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Abstract. The problem of hydroelastic oscillations of three-layer beam interacting with viscous 
liquid layer is set up and analytically solved. The problem presents the equation system of a 
three-layer beam and Navier-Stokes equations. The following boundary conditions are chosen: 
the no-slip conditions, the conditions for pressure at the edges, the simply supported edges 
conditions. The problem is solved for the steady-state harmonic regime. The frequency dependent 
distribution functions of the beam deflection are constructed. The given function allows 
investigating the resonance hydroelastic oscillations of a three-layer beam, as well as its deflected 
mode. 
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1. Introduction 

The studies of elastic construction elements oscillation with consideration of their interaction 
with a liquid present an important issue of contemporary technology. For instance, the bending 
oscillations of a beam under interaction with an ideal incompressible liquid were considered in 
[1]. This solution made it possible to investigate the cylinder cavitations resource of the 
combustion engine with water cooling. The chaotic oscillations of the plate, interacting with an 
ideal incompressible liquid flow, are studied in [2]. Reference [3] is devoted to numerical study 
of rectangular plate hydroelasic oscillations, the plate being fully plunged into motionless ideal 
liquid or floating on its free surface. The analogous study for the case of rectangular plates 
interacting with the ideal liquid flow is made in [4]. However, the liquid viscosity is excluded 
from consideration in the above mentioned studies, but this property is very important, because it 
determines damping characteristics of oscillation system.  

The study of vibrations of infinite length beam on viscous liquid layer was made in [5]. The 
study of hydroelastic oscillations of the elastic-fixed rigid wall of the finite sizes narrow channel 
is carried out in [6]. Hydroelastic oscillations of cantilever beam, plunged into a viscous 
incompressible liquid, are investigated in [7]. The problem of vibrating circular plates interacting 
with a layer of viscous incompressible liquid between them is solved in [8]. The analogous plane 
problem for the two vibrating plates of finite sizes is studied in [9]. Reference [10] investigates 
hydroelastic oscillations of the beam in a viscous liquid flow for the case of piezo-electric elements 
with the aim of obtaining energy from the flow. The problem of the bending hydroelastic 
oscillations of the plate under the impact of the viscous liquid pulsating layer was studied in [11]. 
The study of the hydroelastic oscillations of the plate, resting on Winkler foundation was made in 
[12-14]. 

References [15-18] consider the statics and dynamics of three-layer beams and plates under 
the local and distributed loads of various natures. The investigation of elastic three-layer plate 
dynamic interaction with a viscous liquid layer is of theoretical importance, while its results are 
of practical interest for computing and analyzing the new technology objects. But there is a 
shortage of studies devoted to the interaction of three-layer beams and plates with viscous liquid. 
For instance, the forced hydroelastic oscillations of the three-layered circular plate, interacting 
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with viscous incompressible liquid layer under the channel foundation vibration, are investigated 
in [19]. Alongside with this, the hydroelastic oscillations of three-layer beam are of theoretical 
and practical interest, too. 

2. Statement of the problem 

Let us consider the three-layer beam interacting with viscous incompressible liquid layer in 
conditions of foundation vibration (Fig. 1). We will study the plane hydroelastic problem. The 
foundation vibration takes place only in a vertical plane. The three-layer beam length ܾ  is 
considerably larger than its width 2ℓ. The liquid pressure at the right and left edges is constant , 
and liquid leakage may be considered to be free. The liquid layer thickness is ℎ ≪ ℓ. The 
three-layer beam is the package consisting of bearing layers 1, 2, their thickness being ℎଵ and ℎଶ, 
and incompressible lightweight filler 3 with the thickness 2ܿ. The zig-zag hypothesis is valid for 
the three-layer beam, i.e. Kirchhoff hypothesis is valid for bearing layers, as well as the normal in 
the beam filler remains straight and turning by the angle ߮ [13-17]. Let us connect Cartesian 
coordinate ܱݖݔ with the center of beam filler medium surface in an undisturbed state. The rigid 
diaphragms, hindering the relative layers shift, but not impeding the deformation from its plane, 
are supposed to be situated at the beam edges [15-17]. Hence, the three-layer beam oscillations 
are caused by foundation vibration, while deformations of the plate are considered to be small. 
The three-layer beam is simply supported at its edges. Consideration of liquid viscosity leads to 
quick going down of transition processes, and according to [20], we can exclude the initial 
processes impact from the very beginning. That is why we will consider the steady-state harmonic 
oscillations. 

 
Fig. 1. A schematic diagram of the three-layer beam interacting with thin liquid layer 

3. The theory 

The law of foundation vibration motion will be presented in the form of: ݖ = ௭ܧ ݂(߱ݐ),    ݂(߱ݐ) = sin(߱ݐ). (1)

Then acceleration of vibration foundation can be written as:  

ሷݖ = ௭ܧ ݀ଶ ݂(߱ݐ)݀ݐଶ = ௭߱ଶܧ− ݂(߱ݐ), (2)

where ܧ௭ is the amplitude of foundation oscillation, ߱ is the frequency, ݐ is the time. 
The longitudinal waves are not studied, i.e. inertial forces in a longitudinal direction are not 

considered according to [21], while we study bending oscillations of the three-layer beam. In this 
case, dynamics equations of three-layer beam with incompressible lightweight filler will be 
written as [15]: 

ܽଵ ߲ଶݔ߲ݑଶ + ܽ ߲ଶ߲߮ݔଶ − ܽ ߲ଷݔ߲ݓଷ = ௭௫,   ܽݍ ߲ଶݔ߲ݑଶ + ܽଶ ߲ଶ߲߮ݔଶ − ܽଷ ߲ଷݔ߲ݓଷ = 0, (3)
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ܽ ߲ଷݔ߲ݑଷ + ܽଷ ߲ଷ߲߮ݔଷ − ܽସ ߲ସݔ߲ݓସ − ݉ ቆ߲ଶݐ߲ݓଶ + ሷቇݖ = ௭௭,  ܽଵݍ− = ଵାℎଵܭ + ଶା ℎଶܭ + ଷାܿ,     ܽଶܭ 2 = ܿଶ ܭଵାℎଵ + ଶାℎଶܭ + 23 ଷାܿ൨, ܽଷܭ = ܿ ܭଵା ℎଵ ൬ܿ + 12 ℎଵ൰ + ଶାℎଶܭ ൬ܿ + 12 ℎଶ ൰ + ଷା ܿଶ൨, ܽସܭ 23 = ଵାℎଵܭ ൬ܿଶ + ܿ ℎଵ + 13 ℎଵଶ൰ + ଶା ℎଶܭ ൬ܿଶ + ܿ ℎଶ + 13 ℎଶଶ൰ + 23 ଷାܿଷ, ܽܭ = ଵା ℎଵܭ) ܿ − ଶା ℎଶ),    ܽܭ = ଵା ℎଵܭ ൬ܿ + 12 ℎଵ൰ − ଶା ℎଶܭ ൬ܿ + 12 ℎଶ൰, ܭା = ܭ + ,   ݉ܩ 43 = ଵ ℎଵߩ + ଶ ℎଶߩ +  ,ܿ ଷߩ2
where ܩ is the shear modulus of ݆th layer, ܭ is the bulk modulus of ݆th layer, ߩ is the density of ݆th layer material, ݆ = 1, 2, 3 – layer number, ݑ is the longitudinal displacement of the beam, ݓ 
is the beam deflection, ߮  is the angle of rotation of the deformed normal in the beam 
incompressible lightweight filler, ݍ௭௭ is the normal stress in the viscous liquid layer, ݍ௭௫ is the 
shear stress in the viscous liquid layer. 

The expressions for ݍ௭௭ and ݍ௭௫ take the form of [19, 22]: 

௭௭ݍ = − + ߥߩ2 ݖ௭߲ݑ߲   at  ݖ = ݓ + ܿ + ℎଵ,   ݍ௭௫ = ߥߩ ൬߲ݑ௭߲ݔ + ݖ௫߲ݑ߲ ൰   at  ݖ = ݓ + ܿ + ℎଵ. (4)

The boundary conditions of Eq. (3) present simply supported edges conditions, i.e.: 

ݑ = ߮ = ݓ = ߲ଶݔ߲ݓଶ = 0,   at  ݔ = ±ℓ. (5)

The movement of thin viscous liquid layer can be considered as a creeping one [19]. 
Consequently, the dynamic equations of the liquid represent the Navier-Stokes equation without 
the inertia members, i.e. [22]: 1ߩ ݔ߲߲ = ߥ ቆ߲ଶݑ௫߲ݔଶ + ߲ଶݑ௫߲ݖଶ ቇ,    1ߩ ݖ߲߲ = ߥ ቆ߲ଶݑ௭߲ݔଶ + ߲ଶݑ௭߲ݖଶ ቇ,    ߲ݑ௫߲ݔ + ݖ௭߲ݑ߲ = 0, (6)

where ݑ௫, ݑ௭ are liquid velocity projections on the coordinate axis, ߩ is the density of the liquid, ߥ is the kinematic coefficient of the liquid viscosity,  is the pressure.  
The boundary conditions of Eq. (6) are the no-slip conditions and the ones for the pressure at 

the edges: 

௫ݑ = ௭ݑ   ,0 = 0,   at   ݖ = ℎ + ܿ + ℎଵ,   ݑ௫ = ݐݑ߲߲ ௭ݑ   , = ,ݐ߲ݓ߲    at  ݖ = ݓ + ܿ + ℎଵ, (7) =  − ݖ)ሷݖߩ − ℎ − ℎଵ − ܿ),   at   ݔ = ±ℓ. (8)

We introduce dimensionless variables and small parameters into the consideration of: 

ߞ = ݖ) − ܿ − ℎଵ)ℎ ߦ   , = ݔ݈ ,   ߬ = ݓ   ,ݐ߱ = ݑ   ,ܹݓ = ߮   ,ܷݑ = ߮Φ,  =  + ߱(ℎ߰ଶ)ିଵܲݓ  ߥߩ − ݖ)ሷݖߩ − ℎ − ℎଵ − ௭ݑ    ,(ܿ = ߱ݓ ܷ, ݑ௫ = ߱߰ݓ కܷ,   ߣ =  ℎݓ ≪ 1,   ߰ = ℎ݈ ≪ 1. (9)
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Taking into account Eq. (9), the Eqs. (6)-(8) in dimensionless variables in zero approximation 
on ߰ and ߣ will be written down, as: ߲߲ܲߦ =  ߲ଶ కܷ߲ߞଶ ߞ߲߲ܲ    , =  0,   ߲ కܷ߲ߦ + ߲ ܷ߲ߞ  =  0, (10)

కܷ = 0,   ܷ = 0,   at   ߞ = 1,   కܷ = 0,   ܷ = ߲ܹ߲߬ ,    at   ߞ = 0,   ܲ = 0,    at   ߦ = ±1. (11)

Further, solving the problem of Eqs. (10, 11) we get: 

కܷ  = ଶߞ − 2ߞ ߦ߲߲ܲ ,    ܷ  = ߲ܹ߲߬ + ଷߞ2) − (ଶߞ3 ߲ܹ߲߬, (12)ܲ = −12 න න ߲ܹ߲߬ క ߦ݀ߦ݀
ିଵ + ߦ)6 + 1) න න ߲ܹ߲߬ ଵ ߦ݀ߦ݀

ିଵ . (13)

The normal and shear stresses Eqs. (4), (5) in variables Eq. (9) take the form of: ݍ௭௭ = − + ߞ)ሷݖℎߩ − 1) − ߞ    ߱(ℎ ߰ଶ)ିଵܲ,   atݓ ߥߩ  = ௭хݍ(14) ,0  =  ߱(ℎ ߰)ିଵݓ ߥߩ ߲ కܷ߲ߞ ,   at  ߞ =  0. (15)

According to the expressions Eqs. (14) and (15) the condition ݍ௭௭ ≫  ௭௫ is made for a thinݍ
liquid layer. Thus, in comparison with normal stress, the shear one can be neglected, and by 
substituting Eq. (14) in Eq. (3) we get: 

ܽଵ ߲ଶݔ߲ݑଶ + ܽ ߲ଶ߲߮ݔଶ − ܽ ߲ଷݔ߲ݓଷ = 0,    ܽ ߲ଶݔ߲ݑଶ + ܽଶ ߲ଶ߲߮ݔଶ − ܽଷ ߲ଷݔ߲ݓଷ = 0, ܽ ߲ଷݔ߲ݑଷ + ܽଷ ߲ଷ߲߮ݔଷ − ܽସ ߲ସݔ߲ݓସ − ݉ ቆ߲ଶݐ߲ݓଶ + ሷቇݖ =  + ሷݖℎߩ  ߱ℎ ߰ଶݓ ߥߩ + ܲ. (16)

By using the first and the second equations (16), we find that: ߲ଶݔ߲ݑଶ = ܾଵ  ߲ଷݔ߲ݓଷ ,     ߲ଶ߲߮ݔଶ = ܾଶ  ߲ଷݔ߲ݓଷ ,     ܾଵ = (ܽଶ ܽ − ܽଷܽ)(ܽଵ ܽଶ − ܽଶ) ,    ܾଶ = (ܽଵ ܽଷ − ܽ ܽ)(ܽଵ ܽଶ − ܽଶ).  (17)

Taking into account Eq. (18), we get from Eq. (17) the equation of a three-layer beam in the 
form of: 

∗ܦ ߲ସݔ߲ݓସ  + ݉߱ଶ ቆ ߲ଶݐ߲ݓଶ + ሷ߱ଶቇݖ = − − ሷݖℎߩ −  ߱ℎ ߰ଶݓ ߥߩ  ∗ܦ   ,ܲ = ܽସ − ܽ ܾଵ − ܽଷ ܾଶ. (18)

In view of the boundary conditions Eq. (6), we present the solution of the Eqs. (17), (18) in 
the form of: 

ݑ = ݑ  2݇ − 12ℓ ܴ)ߨ + ܴ(߬))ஶ
ୀଵ (−1)ିଵߦ − sin 2݇ − 12 ൨, (19)ߦߨ

߮ = ߮  2݇ − 12ℓ ܴ)ߨ + ܴ(߬))ஶ
ୀଵ (−1)ିଵߦ − sin 2݇ − 12 ൨, (20)ߦߨ
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ݓ = ݓ ܹ = ݓ (ܴ + ܴ(߬))ஶ
ୀଵ cos 2݇ − 12 (21) .ߦߨ

Here ܴ (߬) is the harmonic time function, ܴ is the constant. 
Bearing in mind Eqs. (13), (21) in the Eq. (19) and solving it we get: 

ݓ = ∗ܦℓସ  2(−1) ൬ 2(2݇ − ൰ହߨ(1 cos 2݇ − 12ℓ ஶݔߨ
ୀଵ + ,ݔ)௭߱ଶΠ௪ܧ ߱)sin൫߱ݐ + Ψ௪(ݔ, ߱)൯, (22)

where the symbols are introduced: 

Π௪(ݔ, ߱) = ݉∗ܦ∗ ൦ቌ 4(−1)(2݇ − ஶߨ(1
ୀଵ cosܣ ൬2݇ − 12ℓ ൰ቍଶݔߨ

 

     + ቌ 4(−1)(2݇ − ߨ(1 ஶܤ
ୀଵ cos ൬2݇ − 12ℓ  ,൰ቍଶ൪ଵ/ଶݔߨ

tg൫Ψ௪(ݔ, ߱)൯ =  4(−1)ାଵ(2݇ − ߨ(1 ஶܣ
ୀଵ cos ൬2݇ − 12ℓ ൰ݔߨ  4(−1)(2݇ − ߨ(1 ஶܤ

ୀଵ cos ൬2݇ − 12ℓ ൰൙ݔߨ , 
ܣ = ܽଶ(ܽଵଶ + ܽଶଶ ܤ   ,( = ܽଵ(ܽଵଶ + ܽଶଶ ),   ܽଵ = ൬2݇ − 12ℓ ൰ସߨ − ݉߱ଶܦ∗ , ܽଶ = ∗ܦ߱ܭ2 ,   ݉∗ = ݉ ൬1 + ℎ݉ߩ ൰ ܭ2   , = ℎ߰ଶߥߩ 12   2(2݇ −  .൨ଶߨ(1

According to Eqs. (19), (20) and (17), we find the expressions for ݑ and ߮: 

ݑ = ∗ܦℓଷܾଵ  2(−1) ൬ 2(2݇ − ൰ସஶߨ(1
ୀଵ (−1)ିଵ ℓݔ − sin 2݇ − 12ℓ +൨ݔߨ ,ݔ)௭߱ଶΠ௨ܧ ߱)sin൫߱ݐ + Ψ௨(ݔ, ߱)൯, (23)

߮ = ∗ܦܾଶℓଷ  2(−1) ൬ 2(2݇ − ൰ସஶߨ(1
ୀଵ (−1)ିଵ ℓݔ − sin 2݇ − 12ℓ +൨ݔߨ ,ݔ)௭߱ଶΠఝܧ ߱)sin ቀ߱ݐ + Ψఝ(ݔ, ߱)ቁ, (24)

where the symbols are introduced: 

Π௨(ݔ, ߱) = 2ܾଵ݉∗ℓܦ∗ ൭(−1)ܣஶ
ୀଵ ݔℓ (−1)ିଵ − sin 2݇ − 12ℓ ൨൱ଶݔߨ

 

     + ൭(−1)ܤஶ
ୀଵ ݔℓ (−1)ିଵ − sin 2݇ − 12ℓ  ,൨൱ଶଵ/ଶݔߨ

Πఝ(ݔ, ߱) = ܾଶܾଵ Π௨(ݔ, ߱), 
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tg ቀΨఝ(ݔ, ߱)ቁ = tg൫Ψ௨(ݔ, ߱)൯ = ∑ (−1)ାଵܣஶୀଵ ቀݔℓ (−1)ିଵ − sin 2݇ − 12ℓ ∑ቁݔߨ (−1)ܤஶୀଵ ቀݔℓ (−1)ିଵ − sin 2݇ − 12ℓ ቁݔߨ . 
4. Summary and conclusion 

The first component of Eqs. (22)-(24) corresponds to the loading from the constant pressure , while the second one corresponds to the impact of the channel vibrating foundation. The 
functions Π௪(ݔ, ߱), Π௨(ݔ, ߱), Πఝ(ݔ, ߱) can be considered as the frequency dependent functions 
of deflection distribution, longitudinal displacement distribution and normal rotation angle 
distribution. The functions Ψ௪(ݔ, ߱), Ψ௨(ݔ, ߱), Ψఝ(ݔ, ߱) can be considered as the frequency 
dependent functions of phase response distribution of values, mentioned above. In the case of the 
specified value of the coordinate ݔ,  these functions transform into amplitude-frequency 
characteristics and phase response characteristics in the assigned cross section of the three-layer 
beam. On the basis of these functions analyses it is possible to investigate the three-layer beam 
hydroelastic oscillations under foundation vibration. Thus, the obtained mathematical model can 
be used for investigating the three-layer beam resonance oscillations, where the beam is a wall of 
a channel with viscous incompressible liquid inside, as well as for studying its mode of 
deformation under vibration. 
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