶ + ଽଶܮ − ଽܮଷܮଶଶ2ܮ ቇ . 
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