
 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. AUG 2017, VOL. 19, ISSUE 5. ISSN 1392-8716 3445 

2543. Bearing fault diagnosis via kernel matrix 
construction based support vector machine 

Chenxi Wu1, Tefang Chen2, Rong Jiang3 
1, 2School of Information Science and Engineering, Central South University, Changsha, China  
1, 3School of Mechanical Engineering, Hunan Institute of Engineering, Xiangtan, China 
2Corresponding author 
E-mail: 1jr112@126.com, 2tefangchen@163.com, 3hngcxywuchenxi@foxmail.com 
Received 14 April 2017; received in revised form 18 June 2017; accepted 7 July 2017 
DOI https://doi.org/10.21595/jve.2017.18482 

Abstract. A novel approach on kernel matrix construction for support vector machine (SVM) is 
proposed to detect rolling element bearing fault efficiently. First, multi-scale coefficient matrix is 
achieved by processing vibration sample signal with continuous wavelet transform (CWT). Next, 
singular value decomposition (SVD) is applied to calculate eigenvector from wavelet coefficient 
matrix as sample signal feature vector. Two kernel matrices i.e. training kernel and predicting 
kernel, are then constructed in a novel way, which can reveal intrinsic similarity among samples 
and make it feasible to solve nonlinear classification problems in a high dimensional feature space. 
To validate its diagnosis performance, kernel matrix construction based SVM (KMCSVM) 
classifier is compared with three SVM classifiers i.e. classification tree kernel based SVM 
(CTKSVM), linear kernel based SVM (L-SVM) and radial basis function based SVM (RBFSVM), 
to identify different locations and severities of bearing fault. The experimental results indicate that 
KMCSVM has better classification capability than other methods. 
Keywords: fault diagnosis, continuous wavelet transform, singular value decomposition, kernel 
matrix construction, support vector machine. 

1. Introduction 

Rolling element bearing (REB) is a critical unit in rotating machinery and its health condition 
is often monitored to identify incipient fault. When a defect like bump, dent or crack that occurs 
in REB' outer race, inner race, roller or cage, continuously contacts another part of bearing under 
operation, a sequence of impulsive responses can be acquired in the form of vibration [1-3], 
acoustic emission [4], temperature, motor current, ultrasound [5], etc. However, the measured 
signals involve both fault-induced component and noises from structure vibration, environment 
interference, etc. Furthermore, fault-induced signal is often masked by noises due to its relatively 
low energy. In fact, many signal processing techniques including time domain analysis, frequency 
analysis and time-frequency analysis have been explored to draw fault signatures effectively. For 
example, Statistical parameters in time domain are used as defective features such as RMS, 
Variance, Skewness, Kurtosis, etc. [6, 7]. Features are derived from time series model like the 
Autoregressive [8, 9]. Frequency analysis aims to find whether characteristic defect frequency 
(CDF) exists in spectrum [10-14]. As non-stationary signals, bearing fault signals are extensively 
dealt with using time-frequency analysis to obtain local characteristic information both in time 
and frequency domain [15-17]. Two or more kinds of signal processing techniques are also 
combined together for feature extraction [18-20]. Some signal analysis methods have been 
optimized before performing feature extraction [21, 22] like flexible analytic wavelet transform 
[23] by employing fractional and arbitrary scaling and translation factors to match fault component. 
High-dimension features could be compressed into low-dimension features by optimal algorithms 
[24-26] like manifold learning [27-30] for efficient diagnosis. Due to its complexity of bearing, it 
is almost impossible for even domain experts to judge the bearing condition just by inspecting the 
characteristic indices. In order to automate diagnosis procedures and decision-making on REB 
health state, a variety of automatic diagnosis methods have been put forward such as artificial 
neural network (ANN), support vector machine (SVM), fuzzy logic, hidden Markov model  
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(HMM) and other novel approaches [31]. In [32], the anomaly detection (AD) learning technique 
has got higher accuracy than SVM classifier for bearing fault diagnosis. The trifold hybrid 
classification (THC) approach can isolate unexampled health state from exampled health state and 
discriminate them exactly [33]. Simplified fuzzy adaptive resonance theory map (SFAM) neural 
network is investigated and able to predict REB remaining life [34]. A poly-coherent composite 
spectrum (PCCS), retaining amplitude and phase information, is observed to have a better 
diagnosis than methods without phase information [35]. HOS-SVM model, which integrates high 
order spectra (HOS) features and SVM classifier, indicates the capability of diagnosing REB 
failures [36]. 

As mentioned above, great progress has been made in detecting bearing conditions.  
Meanwhile, these proposed methods also face some challenges. For instance, owing to the 
fluctuation in speed or load, a measured CDF is probably inconsistent with the theoretical 
calculation. The selection of base wavelet and scale levels mostly relies on researchers’ experience 
and prejudice rather than objective criterions. The discrete wavelet transforms (DWT) still suffers 
from limitations of fixed scale resolution regardless of signal characteristics. The structures of 
ANN, particularly initial weights, which are randomly determined by trial and experience, may 
weaken generalization capability and training velocity. For SVM classifier, the kernel function is 
demanded to map samples from an input space to a higher feature space where the samples can be 
linearly separated. However, the kernel function confines to typical formulas such as linear, 
polynomial, radial, multilayer perception and sigmoid function which will not surely succeed in 
search of the intrinsic correlation among the samples. Consequently, it possibly contributes to 
poor classification. 

Thereby, a novel method on kernel matrix construction for SVM (KMCSVM) is proposed to 
identify REB fault more precisely. Two kernel matrices, i.e. the training kernel matrix ۹ and the 
prediction kernel matrix ۹௧, are constructed in this way. The matrix ۹ exposes the similarity of 
intrinsic characteristics among training samples, while the matrix ۹௧  specifies the similarity 
between training samples and test samples. The results show that KMCSVM has better ability for 
REB fault diagnosis. To our best knowledge, KMCSVM has not been observed in rotating 
machinery fault diagnosis fields. 

The rest of this paper is organized as follows: Section 2 reviews the background knowledge 
about CWT and singular value decomposition (SVD) for feature extraction. The procedure based 
on KMCSVM is presented in Section 3. The proposed method is validated by identifying bearing 
fault locations and severities in Section 4. Finally, conclusions are drawn in Section 5. 

2. Methods review 

Because signals from defective bearing are non-stationary, nonlinear, local and transient, CWT 
is chosen to process the signals and SVD is used to calculate the eigenvector from the coefficient 
matrix as signal signature. 

2.1. Continuous wavelet transform 

CWT aims to measure a local similarity between wavelet ߰(ݐ) at scale ݏ position ߬ and signal ݂(ݐ). The wavelet coefficient ܿ(ݏ, ߬) can be defined by Eq. (1): 

ܿ௦,ఛ = ݏ√1 න (ݐ)݂ ߰ ൬ݐ − ݏ߬ ൰ (1) .ݐ݀

By shifting ߰(ݐ) in time and scaling ߰(ݐ), a wavelet coefficient matrix ۱ can be created which 
is viewed as a time-frequency space as Eq. (2) and represents the dynamic characteristics of the 
signal ݂(ݐ): 
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۱ = ൦ܿଵ,ଵ ܿଵ,ଶ … ܿଵ,௡ܿଶ,ଵ ܿଶ,ଶ … ܿଶ,௡⋮ ⋮ ⋮ ⋮ܿ௠,ଵ ܿ௠,ଶ ⋯ ܿ௠,௡൪,   (2)

where ܿ௠,௡ is the coefficient at the ݉th scale and at the ݊th data point of a sample signal. 

2.2. Singular value decomposition 

SVD is used to decompose the wavelet coefficient matrix ۱. Assuming matrix ۱ with the size 
of ݉ × ݊, the SVD results can be expressed by Eq. (3): ۱ = ટ઩ઠ ் , (3)

where ۯ  and ۰  are orthogonal matrices of ݉ × ݉  and ݊ × ݊ , respectively. Λ  is an ݉ × ݊ 
diagonal nonnegative matrix. The diagonal elements in ઩ are called singular values (SVs) of ۱, 
which are only determined by matrix ۱ itself and denote the natures of matrix ۱, namely, the 
characteristics of a sample signal. Given ݉ ൏ ݊, Eq. (3) can be illustrated in details as Eq. (4): 

۱ = ൦ܽଵଵ ܽଵଶ … ܽଵ௠ܽଶଵ ܽଶଶ … ܽଶ௠⋮ ⋮ ⋮ ⋮ܽ௠ଵ ܽ௠ଶ ⋯ ܽ௠௠൪ ൦ߣଵଵ 0 ⋯ ⋯ ⋯ 00 ଵଶߣ ⋯ ⋯ ⋯ 0⋮ ⋮ ⋱ ⋮ ⋮ ⋮0 0 ⋯ ଵ௠ߣ ⋯ 0൪
ێێۏ
ۍێێ
ܾଵଵ ܾଵଶ ⋯ ⋯ ⋯ ܾଵ௡ܾଶଵ ܾଶଶ ⋯ ⋯ ⋯ ܾଶ௡⋮ ⋮ ⋱ ⋮⋮ ⋮ ⋱ ⋮⋮ ⋮ ⋱ ⋮ܾ௡ଵ ܾ௡ଶ ⋯ ⋯ ⋯ ܾ௡௡ۑۑے

ېۑۑ .் (4)

SVs constitute vector ܠ described as Eq. (5). ܠ also denotes the feature vector extracted from 
a sample signal: ܠ = ሾߣଵଵ ଶଶߣ ⋯ ௡௡ሿ. (5)ߣ

3. Proposed method 

SVM is well suited for linear pattern recognition. However, the original feature vectors 
extracted from REB are not linearly separated. Suppose there exists a high dimensional space 
where the original feature vectors are mapped into the high dimension feature vectors that can be 
linearly separated using SVM in it, the linear pattern recognition based SVM turns to find kernel 
matrices with the inner product between the imaged high dimension feature vectors. Fig. 1 shows 
the stages of kernel pattern analysis. The sample feature vectors are used to create training and 
predicting kernel matrix. The pattern function then uses the matrices to recognize unseen samples. 
For kernel pattern analysis, the key is how to construct kernel matrices. 

 
Fig. 1. Stages in the implementation of kernel pattern analysis 

3.1. Kernel matrix pattern based SVM 

A training set ܁ଵ and a test set ܁ଶ are given as below: 
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ଵ܁ = ሼ(ܠ૚, ,(ଵݕ ⋯ , ,௟ܠ) ௜ܠ   ,௟)ሽݕ ∈ ଶ܁ଵ, (6)܁ = ሼ(ܠ௟ାଵ, ,(௟ାଵݕ ⋯ , ൫ܠ௟ା௣, ௩ܠ     ,௟ା௣൯ൟݕ ∈ ଶ. (7)܁

Assume ૎(ܠ) is a image of point ܠ mapped into a high dimensional feature space ۴ and all the 
sample images can be separated by a hyper-plane as Eq. (8): 〈ܟ, ૖(ܠ)〉 + ܾ = 0. (8)

The hyper-plane is determined to solve the following optimization problem: 

Min      12 ଶ, (9)‖ܟ‖

Subject to      ݕ௜(〈ܟ, ૖(ܠ௜)〉 + ܾ) ≥ 1,     ݅ = 1, … , ݈.  (10)

It is equivalent to solving a constrained convex quadratic programming optimization problem: 

Maximize   ܹ(ߙ) = ෍ ௜௟ߙ
௜ୀଵ − 12 ෍ ෍ ௜௟ߙ

௝ୀଵ
௟

௜ୀଵ ,௜ݔ൫ߢ௝ݕ௜ݕ௝ߙ ௝൯ݔ = હ்܍ − 12 હ்઩۹઩હ.   (11)

And   ߢ൫ݔ௜, ௝൯ݔ = 〈૖(ݔ௜), ૖൫ݔ௝൯〉. (12)

Subject to ෍ ௜௟ߙ
௜ୀଵ ௜ݕ = 0,     0 ≤ ௜ߙ ≤ ܿ,     ݅ = 1, … , ݈. (13)

۹ is named training kernel matrix which is a ݈ × ݈ symmetric matrix with ݇௜௝ = ,௜ܠ൫ߢ  ௝൯, theܠ
inner product between the images of two training samples in space ۴. ݈ is the number of training 
samples, ܍ is a column vector with ݁௜ = 1, હ = ,ଵߙ) ,ଶߙ … , ݈ ௟)் is a Lagrange multiplier vector, ઩ is anߙ × ݈ diagonal matrix with Λ௜௜ =  ௜ is the ݅th sample classݕ ,௜, ܿ is error penalty constantݕ
label. 

By maximizing (ߙ)܅ , the optimized હ∗  can be obtained. Thus, the optimized ܾ∗  can be 
computed using the following equation: ܾ∗ = ௜ݕ − હ∗்઩۹௜, (14)

where ۹௜ is the ݅th column vector of ۹. 
Hence, the pattern function of SVM to predict the class of unseen sample ܠ௩ can be written as: 

(௩܆)݂ = sgn ൭෍ ௜∗௟ߙ
௜ୀଵ )௧ߢ௜ݕ ௜ܺ, ܺ௩) + ܾ∗൱ = sgn(હ∗்઩۹௧௩ + ܾ∗), (15)

and: ߢ௧(ݔ௜, (௩ݔ = 〈૖(ݔ௜), ۹௧(16) .〈(௩ݔ)߶  is named prediction kernel matrix of ݈ × ݌  with ݇௜௩ = ,௜܆)௧ߢ (௩܆ , the inner product 
between the images of a training sample and a test sample in space ۴. ݌ is the number of the test 
samples, ۹௧௩ is the ݒth column vector of ۹௧.  

According to Eq. (15), the result of pattern analysis just depends on kernel matrices, so it is 
feasible for SVM to solve nonlinear classification problems by developing appropriate kernel 
matrices. 
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3.2. Kernel matrix construction 

A novel method on kernel matrix construction (KMC) is presented to solve nonlinear 
classification problems using pattern analysis based SVM.  

To our best knowledge, this KMC based method has not been studied in the field of machinery 
fault diagnosis. The specific procedure of KMC is stated below and illustrated in Fig. 2. 

 
Fig. 2. Flow chart of training kernel matrix ۹ construction 

Step 1: Provide training set ܁ଵ = ൛൫ܠଵ,ݕଵ൯, … , ൫ܠ௟,ݕ௟൯ൟ  and test set  ܁ଶ = ቀܠ௟ାଵ, ݕ (݈ + 1)ቁ , … , ൫ܠ௟ା௣,ݕ௟ା௣൯. Suppose there exists ݎ classes of samples in ܁ଵ. ܁ଵ is used 
to construct training kernel matrix ۹ of ݈ × ݈ ଶ are used for predicting matrix ۹௧ of܁ ଵ and܁ .݈ ×  .݌
Let ܂ଵ be a matrix of ݈ × ݈ ଶ of܂ ,݈ × ۹ (۹௧) ,(ଶ܂) ଵ܂ Initialize .݌ = 0. 

Step 2: Produce distance matrix ۲ଵ (۲ଶ) by computing pairwise distance of samples using  
Eq. (17). Thus, ۲ଵ about pairwise distance of training samples and ۲ଶ about pairwise distance 
between training and test samples are shown as Eq. (18): ݀௜௝ = ฮܠ௜ − ௝ฮ, (17)ܠ

۲ଵ = ൦݀ଵଵ ݀ଵଶ … ݀ଵ௟݀ଶଵ ݀ଶଶ … ݀ଶ௟⋮ ⋮ ⋮ ⋮݀௟ଵ ݀௟ଶ ⋯ ݀௟௟ ൪,   ۲ଶ = ێێۏ
ଵଵ݀ۍ ݀ଵଶ … ݀ଵ௣݀ଶଵ ݀ଶଶ … ݀ଶ௣⋮ ⋮ ⋮ ⋮݀௟ଵ ݀௟ଶ … ݀௟௣ ۑۑے

(18) .ې

݀௜௝ denotes the distance of the ݅th training sample and the ݆th training sample in ۲ଵ and the 
distance of the ݅th training sample and the ݆th test sample in ۲ଶ.  

Step 3: Find the ݇ closest neighbors distribution of each sample. The ݇ closest neighbors of 
each sample are the ݇ least numbers in each column of ۲ଵ (۲ଶ). Set 1 to the elements in ܂ଵ (܂ଶ) 
that have the same locations of the ݇ least numbers in ۲ଵ (۲ଶ). The rows of ܂ଵ (܂ଶ) is divided 
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into ݎ blocks, its blocks and columns stand for classes and samples, respectively. Eq. (19) shows 
the k closest neighbors distribution in different classes by setting 1:                     1 ⋯     ݅     ⋯ ݈                         1 ⋯    ݆    ⋯ ݌

ଵ܂ =
ݐݏ1
2݊݀⋮
ℎݐݎ ێێۏ

ێێێ
ێێێ
⋮ۍێ  ||| 0 |  ⋮ |  1 |  ⋮− − − − − − − −⋮  | ⋮ |  ⋮− − − − − − − −⋮  | ⋮ |  ⋮− − − − − − − −⋮  ||| 1 |⋮ |0 | ۑۑے⋮ 

ۑۑۑ
ۑۑۑ
ېۑ
ଶ܂   , =

ݐݏ1
2݊݀⋮
ℎݐݎ ێێۏ

ێێێ
ێێێ
⋮ۍێ  ||| 1 |  ⋮ |  0 |  ⋮− − − − − − − −⋮  | ⋮ |  ⋮− − − − − − − −⋮  | ⋮ |  ⋮− − − − − − − −⋮  ||| 0 |⋮ |1 | ۑۑے⋮ 

ۑۑۑ
ۑۑۑ
ېۑ
. (19)

Step 4: Classify using majority vote among the ݇ neighbors. If a sample has the majority of ݇ 
neighbors within one block, the sample belongs to the block related class. Set 1 to the column 
within the block, 0 to the rest of that column. For example, if ܠ௜ ൫ܠ௝൯ belongs to the 1st class, ܂ଵ (܂ଶ) is revised as Eq. (20):                     1 ⋯     ݅     ⋯ ݈                         1 ⋯    ݆    ⋯ ݌

ଵ܂ =
ݐݏ1
2݊݀⋮
ℎݐݎ ێێۏ

ێێێ
ێێێ
⋮ۍێ  ||| 1 |  ⋮ |  1 |  ⋮− − − − − − − −⋮  | ⋮ |  ⋮− − − − − − − −⋮  | ⋮ |  ⋮− − − − − − − −⋮  ||| 0 |⋮ |0 | ۑۑے⋮ 

ۑۑۑ
ۑۑۑ
ېۑ
ଶ܂    , =

ݐݏ1
2݊݀⋮
ℎݐݎ ێێۏ

ێێێ
ێێێ
⋮ۍێ  ||| 1 |  ⋮ |  1 |  ⋮− − − − − − − −⋮  | ⋮ |  ⋮− − − − − − − −⋮  | ⋮ |  ⋮− − − − − − − −⋮  ||| 1 |⋮ |0 | ۑۑے⋮ 

ۑۑۑ
ۑۑۑ
ېۑ
. (20)

Step 5: Compress multi-classes of ܂ଵ (ଶ܂)   into two classes. The 1st class remains 
unchangeable and the other classes merge into the 2nd class. Where a sample is 0(1) in the 1st 
class must be 1(0) in the 2nd class. The updated ܂ଵ and ܂ଶ are shown as Eq. (21):                        1 ⋯       ݅       ⋯ ݈                                1  ⋯        ݆       ⋯ ݌
ଵ܂ =

ݐݏ1
2݊݀

ێێۏ
ێێێ
ۍێێ
⋯⋱⋯ ⋯⋯ ||| 1 | ⋯⋮ | ⋱1 | ⋯ ⋯⋯− − − − − − − − − − −⋯ ⋯ | 0 | ⋯ ⋯| 0 |⋱⋯ ⋱⋯ ||| ⋮ |0 |0 | ⋱⋯ ۑۑے⋯⋰

ۑۑۑ
ېۑۑ ଶ܂    , =

ݐݏ1
2݊݀

ێێۏ
ێێێ
ۍێێ
⋯⋱⋯ ⋯⋯ ||| 1 | ⋯⋮ | ⋱1 | ⋯ ⋯⋯− − − − − − − − − − −⋯ ⋯ | 0 | ⋯ ⋯| 0 |⋱⋯ ⋱⋯ ||| ⋮ |0 |0 | ⋱⋯ ۑۑے⋯⋰

ۑۑۑ
ېۑۑ , . (21)

Step 6: Select the 1st row of ܂ଵ (܂ଶ) as a row matrix ܀ଵ (܀ଶ). ܀ଵ reveals training samples 
class, ܀ଶ describes test samples class: 
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              1 ⋯  ݅ ⋯   ݈                     1 ⋯   ݆ ⋯ ଵ܀݌ = ሾ⋯ ⋯ 1 ⋯ ⋯ሿ,     ܀ଶ = ሾ⋯ ⋯ 1 ⋯ ⋯ሿ. (22)

The training kernel matrix ۹ can be constructed based on ܀ଵ, it is an ݈ × ݈ symmetric matrix 
with diagonal element 1 as Eq. (23). ۹  reflects the similarity among training samples. The 
prediction matrix ۹௧ with ݈ × ଶ. ۹௧܀ ଵ and܀ can be likewise established according to ݌  exhibits 
the similarity between training and test samples. In ۹ (۹௧) “1” means the maximum similarity 
between corresponding samples and “0” means no similarity:  

۹ = ێێۏ
1ۍێ ⋮ ⋮ ⋮ ⋮⋮ ⋱ ⋮ 0(1) ⋮⋮ ⋮ 1 ⋮ ⋮⋮ 0(1) ⋮ ⋱ ⋮⋮ ⋮ ⋮ ⋮ ۑۑے1

(23) .ېۑ

Step 7: Increase ݇ = ݇ + 1 and repeat from Step 3 to Step 6 till k exceeds the upper. The upper 
should be given to a medium value to save computing time.  

Step 8: Take the average of the matrices ۹ (۹௧). A number of ۹ (۹௧) would be produced with 
the closest neighbor ݇ changing from the lower to the upper. Average these matrices to get better 
intrinsic relations among samples. The averaged ۹ (۹௧) is applied to the pattern function for 
classification. 

4. Case studies 

REB fault diagnosis is investigated to validate the effectiveness of KMCSVM. Fig. 3 shows 
the scheme of REB fault diagnosis.  

 
Fig. 3. Flow chart of REB fault diagnosis 

4.1. Experimental setup and vibration data 

The experiment data about faulty bearings is taken from the Case Western Reserve University 
Bearing Data Center. The vibration data has been widely utilized as a standard dataset for REB 
diagnosis. As shown in Fig. 4, the test stand consists of a 2 hp motor (left), a torque 
transducer/encoder (center), a dynamometer (right), and control electronics. The test bearings 
support the motor shaft. Motor bearings were seeded with faults using electro-discharge 
machining. Faults ranging from 0.007 inches in diameter to 0.021 inches in diameter were 
introduced separately at the inner raceway, rolling element and outer raceway. Faulted bearings 
were reinstalled into the test motor and vibration data was recorded for motor loads of 0 to 3 
horsepower (motor speeds of 1797 to 1720 RPM). Bearing Information is shown as Table 1 and 
Table 2. Vibration signal was collected using accelerometers, which were attached to the drive 
end of the motor housing with magnetic bases. Then vibration signal was digitalized through a 16 
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channel DAT recorder. Digital data was collected at 48.000 samples per second for drive end 
bearing faults and post processed in a MATLAB environment. Speed and horsepower data were 
collected using the torque transducer/encoder and were recorded. 

Table 1. Bearing information: 6205-2RS JEM SKF size: (inches) 
Inside diameter Outside diameter Thickness Ball diameter Pitch diameter 

0.9843 2.0472 0.5906 0.3126 1.537 

In this experiment, the vibration data of the drive end bearing are chosen to perform location 
and severity identification of bearing fault. The sampling frequency is 48 kHz and each sample 
contains 2048 data points. Four different bearing conditions, i.e. healthy state, outer race fault, 
inner race fault and ball fault are observed for fault location recognition using KMCSVM. In 
addition, four types of fault severities (healthy, 0.007, 0.014 inch and 0.021 inch) are also 
considered to assess KMCSVM classification performance. 

Table 2. Fault specifications size: (inches)  
Bearing Fault location Diameter Depth Bearing manufacturer 

Drive end Inner raceway 0.007 0.011 SKF 
Drive end Inner raceway 0.014 0.011 SKF 
Drive end Inner raceway 0.021 0.011 SKF 
Drive end Outer raceway 0.007 0.011 SKF 
Drive end Outer raceway 0.014 0.011 SKF 
Drive end Outer raceway 0.021 0.011 SKF 
Drive end Ball 0.007 0.011 SKF 
Drive end Ball 0.014 0.011 SKF 
Drive end Ball 0.021 0.011 SKF 

4.2. Feature extraction 

Referring to wavelet selection criterion in subsection “Wavelet selection” presented in [37], 
the energy to entropy ratios about six different wavelets including the Shannon, Gaussian, 
Complex Morlet, Daubechies, Meyer and Morlet are plotted in Fig. 5. due to the maximum energy 
to entropy ratio, the Shannon wavelet is selected as the best mother wavelet to perform continuous 
wavelet transform. The feature vectors are calculated from the coefficient matrices using SVD. 

 
Fig. 4. Rolling element bearing test rig 

 
Fig. 5. Energy to entropy ratios of datasets using wavelets 

4.3. Classification of bearing conditions 

The performance of KMCSVM is evaluated by identifying bearing fault location and fault 
severity, and compared with other kernel pattern recognition methods like CTKSVM, L-SVM and 
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RBFSVM that have been studied in the previous work [37]. CTKSVM is a SVM based on the 
classification tree kernel which is constructed using fuzzy pruning strategy and tree ensemble 
learning algorithm to improve the diagnostic capability of REB fault. L-SVM makes use of 
classical linear kernel as well as RBFSVM with radial basis function to diagnose REB fault. Both 
five-fold cross validation and independent test are conducted to obtain the classification accuracy 
of these SVM classifiers. To discover the true fault from the possible multi-faults, SVM classifiers 
are trained in a tournament of one against others by setting one class as +1 and others as –1, and 
continuous to detect unknown sample in the same manner. 

4.3.1. Identification of fault location 

Fault location recognition strives to distinguish four different bearing conditions, i.e. healthy 
state, outer race fault, inner race fault and ball fault. Table 3 lists 12 datasets with various loading, 
fault size and shaft speed for analysis. There are 48 samples for each state, thus total 192 samples 
for all states in each dataset shown as Table 4.  

The groups of sample sets are allocated in the way that satisfies the tournament of training and 
test using five-fold cross validation and independent test as described in Table 5.  

Table 3. Description of 12 datasets on fault locations 
Dataset  1 2 3 4 5 6 7 8 9 10 11 12 

Fault (inch) 0.007 0.007 0.007 0.007 0.014 0.014 0.014 0.014 0.021 0.021 0.021 0.021 
Load (HP) 0 1 2 3 0 1 2 3 0 1 2 3 

Speed (RPM) 1796 1772 1750 1725 1796 1772 1750 1725 1796 1772 1750 1725 

Table 4. Composition of dataset on fault locations 
Fault type Sample size 

H 48 
O 48 
I 48 
B 48 

H – healthy, O – outer race defect, I – inner race defect, B – ball defect 

Table 5. Sample set with different fault locations for training and test 

Sample label 5-fold cross  
validation 

Independent test 
Training Test 

1 H vs. (O+I+B) 48: (48 + 48 + 48) 24: (24 + 24 + 24) 24: (24 + 24 + 24) 
2 O vs. (I+B) 48: (48 + 48) 24: (24 + 24) 24: (24 + 24) 
3 B vs. (O+I) 48: (48 + 48) 24: (24 + 24) 24: (24 + 24) 
4 I vs. (O+B) 48: (48 + 48) 24: (24 + 24) 24: (24 + 24) 
5 I vs. B 48:48 24: 24 24: 24 
6 O vs. I 48:48 24: 24 24: 24 
7 O vs. B 48:48 24: 24 24: 24 

Fig. 6 illustrates the accuracy of the four classifiers corresponding to the 12 datasets in  
Table 3 using five-fold cross validation. The classification accuracy of RBFSVM is obviously 
lowest among all the methods. In eight cases (Fig. 6(b)-(h), Fig. 6(k)), KMCSVM achieves a 
higher classification accuracy. In three cases (Fig. 6(a), Fig. 6(i), Fig. 6(l)), the classification rates 
based on KMCSVM, CTKSVM and L-SVM are almost similar to each other. Only in one case 
(Fig. 6(j)), the classification accuracy of KMCSVM is slightly lower than those of CTKSVM and 
L-SVM. As a whole, the classification ability increases in the order of RBFSVM, L-SVM, 
CTKSVM and KMCSVM. Additionally, the classification accuracy of KMCSVM maintains the 
least fluctuation. It indicates that KMCSVM is insensitive to the changes of sample sets.  

The classification accuracy of KMCSVM is observed as the fault size changes under specific 
loads (0 HP, 1 HP, 2 HP, 3 HP). It can be inferred from Fig. 7 that the accuracy of KMCSVM 
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descends in sequence of fault sizes from 0.007 to 0.021 then to 0.014 inch except that the accuracy 
alternately occurs between 0.014 and 0.021 inch under 1 HP load as described Fig. 7(b). In the 
early stage of bearing fault (0.007 inch), the accuracy arrives at 100 %. The accuracy then falls 
with the growth of bearing fault (0.014 inch). When the fault size further enlarges (0.021 inch), 
the classification accuracy rises again. 

   

   

   

   
Fig. 6. Accuracy of the four classifiers corresponding to 12 datasets 

Fig. 8 describes the classification accuracy of KMCSVM with the load variation while fixing 
the fault size. In Fig. 8(a), the accuracy for fault with 0.007 inch always keeps 100 %. So 
KMCSVM is robust against the load interference and excellent fault classification performance. 
From Fig. 8(b) and Fig. 8(c), it demonstrates that the loading disturbances bring the accuracy 
fluctuations irregularly. 

It also can be seen from Table 6 that the average accuracy of KMCSVM, whenever five-fold 
cross validation or independent test, is the highest (all more than 95.60 %). The corresponding 
training and test time are summarized in Table 7. For 5 folds cross validation, the computational 
cost of training KMCSVM is higher than that of the other three methods. The reason is that the 
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construction of training kernel matrix needs more computational time. Once KMCSVM is trained, 
it has the efficient diagnosis capability with no more than 8.3 s. For independent validation, it 
takes less time to train (less than 9.97 s) and test (less than 3.02 s) KMCSVM which is very close 
to other methods. Thereby, KMCSVM displays its outstanding fault diagnosis performance.  

  

Fig. 7. Accuracy of KMCSVM with the fault size variation 

  

 
Fig. 8. Accuracy of KMCSVM with the load variation 

4.3.2. Identification of fault severity 

Fault severity recognition seeks to evaluate REB fault size that influences the machinery health 
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and its lifetime. In Table 8, four types of fault severity conditions are considered to assess 
KMCSVM classification performance using datasets in Table 9. 

The groups of sample sets are provided by means of tournament to identify different fault sizes 
as described in Table 10. 

Table 6. Average accuracy of 4 classifiers using 12 datasets on fault locations 

Sample set 
5 folds cross validation Independent validation 

KMCSVM CTKSVM L-
SVM RBFSVM KMCSVM CTKSVM L-

SVM RBFSVM 

H vs. 
(O+I+B) 99.87 99.57 97.79 49.01 99.65 99.39 93.75 44.44 

O vs. (I+B) 97.57 95.95 92.59 66.38 97.68 95.60 92.59 68.06 
B vs. (O+I) 96.99 93.87 89.12 48.15 96.41 93.52 87.50 62.38 
I vs. (O+B) 95.72 94.04 90.58 72.34 95.60 94.10 84.49 74.19 

I vs. B 96.09 93.84 92.45 66.84 95.66 92.36 92.19 58.16 
O vs. I 97.22 96.34 96.09 64.18 97.40 96.35 95.83 56.42 
O vs. B 98.61 96.53 92.53 63.37 98.26 96.18 93.39 69.44 

Table 7. Average training time and test time of 4 classifiers using 12 datasets on fault locations 

Sample set Time 
(s) 

5 folds cross validation Independent validation 

KMCSVM CTKSVM L-
SVM RBFSVM KMCSVM CTKSVM L-

SVM RBFSVM 

H vs. 
(O+I+B) 

Train 262.73 12.86 10.75 15.82 9.97 1.90 1.57 4.97 
Test 8.30 0.01 0.01 0 3.02 0 0 0 

O vs. (I+B) Train 108.29 11.94 10.76 12.87 3.96 1.98 1.60 3.11 
Test 5.90 0 0 0 1.25 0 0 0 

B vs. (O+I) Train 109.28 14.42 11.95 14.27 3.93 2.10 1.76 3.16 
Test 5.54 0 0 0 1.25 0 0 0 

I vs. (O+B) Train 107.91 14.31 11.93 13.80 4.14 2.12 1.93 3.35 
Test 5.23 0 0 0 1.28 0 0 0 

I vs. B Train 33.66 9.76 8.45 9.29 1.22 1.55 1.35 1.76 
Test 1.51 0 0 0 0.42 0 0 0 

O vs. I Train 29.03 8.51 7.40 8.30 1.42 1.44 1.28 1.71 
Test 1.39 0 0 0 0.40 0 0 0 

O vs. B Train 28.54 9.53 8.09 8.97 1.31 1.55 1.41 1.83 
Test 1.38 0 0 0 0.40 0 0 0 

Table 8. Composition of dataset on fault severity 
Fault severity Sample size Defect size(inch) 

H 48 0 
S1 48 0.007 
S2 48 0.014 
S3 48 0.021 

H – healthy, S1 – fault with 0.007 inch, S2 – fault with 0.014 inch, S3 – fault with 0.021 inch 

Table 9. Description of 12 datasets on fault severity 
Dataset 1 2 3 4 5 6 7 8 9 10 11 12 

Location O O O O I I I I B B B B 
Load (HP) 0 1 2 3 0 1 2 3 0 1 2 3 

Speed (RPM) 1796 1772 1750 1725 1796 1772 1750 1725 1796 1772 1750 1725 

Fig. 9, Fig. 10 and Fig. 11 illustrate the accuracy of KMCSVM tested on the 12 datasets in 
Table 6 using five-fold cross validation and compared with CTKSVM, L-SVM and RBFSVM. 
Clearly, RBFSVM contributes to the lowest accuracy. In seven cases (Fig. 9(a)-(d) and  
Fig. 10(a)-(c)), KMCSVM reaches the highest 100 %. In four cases Fig. 10(d), Fig. 11(a) and  
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Fig. 11(c)-(d)), the accuracy based on KMCSVM are second only to L-SVM. Fig. 11(b) indicates 
the accuracy of KMCSVM is slightly lower than those of CTKSVM and L-SVM. Consequently, 
KMCSVM is highly suitable for fault severity recognition of bearing outer race and inner race. 
Moreover, the accuracy curves of KMCSVM stay little fluctuation. It exhibits good stability of 
KMCSVM on changes of sample sets and load interference. 

  

Fig. 9. Accuracy of the four classifiers for fault severity in bearing outer race 

  

  
Fig. 10. Accuracy of the four classifiers for fault severity in bearing inner race 

Table 11 gives the average accuracy of 4 classifiers about REB fault severity recognition. For 



2543. BEARING FAULT DIAGNOSIS VIA KERNEL MATRIX CONSTRUCTION BASED SUPPORT VECTOR MACHINE.  
CHENXI WU, TEFANG CHEN, RONG JIANG 

3458 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. AUG 2017, VOL. 19, ISSUE 5. ISSN 1392-8716  

five-fold cross validation, the classification performance of KMCSVM is slightly lower than  
L-SVM because KMCSVM is not so well as L-SVM in fault severity recognition of bearing ball. 
However, KMCSVM is the best one of 4 classifiers which gets the highest accuracy for 
independent test. The corresponding training and test time are shown in Table 12. The 
computational cost of training and test KMCSVM is similar to that used for fault locations 
diagnosis mentioned above. 

  

  
Fig. 11. Accuracy of the four classifiers for fault severity in bearing ball 

Table 10. Sample set with different severities for training and test 

Sample label 5 folds cross validation Independent test 
Training Test 

1 H vs. (S1+S2+S3) 48: (48 + 48 + 48) 24: (24 + 24 + 24) 24: (24 + 24 + 24) 
2 S1 vs. (S2+S3) 48: (48 + 48) 24: (24 + 24) 24: (24 + 24) 
3 S3 vs. (S1+S2) 48: (48 + 48) 24: (24 + 24) 24: (24 + 24) 
4 S2 vs. (S1+S3) 48: (48 + 48) 24: (24 + 24) 24: (24 + 24) 
5 S2 vs. S3 48:48 24: 24 24: 24 
6 S1 vs. S2 48:48 24: 24 24: 24 
7 S1 vs. S3 48:48 24: 24 24: 24 

Table 11. Average accuracy of 4 classifiers using 12 datasets on fault severity 

Sample set 5 folds cross validation Independent validation 
KMCSVM CTKSVM L-SVM RBFSVM KMCSVM CTKSVM L-SVM RBFSVM 

H vs. (S1+S2+S3) 100 99.48 92.54 61.24 99.74 99.13 80.73 83.42 
S1 vs. (S2+S3) 98.84 97.28 95.14 58.62 98.73 92.94 83.91 80.44 
S3 vs. (S1+S2) 98.15 97.79 99.42 74.17 98.03 96.76 92.13 85.07 
S2 vs. (S1+S3) 98.21 96.59 98.67 67.85 97.80 93.12 86.81 82.87 

S2 vs. S3 97.83 98.10 98.00 60.68 97.57 96.89 92.19 90.11 
S1 vs. S2 99.16 96.70 99.48 57.12 98.79 93.75 88.02 84.03 
S1 vs. S3 98.96 98.09 99.48 65.02 99.13 98.96 94.27 80.21 

According to the results in the above experiments, KMCSVM earns higher accuracy in 
diagnosis of fault locations and severities compared to the other three methods. The success of 



2543. BEARING FAULT DIAGNOSIS VIA KERNEL MATRIX CONSTRUCTION BASED SUPPORT VECTOR MACHINE.  
CHENXI WU, TEFANG CHEN, RONG JIANG 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. AUG 2017, VOL. 19, ISSUE 5. ISSN 1392-8716 3459 

KMCSVM owes to the strategy for the construction of kernel matrix ۹ and ۹௧. This strategy can 
effectively suppress irrelevant features and mine the similarity degree of samples. So ۹ and ۹௧ 
can express the intra-class compactness and inter-class separation more objectively than 
CTKSVM. RBFSVM and L-SVM employ fixed kernels that have nothing to do with the analyzed 
samples, thus fall behind KMCSVM and CTKSVM. Hence, KMCSVM is a competitive method 
for REB fault diagnosis. 

Table 12. Average training time and test time of 4 classifiers using 12 datasets on fault severity 

Sample set Time 
(s) 

5 folds cross validation Independent validation 

KMCSVM CTKSVM L-
SVM RBFSVM KMCSVM CTKSVM L-

SVM RBFSVM 

H vs.  
(S1+S2+S3) 

Train 164.32 11.75 10.68 15.84 15.58 1.87 1.53 3.76 
Test 5.86 0.01 0 0.01 5.08 0 0 0 

S1 vs. 
(S2+S3) 

Train 66.69 11.82 10.56 12.46 6.62 1.91 1.55 2.53 
Test 5.42 0 0.01 0 2.07 0 0 0 

S3 vs. 
(S1+S2) 

Train 63.68 11.51 9.60 11.60 6.44 1.74 1.43 2.38 
Test 5.54 0 0 0 2.15 0 0 0 

S2 vs. 
(S1+S3) 

Train 61.69 12.16 10.27 12.42 6.49 1.89 1.56 2.47 
Test 5.22 0 0 0 2.16 0 0 0 

S2 vs. S3 Train 17.85 8.74 7.38 8.52 2.14 1.52 1.26 1.53 
Test 0.98 0 0 0 0.65 0 0 0 

S1 vs. S2 Train 17.30 9.24 7.89 8.97 2.10 1.53 1.30 1.60 
Test 1.03 0 0 0 0.64 0 0 0 

S1 vs. S3 Train 17.02 7.78 6.72 7.73 2.30 1.35 1.16 1.45 
Test 0.95 0 0 0 0.67 0 0 0 

5. Conclusions 

In this study, KMCSVM based on kernel matrix construction is proposed to carry out nonlinear 
classification for REB defects. The results of fault locations and severities identification verify 
that KMCSVM can achieve higher accuracy for bearing fault diagnosis than the other SVM 
classifiers. KMCSVM also has the ability to keep robust against the load interferences and detects 
defects at earlier time, which is significant for REB condition monitoring. In addition, the 
effectiveness of KMCSVM can help to predict deterioration degree and remaining lifetime of 
bearing. Summarily, KMCSVM demonstrates its great advantages and potential in rotating 
machinery fault diagnosis. 
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