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Abstract. . In this study, a new method for bearing fault diagnosis using local characteristic-scale 
decomposition multi-scale permutation entropy (LCD-MPE) and extreme learning machine 
AdaBoost (ELM-AdaBoost) algorithms is proposed. Vibration signals of railway axle box rolling 
bearings under 4 conditions (normal, outer race fault, inner race fault, and rolling element fault) 
were used as our research objects. The signals were de-noised using wavelet de-noising (WD) as 
a pre-filter, then the LCD was used to decompose the signal into a number of intrinsic scale 
components (ISCs). Then, the multi-scale permutation entropy (MPE) was extracted as the feature 
parameters. Finally, the extracted features were used as ELM-AdaBoost to achieve the automated 
fault diagnosis. Our results prove that our method is effective for an accurate diagnosis of railway 
axle box bearing faults. Furthermore, our fault diagnosis method is highly applicable in practical 
engineering. 
Keywords: LCD, MPE, ELM-AdaBoost, railway axle box bearing, fault diagnosis. 

1. Introduction 

As a crucial mechanical component, rolling bearings are widely used in subway and railway 
locomotives [1]. Rolling bearings working status directly affects the operational safety of trains. 
Thus, the out-of-state identification for axle box bearings is paramount for the detection of hidden 
dangers, reducing the probability of accidents, ensuring the safety of rail transit, and reliable 
operation. When a bearing damage or failure occurs, the bearings vibration signals often show 
non-stationary, non-linear characteristics. Common time-frequency analysis techniques include 
WVD, STFT, WT, etc., but each one of these methods has its own limitations. For example, the 
WVD would cause crossing-term interference when dealing with non-stationary signals; the 
analysis window of STFT needs to be further optimized; the WT has been commonly applied in 
health monitoring but different mother wavelets should be predefined for each different 
component. These drawbacks make these classical ways not fully adaptive in nature. The EMD is 
a self-adaptive time-frequency analysis method. Since the EMD is capable of dealing with 
non-stationary and non-linear signals, a considerable attention has been attracted to this method 
in the field of bearing condition monitoring. But the EMD also has a drawback named as the modal 
mixing nature, and it can cause the distortion of the decomposed IMF [2]. The (LCD) method in 
the time-frequency analysis is an adaptive, non-stationary signal processing algorithm based on 
the scale parameters of local features. The LCD method adaptively decomposes vibration signals 
into a series of ISCs whose instantaneous frequencies have a specific physical meaning [3]. Yang 
Yu et al. [4] compared LCDs with the empirical mode decomposition (EMD), and their results 
showed that, in terms of the suppression of endpoint effects and computational efficiency, the 
LCD outperformed the EMD. Cheng Junsheng et al. [5] introduced the LCD and ensemble 
empirical (EE) time-frequency analysis methods into the mechanical fault diagnosis, which 
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effectively extracted the features of mechanical fault vibration signals. 
Brandt et al. [6] proposed the permutation entropy to detect time series randomness and 

dynamic mutations. The permutation entropy has the advantages of simple calculation, strong 
anti-interference abilities, and is suitable for on-line monitoring; however, the permutation entropy 
can only detect the randomness of time series and dynamic mutations in single scales. Thus, Aziz 
et al. [7] proposed the multi-scale permutation entropy (MEP), and compared it with the above 
permutation entropy. Their results showed that the MEP had a better robustness than the above 
permutation entropy. Zheng Jinde et al. [8] used the MEP to extract bearing fault features, and 
combined it with the SVM to achieve a bearing fault diagnosis. Wang Yuekui et al. [9] proposed 
the partial mean multi-scale entropy (MEPM) index. They used the MEPM index for the fault 
identification in hydraulic pumps, which successfully identified the hydraulic pumps failure mode. 
The ELM is a new learning algorithm for unified single-hidden-layer feed forward neural 
networks (SLFNs). Its salient feature is that the input weights and hidden biases are randomly 
chosen, and the output weights of SLFNs are determined analytically [10]. As the most popular 
Boosting method, AdaBoost [11] creates a collection of component classifiers by maintaining a 
set of weights over training samples and adaptively adjusting these weights after each Boosting 
iteration. The weights of the training samples, which are misclassified by the current component 
classifier, will be increased while the weights of the training samples, which are correctly 
classified, will be decreased. Several ways have been proposed to implement the weight update in 
AdaBoost [12]. 

Based on the above analysis, we present a railway axle box bearing fault identification method 
based on LCD-MPE and ELM-AdaBoost. Our experiments showed that this method accurately 
diagnosed bearing failures, and provided a basis for bearing fault feature extraction and fault 
identification research. Our method is significant for the real-time monitoring of train axle box 
bearings in engineering. 

2. LCD method 

The LCD defines a new mono-component with the physical meaning as the base of the local 
characteristic scale. Using the LCD, a complex signal (ݐ)ݔ can be decomposed into ݊  ISCs, 
denoted as ܿ݅(ݐ) (݅ = 1, ⋯ , ݊), and a residue (ݐ)݊ݎ as follows [13]: 

(ݐ)ݔ = ෍ ܿ௜(ݐ)௡
௜ୀଵ + (1) .(ݐ)௡ݎ

The ISC definition is given as follows. 
All local maxima in the entire dataset are positive while all local minima in the dataset are 

negative. 
All points representative of the signal extrema (ݐ)ݔ are given by the coordinates (ݐ௞,  ,(௞ݔ

where ݇  .is the total number of the extrema in the dataset ܯ and ,ܯ ,... ,1 =

3. Multi-scale permutation entropy algorithm 

For the MSPE, the original time series is processed using a coarse graining treatment. 
Afterwards, the permutation entropy is calculated in all the scales. For the time series  ܺ = ,(݅)ݔ} ݅ = 1,2,3, … , ݊} (whose length is ݊), the coarse graining process can be shown as 
follows: 

(݆)ݏݕ = ݏ1 ෍ ݏ݆(݅)ݔ
1+ݏ(1−݆)=݅ , (2)
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where ݏ is the scale factor, and ݏݕ(݆) represents the coarse graining time series in different scales. 
It is worth noting that, when ݏ = 1, the coarse graining time series is the original time series. The 
original time series is called as “single-scale permutation entropy.” Based on the extraction of the 
time series in different scales, and using the permutation entropy (PE) algorithm detailed above, 
the permutation entropy of the coarse graining time series in different scales can be  
calculated [14]. 

The computation and embedding dimension ݍ of permutation entropy is connected with the 
value of delay time ݐ. Normally the value ݍ has the range of 3-7. If the value ݍ is 1 or 2, at this 
time, the reconstructed vector contains too few states so that it cannot detect the dynamic mutation 
of the sequence, and the algorithm loses its validity. If the value of ݍ is too big, the reconstruction 
of phase space can homogenize the time series, at this time, the calculation is time-consuming and 
cannot reflect the subtle changes in the series. From the Table 1, we can see that when ݍ = 7, the 
calculation is time-consuming, and the delay time has a little effect on the time series calculation. 
And from Fig. 1, we can see that delay time ݐ has a little effect on the permutation entropy value 
of the Gaussian white noise. Therefore, after a comprehensive consideration, this article took ݍ as 
6 and ݐ as 1. 

Table 1. Calculation time of permutation entropy in different embedded dimensions ݍ 
ݍ  ݍ 3 = ݍ 4 = ݍ 5 = ݍ 6 = = 7 

Calculation time ݐ / s 0.05546 0.08073 0.32318 1.87793 12.8688 

 
Fig. 1. Permutation entropy of Gaussian white noise signal at different time delays 

4. ELM-AdaBoost algorithm 

The specific steps of the ELM-AdaBoost algorithm are as follows: 
Step 1: Choose ݉ sets of samples from the sample space randomly, by default the sample 

weights are set as ܦ௜(݅) = 1 ݉⁄  to begin the data selection and grid initialization. 
Step 2: Choose the ELM to classify the weak classifier. Use the ELM to classify the sample. 

When training the weak classifier, No.t, use the training sample to train the weak classifier. 
Additionally, use the training sample to test the weak classifier. Next, calculate an error and ߝ௧ of 
classifier No.t. The calculation formula is as follows: ߝ௧ = ෍ ௧(݅)௜ܦ ,    ݅ = 1,2, . . . , (ݐ)݃)   ,݉ ≠ (3) ,(ݕ

where ݃(ݐ) represents the real prediction classification results, and ݕ  represents the expected 
classification results. 

Step 3: Select the weight of the weak classifier. Based on the prediction effects of each ELM 
(error and ߝ௧ ), calculate each ELM weak classifier weight ߙ௧ . The calculation formula is as  
follows: 
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௧ߙ = 12 ln ൬1 − ௧ߝ௧ߝ ൰. (4)

Step 4: Select the sample weight. Renew the weight of the training sample for the next turn 
according to the weight ߙ௧  of the ELM weak classifier. Increase the weight of samples with 
classification errors in this iteration to ensure that the results of these samples can be seen in the 
next turn. The weight renewal equation is as follows: 

(݅)௧ାଵܦ = ௧(݅)ܼ௧ܦ ൈ ൜݁ିఈ೟,    ݄௧(ݔ௜) = (௜ݔ)௜,݁ఈ೟,    ݄௧ݕ ≠ ,௜ݕ       = ൯ܼ௧(௜ݔ)௧݄௧ݕ௧ߙ−௧(݅)exp൫ܦ , (5)

where ܼ௧ is the normalization factor. 
Step 5: Repeat steps 1 through 4. After ܶ times, the corresponding number of weak classifiers 

will be successfully created, resulting in the creation of strong classifiers. The weak classifiers are 
linearly combined with their corresponding weight, and a strong classifier (ݔ)ܪ is obtained. The 
equation is as follows: 

(ݔ)ܪ = ݊݃݅ݏ ൬෍ ௧்ୀଵ(ݔ)௧݄௧ߙ ൰. (6)

 
Fig. 2. ELM-AdaBoost algorithm flow chart 
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5. Experimental study 

5.1. Test bench and test system 

In order to verify the effectiveness of the LCD-MPE and ELM-AdaBoost fault diagnosis 
methods for train axle box bearing identification, a fault test bench (made by SpectraQuest) was 
used to simulate bearing faults. As shown in Fig. 3, the bench consists of a driving motor, 
couplings, gear boxes, and magnetic brakes. The fault test bench simulated 4 bearing conditions: 
(1) normal bearing conditions, (2) outer race failure conditions, (3) inner race failure conditions, 
and (4) rolling element failure conditions. In order to simulate failure conditions, we used wire 
cuts to create slots on the outer race, inner race, and rolling parts. Fig. 4 shows a bearing under all 
4 conditions. Under all 4 conditions, the vibration signal sampling frequency was 12k, and the 
number of sampling points was 4,096. We obtained 20 data sets under each condition, with a total 
number of 80 samples. 

 
Fig. 3. Bearing fault simulation test bench 

 
a) Normal 

 
b) Outer race failure 

 
c) Inner race failure 

 
d) Rolling element failure 

Fig. 4. 4 bearing conditions 

5.2. Diagnosis results and methodology 

With the differences between PE and MPE which were described above, we can realize that 
MPE can reflect the features of signal in miti-scale because of the scale factor ݏ, and the MPE is 
equal to the PE when ݏ = 1, so we choose 4 pieces of vibration signals that represented 4 different 
states of bearing to calculate their MPE and the deviation of first 5 MPEs. The calculation results 
are shown in Fig. 5. 

As we can see in Fig. 5, the calculation of MPE in first 5 is different from each other, and the 
deviation of 1st scale MPE which equals to PE is lower than the 2nd and 3rd scale MPE. With this 
result we can know that MPE has a more powerful feature representation ability. Fig. 6 shows the 
bearing vibration acceleration of time domain waveforms. Also, since the bearing fault vibration 
signal amplitude was quite small, it was absorbed by noise. In order to improve the signal-noise 
ratio (SNR) of the bearing vibration signals, we transformed the wavelets to reduce the noise found 
in 80 samples of the original data. Fig. 7 shows de-noised signals. By comparing Figs. 6-7, it is 
evident that after wavelet transformation, some noise components were removed from the original 
signals, and the SNR of the signals was improved. Fig. 7(a)-(c) clearly shows some periodic 
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impact signal components, but it was difficult to verify the bearing fault type based solely on these 
impact signals. The LCD method had very good time-frequency locality performance. The LCD 
method was able to extract the locality information from the bearing vibration signals, and to catch 
the essential features of the signals. Thus, after the noise reduction, the LCD method was used to 
decompose bearing vibration signals in all conditions allowed us obtaining several ISCs, as shown 
in Fig. 8.  

 
Fig. 5. First 5 MPEs and their deviation  

 
a) Normal 

 
b) Outer race failure 

 
c) Inner race failure 

 
d) Rolling element failure 

Fig. 6. Time-domain waveforms 

Each ISC had different time characteristic scales and different energy distributions. From the 
decomposing results in Fig. 8, it is evident that the bearing fault information was primarily present 
in the first 5 ISCs.  
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a) Normal 

 
b) Outer race failure 

 
c) Inner race failure 

 
d) Rolling element failure 

Fig. 7. Waveforms after wavelet transformations 

 
a) Normal 

 
b) Outer race failure 

 
c) Inner race failure 

 
d) Rolling element failure 

Fig. 8. Waveforms after LCD decomposition 
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As such, we chose the first 5 ISCs to calculate the multi-scale permutation entropy feature 
vectors. Fig. 10 shows the MPE feature vectors of the bearings in 4 different conditions. When we 
calculated the feature vectors, we set the parameter embedded dimension ݉ to 6, delayed the time ݐ to 1, and scaled factor ݏ to 2. Fig. 10 clearly shows that the corresponding MPE feature vectors 
with different conditions have significant differences. Such evident differences were beneficial 
for the bearing failure identification. We then calculated the corresponding MPE feature vectors 
of the remaining groups, and obtained the feature factors of 80 groups. Next, we used the 
multi-scale permutation entropy results as the feature vectors of the ELM-AdaBoost classifiers. 
We then chose 5 data groups from each condition (normal bearing conditions, outer race failure 
conditions, inner race failure conditions, and rolling failure conditions) as the ELM-AdaBoost 
classifiers training sample, in which numbers 1 through 4 represented normal bearing conditions, 
outer race failure conditions, inner race failure conditions, and rolling failure conditions, 
respectively. Finally, the feature vectors are applied as input vectors of SVM and ELM-AdaBoost 
classifiers to identify a fault. Fig. 11 shows the identification results of SVM classifier, Fig. 12 
shows the identification results of ELM-AdaBoost classifier. 

From Fig. 11 and Fig. 12, the ELM-AdaBoost model obtains a higher detection rate than SVM 
for the fault recognition of railway axle box bearings. The experimental results verify that the 
proposed LCD-MPE and ELM-AdaBoost method is useful for classifying the railway axle box 
bearings faults considered. 

In summary, the LCD-MPE method proposed by us accurately identifies the type of bearing 
failure. 

 
Fig. 9. Permutation entropy  
under different conditions 

 
Fig. 10. Multi-scale permutation entropy  

under different conditions 
 

 
Fig. 11. SVM classification results 

 
Fig. 12. ELM-AdaBoost classification results 
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6. Conclusions 

Based on the non-linear and non-stationary features of train bearing axle box vibration signals, 
we proposed the LCD-MPE&ELM-AdaBoost fault identification method. We then used our 
method for the experimental train axle box bearing fault diagnosis. Based on our experiments, we 
established as follows: 

1) LCD is a self-adapted signal processing method that can decompose a complex signal into 
the sum of finite ISCs. This method is good at processing non-linear and non-stationary signals. 

2) Multi-scale permutation entropy (MPE) effectively detects randomness in signals and the 
dynamic mutations in multiple scales. Moreover, the MPE can extract bearing fault feature 
information, can create feature sets of bearing vibration signals, and can use the created sets as 
fault feature information. 

3) The ELM-AdaBoost algorithm uses the ELMs as sub-classifiers, combined with the 
boosting function of the AdaBoost algorithm. It then constructs multi-classification algorithms to 
solve problems. The ELM-AdaBoost algorithm combined with ELM and AdaBoost accurately 
identifies train axle box bearing failures in different conditions. 

The analysis of normal bearings, outer race, inner race, and rolling part fault signals shows 
that our proposed method accurately and effectively diagnoses the various fault types of train axle 
box bearings, what proves our method validity and feasibility. Moreover, the success of our 
method establishes a theoretical basis for the dynamic monitoring and fault diagnosis of rotating 
machinery. 
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