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Abstract. Adaptive control has been used for active vibration isolation and vehicle suspensions 
systems. A model reference adaptive control law is used for the plant to track the ideal reference 
model. In a model reaching adaptive control approach, the ideal of a skyhook target without using 
a reference model is achieved.  In this paper, a novel approach, a model reaching adaptive-robust 
control law is studied for active vibration isolation systems. A dynamic manifold for ideal system 
is defined using the ideal of a skyhook target model system parameters. First, a new Lyapunov 
function is defined. Based on the Lyapunov stability theory, a model reaching adaptive and a 
robust control laws are derived for the uncertain system to reach the ideal manifold. Parameters 
and upper bounding functions are estimated as a trigonometric function depending on the relative 
displacements, velocities and the defined manifold. The developed adaptive and the robust 
compensators are combined and this combination is proposed as an adaptive-robust control law. 
After that, the controller is applied to a vehicle suspension system and the ideal of a skyhook target 
without using a reference model is achieved. The results also show that the proposed robust control 
law can increase the comfort of the vehicle active suspension systems and the ride comfort is 
remarkably increased. 
Keywords: adaptive control, robust control, model reaching, vehicle suspension, vibration 
isolation, Lyapunov theory, ride comfort. 

1. Introduction 

In the presence of parametric uncertainty, adaptive and robust control laws are used for control 
of uncertain systems. Some adaptive control laws for vibration isolation or active suspension 
systems are proposed in [1-4]. Model reference adaptive control law is used to follow the output 
of the ideal reference model [5]. Zuo et al. [6] proposed a model reaching adaptive control law to 
achieve a skyhook target without using a reference model. In [6], a dynamic manifold for the target 
dynamics is defined by using the states of the plant. Then, an adaptive control law is derived based 
on Lyapunov analysis to make the isolation system reach the dynamic manifold while estimating 
the unknown parameters. The Corless-Leitmann [7] approach is a popular approach used for 
designing robust controllers for dynamic systems. Some of robust control laws designed based on 
Corless-Leitmann [7] approach is introduced in [8-11]. 

In recent years, some researchers have studied about ride comfort and road handling. Florin et. 
all [12] analyzed, simulated the handling and ride performance of a quarter car model. Then, they 
compared the results with state space model and the transfer function. Ikenaga et al. [13] studied 
an active suspension system. They improved a control approach with a filtered feedback control 
scheme and an input decoupling transformation together for a full vehicle suspension system. 
Aggarwal [14] examined the magneto-rheological shock observer for semi-active quarter car 
system. And also, fuzzy logic controller has been used for actual damping force generation. These 
results show that the semi-active suspension system gives better results than passive suspension 
system. Sathishkumar et al. [15] study on modeling and simulation of a quarter vehicle model. 
They analyzed the results of the system by using MATLAB/SIMULINK. Chantranuwathana et al. 
[16] have applied the modular adaptive robust control (MARC) technique to design the force loop 
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controller of an electro-hydraulic active suspension system. The importance of this controller is 
that the adaptation algorithm can be designed for explicit estimation convergence. Changizi et al. 
[17] studied application of fuzzy logic controller to damp automotive suspension system. They 
also used a PID control and a fuzzy logic controller together by using MATLAB simulation. 
Kaleemullah et al. [18] proposed an active suspension system for a quarter car using a robust  
H-infinity, a robust ܪଶ, and a robust Mu-synthesis controller with passive suspension techniques. 
Parametric uncertainties were also modeled in the system. Sun et al. [19] presented a saturated 
adaptive robust control (ARC) strategy. Stability of the vehicle attitude and improvement of the 
ride comfort are achieved.  

In this paper, a new approach, model reaching adaptive-robust control approach is studied. 
Based on the Lyapunov analysis and Corless-Leitmann approach [7], a new model reaching 
adaptive-robust control law is developed in order to make the uncertain system reach the ideal of 
a skyhook target model. The definition of the control law is based on the model reaching adaptive 
[6], robust [11] and robust-adaptive control laws [8, 9]. It is assumed that the system is uncertain 
and upper bound uncertainty is known. In previous studies [6], adaptive controller eliminates 
parameter uncertainties. However, adaptive-robust controller eliminates both parameter 
uncertainties and disturbances. The controller is applied to a vehicle suspension system and the 
ideal of a skyhook target without using a reference model is achieved. The results also show that 
the proposed adaptive-robust control law can increase the ride comfort of the vehicle active 
suspension system. 

2. Model reaching adaptive control for vibration isolation 

In the absence of friction force, the governing equation of an n-DOF isolated platform which 
is subject to excitation from vibration of the ground or base is given as follows [6]: ܠۻሷ + ሶܠ)۱ − ሶܠ ଴) + ܠ)۹ − (଴ܠ =  (1) ,ܝ۰

where ۱ ,ۻ and ۹ are NxN dimensional mass, damping and stiffness matrices respectively. ۰ 
indicates actuator displacement which is an NxR (ܴ ≥ ܰ) matrix, ܝ is the control force vector, ܠ 
is the vector of vertical displacements and ܠ଴ is the vector of ground (road) disturbances. 

 
a) 

 
b) 

Fig. 1. a) Skyhook ideal representation, b) conventional representation [6] 

The ideal skyhook dynamic equation is given as follows: ۻഥ ሷܠ + ۱തܠሶ + ۹ഥ(ܠ − (଴ܠ = 0, (2) 

where ۻഥ , ۱ത and ۹ഥ  are the mass, damping, and stiffness matrices respectively of any targeted 
dynamics. ۻഥ  is taken as unit mass and the ideal skyhook dynamics is: ܠሷ + ۱തܠሶ + ۹ഥ(ܠ − (଴ܠ = 0. (3) 

Dynamic manifold is given as: (ݏ)ۺ = ۷ݏ) + ۱ത)ିଵ۹ഥ,   ો = ሶܠ + −  ܠ)(ݏ)ۺ ଴),   ોܠ = ሶܠ + ۷ݏ) + ۱ത)ିଵ۹ഥ(ܠ  −  ଴), (4)ܠ
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where ݏ is the Laplace operator. (ݏ)ۺ is a dynamic linear operator which affects system states to 
make system reaches any desired dynamics, ۷ is identity matrix, ો denotes dynamic manifold 
which corresponds to desired dynamics by using the system states. On the manifold (ો = 0),  
then [6]: ܠሶ + ۷ݏ) + ۱ത)ିଵ۹ഥ(ܠ  − (଴ܠ = 0. (5)

And this equation is same as the target skyhook dynamic equation which is: ܠሷ + ۱തܠሶ + ۹ഥ(ܠ − (଴ܠ = 0. (6)

Unknown parameters in matrices ۹ ,۱ ,ۻ are arranged in a column vector as ܉ and denoted as: ܉܇ = ܠ)۹ − (଴ܠ + ሶܠ)۱ − ሶܠ ଴) − ۷ݏ)ۻ + ۱ത)ିଵ۹ഥܠ)ݏ − ܇ .is a matrix formed by relative displacements and their velocities ܇଴). (7)ܠ = ܠ] − ,଴ܠ ሶܠ − ሶܠ ଴, ۷ݏ)− + ۱ത)ିଵ۹ഥܠ)ݏ − ଴)] . (8)ܠ

And ܉ is a vector composed of unknown parameters and it can be written as follows: ܉ = (9) .்[ۻ  ۱  ۹]

The following Lyapunov function candidate is defined as [6]: ܄ = 12 ો்ۻો + 12 (10) ,(ݐ)෤܉ଵି۾்(ݐ)෤܉

where ܉෤(ݐ) denotes the error vector of on-line parameter estimations, ۾ is a symmetric positive 
definite matrix. The time derivative of the Lyapunov function is: ܄ሶ = ો்ۻોሶ + ෤ሶ܉ (11) .(ݐ)෤܉ଵି۾்(ݐ)

From the Eqs. (1), (4) and (7), it can be obtained as: ܄ሶ = ો்[ܠۻሷ + ۷ݏ)ۻ + ۱ത)ିଵ۹ഥܠ)ݏ − [(଴ܠ + ෤ሶ܉ ଵି்ܲ(ݐ) ෤ܽ(ݐ)       = ો்[۰ܝ − ܠ)۹ − (଴ܠ − ሶܠ)۱ − ሶܠ ଴) + ۷ݏ)ۻ + ۱ത)ିଵ۹ഥܠ)ܛ − [(଴ܠ + ෤ሶ܉ =       (ݐ)෤܉ଵି۾்(ݐ) ો்(۰ܝ − (܉܇ + ෤ሶ܉ (12) .(ݐ)෤܉ଵି۾்(ݐ)

The control-force vector is defined as [6]: ܝ = ۰ିଵ[܉܇ො − (13) ,[(ݐ)ௗોܓ

where the matrix ܓௗ is a selected ܰ × ܰ positive-definite matrix composed of some control gains 
and ܓௗો(ݐ) has PD controller action on the error, the vector ܉ො is the online estimation of the 
unknown parameters of ܉ , and the estimation error is ܉෤ = ො܉ − ܉ . Substituting Eq. (13) into  
Eq. (12) yields: ܄ሶ = −ો்ܓௗો + ો்܉)܇ො − (܉ + ෤ሶ܉ ෤܉ଵି۾்   = −ો்ܓௗો + ൫ો்܇ + ෤ሶ܉ ෤. (14)܉ଵ൯ି۾்

If the adaptation law is chosen as [6]: ܉ොሶ (ݐ) = ෤ሶ܉ (ݐ) = (15) .(ݐ)ો்܇۾−
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And: ܄ሶ = −ો(ݐ)்ܓௗો(ݐ) ≤ 0. (16) 

Then ܄ሶ ≤ 0 and the system is stable.  

3. Derivation of the adaptive-robust control law 

A novel model reaching robust control law is defined to derive the dynamics of the system to 
reach the manifold ો = 0 when the system parameters ۱ ,ۻ and ۹ are unknowns. The parameters ۹ ,۱ ,ۻ, ો, ܇ and ܉ are the same as it would be in the model reaching adaptive controller [6]. 
With these definitions, a nominal control input ܝ଴ is defined as: ܝ଴ = ۹଴(ܠ − (଴ܠ + ۱଴(ܠሶ − ሶܠ ଴) − ۷ݏ)଴ۻ + ۱ത)ିଵ۹ഥܠ)ݏ − (଴ܠ − ଴ܝ,ௗોܓ = ۰ିଵ[܉܇଴ − ,[ௗોܓ  (17) 

where ܉଴ is a vector composed of nominal parameters: ܉଴ = [۹଴  ۱଴  ۻ଴]். (18) 

The definition of the nominal control law is similar to model reaching adaptive control law [6]. 
As a distinct from model reaching adaptive control law, ܉଴ is fixed as it would be in the robust 
control law [11] and it is not updated in time as it would be in the model reaching adaptive control 
strategy [6]. Then, the control parameter is defined as in terms of nominal control law as follows: ܝ = ۰ିଵ ൤۹଴(ܠ − (଴ܠ + ۱଴(ܠሶ − ሶܠ ଴) − ۷ݏ)଴ۻ + ۱ത)ିଵ۹ഥܠ)ݏ − ଵܝ܇+(଴ܠ + ଶܝ܇ + ଷܝ܇ − ௗોܓ ൨ ,ܝ = ۰ିଵ܉)܇଴ + ଵܝ + ଶܝ + (ଷܝ − ,ௗોܓ  (19) 

where ܝଵ, ܝଶ and ܝଷ are additional control inputs. In order to show the stability of the system, the 
following theorem is proposed. 

Theorem: 
Let ߝ > 0. Considering the control law defined in Eq. (19), control inputs, ܝଵ, ܝଶ and ܝଷ are 

defined as: 

ଵܝ = ۔ە
‖ો‖ો்܇ۓ ૉ, if    ‖்܇ો‖ > ઽ,்܇ોઽ ૉ, if    ‖்܇ો‖ ≤ ઽ, ܝଶ = −ෝૈ,   ܝଷ = ૐ෡ , (20) 

where ෝૈ is the estimation of parameters, ૐ෡  is the estimation of uncertainty bound of parameters, ૉ is the uncertainty bound of parameters. The dynamics compensators ෝૈ and ૐ෡  are defined as 
follows: 

ෝૈ = ઺ଶહ sin ൬2હ න ો்܇ ൰,   ૐ෡ݐ݀ = ૃcos ൬હ න ો்܇  ൰, (21)ݐ݀

where ઺, હ and ૃ ∈ ܴ are adaptation gains. A new parameter error vector ઴෩  is defined as: ઴෩ = ෝૈ − ૐ෡ . (22) 
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If the control inputs ܝଵ, ܝଶ and ܝଷ are substituted into the control law (19), then, the manifold ો will be ultimately bounded. 
Proof:  
In order to proof the theorem, the following Lyapunov function candidate is defined as: ܄ = 12 ો்ۻો + 12 ઴෩ ்઴෩ . (23)

The time derivative of the Lyapunov function is: ܄ሶ = ો்ۻોሶ + ઴෩ ்઴෩ሶ . (24)

Substituting the Eq. (4) into Eq. (24) yields: ܄ሶ = ો்[ܠۻሷ + ۷ݏ)ۻ + ۱ത)ିଵ۹ഥܠ)ݏ − [(଴ܠ + ઴෩ ்઴෩ሶ       = ો்[۰ܝ − ܠ)۹ − (଴ܠ − ሶܠ)۱ − ሶܠ ଴) + ۷ݏ)ۻ + ۱ത)ିଵ۹ഥܠ)ݏ − [(଴ܠ + ઴෩ ்઴෩ሶ       = ોܝ۰)܂ − (܉܇ + ઴෩ ்઴෩ሶ . (25)

Then: ܄ሶ = ો்[ܝଵ + ଶܝ + ଷܝ + [෤܉܇ + ઴෩ ்઴෩ሶ − ો்ܓௗો, (26)

where: ܉෤ = ଴܉ − (27) .܉

As seen from Eq. (26), there are relationships between the control inputs ܝଵ, ܝଶ, ܝଷ and the 
time dependent function ઴෩ ்઴෩ . The time dependent function ઴෩ ்઴෩  is defined as [8]: 

઴෩ ்઴෩ሶ = ቈቆ2઺ଶહ ቇ sin ൬હ න(்܇ો)൰ − ૃଶ቉ 2઺ଶ. (28)

Then, Φ෩ ்Φ෩  is obtained as: 

઴෩ ்઴෩ሶ = ቈቆ2઺ଶહ ቇ sin ൬હ න(்܇ો)൰ − ૃ቉ cos ൬હ න(்܇ો)൰ =     (ો்܇) ቈቆ઺ଶહ ቇ sin ൬2હ න(்܇ો)൰ cos ൬હ න(்܇ો)൰ − ૃ cos ൬હ න(்܇ો)൰቉ (29) .(ો்܇)

Control parameters are defined in Eq. (20) such that ܝଶ = −ෝૈ ଷܝ , = ૐ෡ . Substitution the  
Eq. (20) and Eq. (29) into Eq. (26), the following equation is obtained: ܄ሶ = ો୘[ܝଵ + ଶܝ + ଷܝ + [෤܉܇ + ઴෩ ்઴෩ሶ − ો୘ୢܓો, ܄ሶ = −ો୘ୢܓો + ો୘܇൫−܉ො + ૐ෡ ൯ + ો୘܇൫܉ො − ૐ෡ ൯ + ો୘܉܇෤ + ો୘ܝ܇ଵ. (30)

As seen from Eq. (30), the second and the third terms are canceled out by each other then,  
Eq. (30) is arranged as: ܄ሶ = −ો୘ܓௗો + ો୘܉܇෤ + ો୘ܝ܇ଵ. (31)

In this situation, two cases are considered.  
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Case 1: If ‖்܇ો‖〉ઽ: 

ሶ܄ = −ો்ܓௗો + ો்܇ ቆ܉෤ − ૉ ሶ܄ ો‖ቇ, (32)்܇‖ો்܇ = ෤܉)‖ߪ்܇‖ − (ߩ − ߪௗܓ்ߪ ≤ 0. (33) 

Case 2: If ‖்܇ો‖ ≤ ઽ 
If ‖்܇ો‖ ≤ ઽ, then ܝଶ = −ૉ ೅ોઽ܇ . The remaining terms of Eq. (31) are considered as: 

෤܉)்(ો்܇) + (ଶܝ = ்(ો்܇) ቀ܉෤ − ૉઽ ોቁ்܇ ≤ ்(ો்܇) ቆૉ ‖ો்܇‖ો்܇ − ૉઽ  ોቇ. (34)்܇

The last term achieve maximum value of ઽૉ/4 when‖்܇ો‖ = ઽ/4. Thus, Eq. (33) would be: ܄ሶ = −ો்ܓௗો + ઽૉ4 . (35) 

Eq. (35) is similar to robust control law in [11] and the following equation is obtained for  ܄ሶ ≤ 0: 

ݓ = ඨ ઽௗૉෝௗ4ߜ୫୧୬(ܓௗ) , (36) 

where ‖ો‖ >  .ௗܓ is a minimum eigenvalue of (ௗܓ) min ߜ and ݓ

4. Application to a vehicle suspension system 

In order to investigate the performance of the proposed controller, the controller is applied to 
a quarter car vehicle model in Fig. 2. 

 
Fig. 2. Quarter vehicle model with controller 

Equations of the vertical motion of the vehicle main body are as follows [16]: ݉ଶݔሷଶ + ܿଶ(ݔሶଶ − (ሶଵݔ + ݇ଶ(ݔଶ − (ଵݔ = ሷଵݔଵ݉,ݑ − ܿଶ(ݔሶଶ − (ሶଵݔ + ݇ଵ(ݔଵ − (଴ݔ − ݇ଶ(ݔଶ − (ଵݔ =  (37) ,ݑ−

where ݔଶ is the vertical displacement of vehicle main body, ݔଵ is the vertical displacement of  
tyre-axle mass, ݔ଴ is the road disturbance, ݑ is the controller force. The other system parameters 
are given in Table 1. 

If the vehicle carries unknown load and the load changes to ݉ଶ + ∆݉ଶ, ݇ଶ + ∆݇ଶ, ܿଶ + ∆ܿଶ. 
Considering the previous studies [20], uncertainties on the parameters are assumed as follows: 
100 kg increase on the mass including passenger and luggage, a possible 10 % uncertainty on both 
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stiffness and the damping of the suspension system. Hence, the controller is designed in the 
robustness of interval: 0 ≤ ∆݉ଶ ≤ 100,   ∆݇ଶ = ±%10݇ଶ,   ∆ܿଶ = ±%10ܿଶ. (38)

Considering the previous studies [11], mean value of the range of possible parameters are 
chosen nominal control parameters and they are given in Table 2. 

Table 1. Parameters of the quarter car model [20] ݉ଶ ݉ଵ ݇ଶ ݇ଵ ܿଶ 
Sprung 
mass 

Unsprung 
mass 

Stiffness of the 
suspension 

Stiffness of the 
tyre 

Damping coefficient of 
suspension 

253 kg 42 kg 16434 N/m 97939 N/m 1345 N.s/m 

Table 2. Nominal parameters of the quarter car model. ݉଴ ݇଴ ܿ଴ 
Sprung mass Stiffness of the suspension Damping coefficient of suspension 

303 kg 16434 N/m 1345 N.s/m 

With this choice of uncertainty parameters, the uncertainty bound is calculated as: 

෤‖ଶߨ‖ = ෍(ߨ௜ − ଴௜)ଶଷߨ
௜ୀଵ ≤ ଶ. (39)ߩ

And thus ߩ = 1649.65. Uncertainty bound separately shown in Table 3. 
Other control parameters used in the simulation are as follows: ܓௗ = 5000,   ઽ = diag[1  1  1] ,   ૃ = diag[−2  − 2  − 2] ,   હ = diag[5  5  5] , ઺ = diag[5  5  5] ۹ഥ = 1.44,   ۱ത = 1.67. (40)

Road disturbance is given in Fig. 3 [13]. 

Table 3. Uncertainty bound ߩଵ ߩଶ ߩଷ 
1643.4 134.5 50 

 
Fig. 3. Road disturbance [13] 

The controller is applied to a vehicle suspension system and the results are given in Figs. 4-10. 
As seen from the Fig. 4, the sprung mass acts as ideal skyhook model as it would be given in 

Eq. (3) in case of the vehicle is subjected to the road disturbance and if the system faces to 
parametric uncertainties. The amplitudes of the vertical displacement are significantly reduced to 
that of the targeted dynamics which oscillates around zero amplitude. The vehicle has reached the 
targeted dynamics with small error values. The peak value for vertical displacement of the 
controlled system is nearly 0 m while it is 0.095 m in passive system. There are two main goals 
here. On the first hand, the targeted dynamics should be reached. On the other hand, the vertical 

0 1 2 3 4 5 6 7 8 9 10
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

t (s)

x o ( 
m

 )

 

 

Road Disturbance



2781. MODEL REACHING ADAPTIVE-ROBUST CONTROL LAW FOR VIBRATION ISOLATION SYSTEMS WITH PARAMETRIC UNCERTAINTY.  
RECEP BURKAN, ÖMÜR CAN ÖZGÜNEY, CENGIZ ÖZBEK 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. FEB 2018, VOL. 20, ISSUE 1. ISSN 1392-8716 307 

displacements should be minimized. Both goals are achieved in this study. One can obtain from 
here that the applied proposed adaptive-robust control law is successfully suppressed the vertical 
oscillations.  

 
Fig. 4. The oscillation of the sprung mass over time 

 
Fig. 5. Dynamic manifold 

 

 
Fig. 6. The vertical acceleration of  

sprung mass over time 

 
Fig. 7. Suspension gap changes  

over time 
 

 
Fig. 8. Controller force changes  

over time 

 
Fig. 9. Frequency response of the vertical 

displacement 
 

 
Fig. 10. Frequency response of the vertical acceleration 

In order to observe whether the vehicle’s vertical movement reached the targeted dynamics or 
not, Fig. 5 should be taken into consideration, as well. When the dynamic manifold (4) is zero, 
then it is said that the targeted ideal skyhook model (3) is reached. As it can be seen from the 
figure that sprung mass tracks the targeted dynamics with very small error. This value is sufficient. 

The main criterion for a good ride comfort is to minimize the vertical acceleration as soon as 
possible. According to Newton’s second law, the acceleration causes the force that makes the 
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human beings uncomfortable. It can be seen from the Fig. 6 that the acceleration is around the 
zero and it reaches the targeted dynamics acceleration values. The peak value of the acceleration 
in passive system is approximately 7.5 m/s2 while it is nearly 0 m/s2 in controlled system. This 
result shows that the ride comfort has been improved.  

As seen from the Fig. 7, the suspension gap is decreased in active system by using the robust 
control law. The change of the controller force with respect to time is given in Fig. 8. The 
frequency responses of the vehicle main body and related acceleration are given in Figs. 9-10. As 
seen from the figures, the proposed controller is significantly reduced the resonance frequency of 
the main body. This indicates that the vehicle ride-comfort has been improved. However, there is 
an increase on the resonance frequency of the tyre-axle mass. Any increasing on the second peak 
shows that vehicle road handling is decreased while the ride-comfort is improved.  

5. Conclusions 

In this paper, a new approach, a new adaptive-robust model reaching control law is studied to 
achieve target dynamics (skyhook isolation) without reference model. Lyapunov Theory, based 
on the Corless-Leitmann approach [7] is used for designing the model reaching adaptive-robust 
control law and a uniform boundness of the manifold has been approved. The control law includes 
a new model reaching adaptive control and a new robust control algorithm. Development of a 
model reaching robust control law has not been considered before. The definition of the robust 
control law is similar to model reaching adaptive control law [6]. As a distinct from model 
reaching adaptive control law, nominal control parameters are fixed as it would be in the robust 
control law [11] and it is not updated in time as it would be in the model reaching adaptive control 
strategy [6]. In the model reaching adaptive control law, parameters and upper bounding functions 
are updated as a trigonometric function depending on the relative displacements, velocities and a 
defined manifold. Thus, according to the Lyapunov theorems, it has been concluded that when ܜ → ∞ yields ો → 0. This result shows that the plant achieves the target dynamics of shyhook 
isolation. It is possible for the plant to achieve the target dynamics fast as a result of estimation of 
the most appropriate values of ෝૈ  andૐ෡ . As seen from the simulation results, the proposed  
adaptive-robust control law remarkably increases the ride comfort and decreases the motion of the 
main vehicle body. The numerical results also verify that the most appropriate theoretical values 
of the ෝૈ and ૐ෡  can be estimated and the fast convergence of the plant to the target dynamics can 
be achieved. Application of this controller to a full vehicle system should be considered for a 
future study.  
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