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Abstract. A no spill-over method is developed which uses measured normal modes and natural 
frequencies to adjust a structural dynamics model in light of displacement feedback technique. By 
the method, the required displacement feedback gain matrix is determined, and thus the updated 
stiffness matrix which satisfies the characteristic equation is found in the Frobenius norm sense 
and the large number of unmeasured high-order modal data of the original model is preserved. 
The method directly identifies, without iteration, and the solution of this problem is of a compact 
expression. The numerical example shows that the modal measured data are better incorporated 
into the updated model. 
Keywords: model updating, undamped vibration system, displacement feedback, modal 
measured data, optimal approximation. 

1. Introduction 

After spatial discretization by using the finite element method, the equation of motion of a 
linear elastic time-invariant structure with ݊ degrees of freedom is given by: ܯܙሷ (ݐ) + (ݐ)ܙܭ = (1) .(ݐ)

In which ܯ ∈ ℝ×, analytical mass matrix, is symmetric positive definite and ܭ ∈ ℝ×, 
analytical stiffness matrix, is symmetric positive semidefinite. (ݐ)ܙ ∈ ℝ×ଵ is the displacement 
vector and (ݐ) ∈ ℝ×ଵ is the external force vector. Eq. (1) is known as the finite element (FE) 
analytical model of the structure. Let (ݐ)ܙ = ఠ௧݁ܠ  be a soluton of the homogeneous part of 
Eq. (1), then we can get the following eigenvalue-eigenvector equation: ܭܠ = ,ܠܯߣ ݆ = 1,2, ⋯ , ݊, (2)

where ߣ = ߱ଶ. Let: 

Λ = Λଵ 00 Λଶ൨ ,    ܺ = [ ଵܺ, ܺଶ], 
where: Λଵ =  diag ൛ߣଵ, ⋯ , ൟ,    Λଶߣ =  diag ൛ߣାଵ, ⋯ , ൟ,    ଵܺߣ = ,ଵܠൣ ⋯ , ൧,    ܺଶܠ = ,ାଵܠ] ⋯ ,  .[ܠ

Then Eq. (2) can be equivalently written as: ܯܺΛ = ܺ. (3)ܭ

Assume that the modal orthogonality relationship is satisfied: 

 ଵܺఁܺଶఁ൨ ]ܯ ଵܺ, ܺଶ] = . (4)ܫ
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By substituting Eq. (4) into Eq. (3), we can get another orthogonality relation: 

 ଵܺఁܺଶఁ൨ ]ܭ ଵܺ, ܺଶ] = Λ. (5)

When active control forces are exerted on an undamped vibration system, Eq. (1) now becomes: ܯܙሷ (ݐ) + (ݐ)ܙܭ = (6) ,(ݐ)ܝܤ

where ܤ ∈ ℝ× is the full column rank control feedback matrix and (ݐ)ܝ ∈ ℝ×ଵ is the control 
vector. In discussing the feedback control, we assume that the control vector (ݐ)ܝ is defined by 
the control law: (ݐ)ܝ = (7) ,(ݐ)ܙܨ−

where ܨ ∈ ℝ× is displacement feedback gain matrix. By substituting Eq. (7) into Eq. (6) yields 
the following closed-loop system: ܯܙሷ (ݐ) + ܭ) + (ݐ)ܙ(ܨܤ = . (8)

Separation of variables by (ݐ)ܙ =  ఠ௧, which leads to the generalized eigenvalue problems݁ܡ
of Eq. (8) as follows: ߪܯܡ = ܭ) + ,ܡ(ܨܤ ݆ = 1, ⋯ , ݊, (9)

where ߪ = ߱ଶ. 
In engineering practice, accurate mathematical models are required in order to predict their 

dynamic characteristics accurately. However, current FE analysis cannot provide sufficiently 
accurate FE models, which are in good agreement with measured results. A vibration engineer 
then faces the problem of updating the existing FE model with minimal changes so that the updated 
FE model can better reflect the measured data from the physical structure being modelled [1]. The 
updated model may then be considered a better predictions of the responses of the structure, and 
can be used with greater confidence for damage detection, health monitoring and structural  
control, and so on.  

Model updating techniques are now extensively developed and studied for the structural 
systems. For undamped systems, to update coefficient matrices using vibration test data by means 
of direct matrix-updating methods has been considered by Thoren [2], Baruch and Bar-Itzhack [3], 
Berman and Nagy [4], Wei [5], Modak et al. [6], Yang and Chen [7], Yuan [8], Yuen [9], Yuan 
and Liu [10], Modak [11] and Sarmadi et al. [12]. For damped structural systems, the theory and 
methods have been discussed by Friswell et al. [13], Kuo et al. [14], Bai [15], Lancaster [16], 
Yuan and Dai [17], Yuan and Liu [18] and Mao and Dai [19]. Carvalho et al. [20] presented a 
numerical method for the stiffness matrix updating problem in an undamped model. by the IMDH 
(incomplete measured data handling) method, they overcame the difficulty of the incomplete 
measured data in an algorithmic way without using standard modal expansion or reduction 
techniques. The method is also capable of preserving the large number of eigendata of the FE 
model that are not affected by updating. Very more recently, Sehgal and Kumar [21] presented a 
review of structural dynamic model updating techniques. A number of direct and iterative 
techniques of model updating along with their applications to real life systems are reviewed and a 
number of future research directions have been highlighted which can be used for further 
advancements in the field of model updating.  

 It is of practical importance for updating an existent model that the newly measured 
parameters enter the system without altering other unrelated high-order vibration parameters. Such 
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an updating is known as no spill-over. Assume that Λଵ ∈ ℝ×, ଵܺ ∈ ℝ× are known for the first  eigenvalues and associated eigenvectors of the original system. The remaining ݊ −  unknown 
eigenpairs Λଶ ∈ ℝ(ି)×(ି)  and ܺଶ ∈ ℝ×(ି)  remain unchanged. Some explanations for 
updating with no spill-over being required see the Ref. [32]. 

The aim of this paper is to modify the stiffness matrix by using the displacement feedback so 
that the modified second-order system Eq. (8) will contain a number of measured eigenvalues and 
eigenvectors. Mathematically, the problem of updating stiffness matrix with no spill-over by 
displacement feedback, therefore, can be stated as follows. 

Problem 1. Let ܤ ∈ ℝ×  be a full column rank matrix. Assume that  Σଵ =  diag {ߪଵ, ⋯ , {ߪ ∈ ℝ×  and ଵܻ = ,ଵܡ] ⋯ , [ܡ ∈ ℝ×  are respectively the measured 
eigenvalue and eigenvector matrices, where  ≪ ݊.  Find displacement feedback gain matrix  ܨ ∈ ℝ× such that: ܯܺଶΛଶ = ܯଶ, (10)ܺܭ ଵܻΣଵ = ܭ ଵܻ, (11)

where ܭ = ܭ + ܭ and ܨܤ =  ఁ. Generally, the solution of Problem 1 is not unique. Thus, weܭ
need to solve the following least-squares approximation problem.  

Problem 2. Find ܨ ∈ ฮܨܤா such that: ฮ܁ = minி∈܁ಶ‖(12) ,‖ܨܤ

where ܁ா  is the solution set of Problem 1. Once the solution ܨ  of Problem 2 is obtained, the 
updated stiffness matrix can be expressed as: ܭ = ܭ + . (13)ܨܤ

Many structural components are generally subjected to dynamic loadings in their working life. 
Very often these components may have to perform in severe dynamic environment where in the 
maximum damage results from the resonant vibration [22]. Therefore, in order to avoid the 
undesired phenomena, one way is to use feedback control so that the unfavorable eigendata are 
replaced by some suitable ones [23-26]. The idea of using the eigenstructure assignment technique 
to solve the model updating problem has been considered by [27, 28]. The method can produce 
an updated FE model on damping and stiffness matrices that matches the measured modal data. 
More recently, Ouyang and Zhang [29] addressed passive structural modifications of mass-spring 
systems for partial assignment of natural frequencies, two solution methods were proposed to 
construct the required mass-normalised stiffness matrix, which satisfies the partial assignment 
requirement of natural frequencies and maintains the configuration of the original structure after 
modifications. Sen and Bhattacharya [30] adopted a control theory-based eigenstructure 
assignment technique to update the FE model of a linear time-invariant system. The proposed 
method uses state feedback to produce the gain matrix which in turn updates the existing system 
matrices through simultaneous assignment of eigenvalue and eigenvector pairs in the FE model 
generated system matrices. Richiedei and Trevisani [31] introduced a novel hybrid method for 
vibration control in lightly damped systems through the concurrent synthesis of passive structural 
modifications and active state feedback control gains. The passive modifications alter the set of 
eigenvectors that can be achieved through state feedback control and gives additional degrees of 
freedom in the controller synthesis, which overcoming the limitations of eigenstructure 
assignment through active control used alone.  

It should be mentioned that the studies by Zhang et al. [33-35], Chu and Datta [23], Nichols 
and Kautsky [24], Datta et al. [25] and Lin and Wang [26] lead to a feedback design problem for 
a second-order control system. That consideration eventually results in either a full or a partial 



2661. STIFFNESS MATRIX MODIFICATION WITH VIBRATION TEST DATA BY DISPLACEMENT FEEDBACK TECHNIQUE.  
YONGXIN YUAN 

5152 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. NOV 2017, VOL. 19, ISSUE 7. ISSN 1392-8716  

eigenstructure assignment for the eigenvalue problem. Nonetheless, these results cannot meet the 
basic requirement that the updated matrices should be symmetric. Our main contribution is to 
provide a new numerical method to solve the FE model updating problem using displacement 
feedback technique and the updated model has the following properties: 

• The measured eigenvalues and eigenvectors will be embedded in the updated model.  
• The updated stiffness matrix is also symmetric and positive semidefinite.  
• The eigenvalues and eigenvectors corresponding to the unmeasured ones remain unchanged.  
• The difference between the updated model and the original model is minimal.  
The method directly identifies, without iteration, and works directly on the second-order 

system model. More importantly, the approach allows the control matrix to be specified 
beforehand and also leads naturally to a small norm solution of the feedback gain matrices. We 
believe that the method proposed should give considerable insight into the important model 
updating problem.  

In what follows, in Section 2, by using the QR-decomposition and the singular value 
decomposition (SVD) of matrices, we provide a necessary and sufficient condition for the set ܁ா 
to be nonempty and construct the set ܁ா explicitly when it’s nonempty. In Section 3, when the set ܁ா  is nonempty, we show that the solution of Problem 2 is unique and present the explicit 
expression of the unique solution ܨ  of this problem. In Section 4, a numerical algorithm is 
proposed to determine the displacement feedback gain matrix and a numerical example is provided 
to demonstrate the effectiveness of the proposed method.  

As usual, let ℝ×  be the set of all ݉ × ݊  real matrices and ॺℝ×  the set of all ݊ × ݊ 
symmetric matrices in ℝ× ,ఁܣ . ାܣ   and ‖ܣ‖  denote the transpose, the Moore-Penrose 
generalized inverse and the Frobenius norm of the matrix ܣ, respectively. ܫ denotes the identity 
matrix of order ݊.  

2. The solution of Problem 1 

In order to solve Problem 1, the following two lemmas are needed.  
Lemma 1. If ෨ܻ ∈ ℝ× , ෨ܼ ∈ ℝ× , then ෨ܻ ෩ܰ = ෨ܼ  has a solution ෩ܰ ∈ ℝ×  if and only if ෨ܻ ෨ܻ ା ෨ܼ = ෨ܼ.  In which case, the general solution of ෨ܻ ෩ܰ = ෨ܼ  can be expressed as  ෩ܰ = ෨ܻ ା ෨ܼ + ܫ) − ෨ܻ ା ෨ܻ)ܮ෨, where ܮ෨ ∈ ℝ× is an arbitrary matrix [36]. 
Lemma 2. Suppose that ܣሚ ෨ܤ , ∈ ℝ× , then the matrix equation ܣሚ ෨ܻ = ෨ܤ  has a symmetric 

solution ෨ܻ ∈ ॺℝ× if and only if [37]: ܤ෨ܣሚఁ = ෨ܤሚܣ ఁ, ෨ܤሚାܣሚܣ =  ,෨ܤ
in which case, the general symmetric solution is: ෨ܻ = ෨ܤሚାܣ + ܫ) − ఁ(෨ܤሚାܣ)(ሚܣሚାܣ + ܫ) − ܫ)ሚܬ(ሚܣሚାܣ −  ,(ሚܣሚାܣ
where ܬሚ ∈ ॺℝ× is an arbitrary symmetric matrix.  

Let: ܨܤ = ఁܭ∆     .ݐ  .ݏ     ,ܭ∆ = (14) .ܭ∆

Assume that the QR-decomposition of ܤ is: ܤ = ܳ ቂ0ܴ ቃ, (15)

where ܳ = [ܳଵ, ܳଶ] is an ݊ × ݊ orthogonal matrix (ܳଵ ∈ ℝ×) and ܴ is an ݉ × ݉ nonsingular 
matrix. By Lemma 1 and Eq. (15), Eq. (14) with respect to ܨ is solvable if and only if: 
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ܳଶఁ∆ܭ = 0, (16)

and thus the unique solution can be represented as: ܨ = ܭ∆ାܤ = ܴିଵܳଵఁ∆(17) .ܭ

By Lemma 2, Eq. (16) always has a symmetric solution ∆ܭ  and the general symmetric  
solution is: ∆ܭ = ܳଵܵܳଵఁ, (18)

where ܵ ∈ ॺℝ× is an arbitrary symmetric matrix. Substituting Eq. (18) into Eq. (17), we obtain: ܨ = ܴିଵܵܳଵఁ. (19)

By Eqs. (4) and (5), we get: ܯି ଵ = ଵܺ ଵܺఁ + ܺଶܺଶఁ,    ܯି ଵܭܯି ଵ = ଵܺΛଵ ଵܺఁ + ܺଶΛଶܺଶఁ. (20)

Using Eq. (20) and noting that ܺଶ is of full column rank, Eq. (10) is equivalent to: ܯܶ = (21) ,ܲܭ

where ܶ = ିܯ ଵܭܯି ଵ − ଵܺΛଵ ଵܺఁ , ܲ = ିܯ ଵ − ଵܺ ଵܺఁ.  In practice, the matrices ܺଶ  and Λଶ  in 
Eq. (10) are usually unknown, we notice that the matrices ܺଶ and Λଶ don’t appear in Eq. (21) 
explicitly. It follows from Eq. (21) that: ܯܶ = ܲܭ ⇔ ܲܭ∆ = ܶܯ −  .ܲܭ

Observe that: ܯܶ − ܲܭ = ିܯ)ܯ ଵܭܯି ଵ − ଵܺΛଵ ଵܺఁ) − ିܯ)ܭ ଵ − ଵܺ ଵܺఁ)       = ܭ ଵܺ ଵܺఁ − ܯ ଵܺΛଵ ଵܺఁ = 0. 
That is, Eq. (10) is equivalent to: ∆ܲܭ = 0. (22)

Substituting Eq. (18) into Eq. (22), we obtain: ܳଵܵܳଵఁܲ = 0, 
which implies that: ܵܳଵఁܲ = 0. (23)

Assume that the singular value decomposition (SVD) of ܳଵఁܲ is: ܳଵఁܲ = ܷ ቂΘ 00 0ቃ ܸఁ, (24)

where Θ =  diag {ߠଵ, ⋯ , {ߠ ߠ , > 0, ݆ = 1, ⋯ , ݈ , ݈ =  rank (ܳଵఁܲ).  ܷ = [ ଵܷ, ܷଶ] ∈ ℝ×  and ܸ = [ ଵܸ, ଶܸ] ∈ ℝ× are orthogonal matrices, ଵܷ ∈ ℝ×, ଵܸ ∈ ℝ×. 
Using Lemma 2 again, the general symmetric solution of Eq. (23) is: 
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ܵ = ܷଶܷܪଶఁ, (25)

where ܪ ∈ ॺℝ(ି)×(ି) is an arbitrary symmetric matrix. By substituting Eq. (25) into Eq. (18), 
we obtain the general symmetric solution of Eqs. (10) and (14) as: ∆ܭ = ܳଵܷଶܷܪଶఁܳଵఁ, (26)

where ܪ ∈ ॺℝ(ି)×(ି) is an arbitrary symmetric matrix.  
Now, to solve Problem 1 is equivalent to finding symmetric matrix ܪ such that: 

ଵܹܪ ଵܹఁ ଵܻ = ܯ ଵܻΣଵ − ܭ ଵܻ, (27)

where ଵܹ = ܳଵܷଶ.  Observe that ଵܹఁ ଵܹ = ,ିܫ  if let ଶܹ = [ܳଵ ଵܷ, ܳଶ],  then  ଶܹఁ ଶܹ = ିାܫ  and ܹ = [ ଵܹ, ଶܹ] ∈ ℝ×  be an othogonal matrix. Thus, the equation of 
Eq. (27) can be equivalently written as: 

ଶܹఁ(ܯ ଵܻߑଵ − ܭ ଵܻ) = ܪ(28) ,0 ଵܹఁ ଵܻ = ଵܹఁ(ܯ ଵܻߑଵ − ܭ ଵܻ). (29)

Let the SVD of ଵܹఁ ଵܻ be: 

ଵܹఁ ଵܻ = ܮ ቂΨ 00 0ቃ ఁ, (30)ܬ

where: Ψ =  diag {߰ଵ, ⋯ , ߰௧},     ߰ > 0,   ݅ = 1, ⋯ , ݐ     ,ݐ =  rank ( ଵܹఁ ଵܻ), ܮ = ,ଵܮ] [ଶܮ ∈ ℝ(ି)×(ି),      ܬ = ,ଵܬ] [ଶܬ ∈ ℝ× 
are orthogonal matrices, ܮଵ ∈ ℝ(ି)×௧ ଵܬ , ∈ ℝ×௧.  By Lemma 2, Eq. (29) has a symmetric 
solution ܪ if and only if: 

ଵܹఁܣ( ଵܹఁ ଵܻ)ା ଵܹఁ ଵܻ = ଵܹఁܣ,    ଵܻఁ ଵܹ ଵܹఁܣ = ఁܣ ଵܹ ଵܹఁ ଵܻ. (31)

In which case, the general symmetric solution is: ܪ = ଵܹఁܣ( ଵܹఁ ଵܻ)ା + ( ଵܹఁܣ( ଵܹఁ ଵܻ)ା)ఁ(ܫି − ଵܹఁ ଵܻ( ଵܹఁ ଵܻ)ା) + ଶఁ, (32)ܮܩଶܮ

where ܣ = ܯ ଵܻΣଵ − ܭ ଵܻ and ܩ ∈ ॺℝ(ିି௧)×(ିି௧) is an arbitrary symmetric matrix.  
As a summary, we can get the following result. 
Theorem 1. Let the QR-decomposition of ܤ be given by Eq. (15) and the SVD of the matrix ܳଵఁܲ be given by Eq. (24). Assume that ଵܹ = ܳଵܷଶ, ଶܹ = [ܳଵ ଵܷ, ܳଶ] and the SVD of the matrix ଵܹఁ ଵܻ is given by Eq. (30). If the conditions (28) and (31) hold, then Problem 1 is solvable and 

the solution set ܁ா of Problem 1 can be expressed as: ܁ா = ܨ} ∈ ℝ×|ܨ = ܴିଵܷଶܷܪଶఁܳଵఁ}, 
where ܲ = ܯ − ଵܺ ଵܺఁ, ܣ    = ܯ ଵܻΣଵ − ܭ ଵܻ,  and ܪ  is given by Eq. (32) and  ܩ ∈ ॺℝ(ିି௧)×(ିି௧) is an arbitrary symmetric matrix.  

3. The solution of Problem 2 

It has been shown in Section 2 that if the conditions (28) and (31) are satisfied, the solution set 
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ா܁  is nonempty. Clearly, ܁ா  is a closed convex subset of ℝ× . It follows from the best 
approximation theorem [38] that there exists a unique solution ܨ in ܁ா such that Eq. (12) holds. 
Now, we will seek the unique solution ܨ in ܁ா. For ܨ ∈ ‖ܨܤ‖ :ா, we can get܁ = ‖ܳଵܷଶܷܪଶఁܳଵఁ‖ = ‖ ଵܹܪ ଵܹఁ‖ = ‖ܹఁ ଵܹܪ ଵܹఁܹ‖       = ቛቂܪ 00 0ቃቛ =  ,‖ܪ‖
where ܹ = [ ଵܹ, ଶܹ]. Thus, by Eq. (32) we can obtain: ‖ܨܤ‖ଶ = ܪ‖ + ଶఁ‖ଶܮܩଶܮ = ܪ)ఁܮ‖ + =       ଶ‖ܮ(ଶఁܮܩଶܮ ฯܮଵఁܪܮଵ ଵܮܪଶఁܮଶܮܪଵఁܮ ଶܮܪଶఁܮ + ൨ฯଶܩ = ‖ଶܪଵఁܮ‖ + ଵ‖ଶܮܪଶఁܮ‖ + ଶܮܪଶఁܮ‖ +  ,ଶ‖ܩ
where: ܪ = ଵܹఁܣ( ଵܹఁ ଵܻ)ା + ( ଵܹఁܣ( ଵܹఁ ଵܻ)ା)ఁ(ܫ − ଵܹఁ ଵܻ( ଵܹఁ ଵܻ)ା). (33)

Therefore, ‖ܨܤ‖ = min if and only if: ܩ = ଶ. (34)ܮܪଶఁܮ−

By substituting Eq. (34) into Eqs. (19) and (32), we obtain the following result. 
Theorem 2. If the conditions (28) and (31) hold, then Problem 2 has a unique solution and it 

can be described as: ܨ = ܴିଵ ଶܷܪܷଶఁܳଵఁ, (35)

where: ܪ = ܪ − ଶఁ, (36)ܮଶܮܪଶఁܮଶܮ

and ܪ is given by Eq. (33).  

4. A numerical example 

Based on Theorems 1 and 2 we can establish an algorithm for solving Problems 1 and 2 as 
follows.  

Algorithm. 
    1) Input ܯ, ܭ, ܤ, ଵܺ, Λଵ, Σଵ, ଵܻ.  
    2) Compute the QR-decomposition of ܤ by Eq. (15).  
    3) Compute ܲ = ିܯ ଵ − ଵܺ ଵܺఁ and the SVD of the matrix ܳଵఁܲ by Eq. (24).  
    4) Compute ଵܹ = ܳଵܷଶ  and ଶܹ = [ܳଵ ଵܷ, ܳଶ],  and the SVD of the matrix ଵܹఁ ଵܻ  by 

Eq. (30).  
    5) Compute ܣ = ܯ ଵܻΣଵ − ܭ ଵܻ.  
    6) If the conditions (28) and (31) hold, then continue, otherwise, go to 1).  
    7) Compute ܪ and ܪ by Eqs. (33) and (36), respectively.  
    8) Compute ܨ by Eq. (35).  
    9) Compute ܭ by Eq. (13).  
Example. Consider a cantilever beam model (see, Fig. 1). The cross section of the beam is 

rectangular with length 2 m, width 60 mm and height 3 mm, respectively. The material of the 
cantilever beam is aluminum alloy with the modulus of elasticity = 71 GPa, Poisson ratio = 0.33 
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and mass density = 2.714×10-5 N/mm3. The beam is discretised into 10 elements shown in Fig. 1.  

 
Fig. 1. The model of a cantilever beam 

The mass matrix of the FE model is diagonal and the stiffness matrix is 3-diagonal, which are 
given by: ܯ =  diag {0.0997, 0.0997, 0.0997, 0.0997, 0.0997, 0.0997,0.0997, 0.0997, 0.0997, 0.0498}, 
ܭ =

ێێۏ
ێێێ
ێێێ
ۍ 28755 −14378 0 0 0 0 0 0 0 0−14378 28755 −14378 0 0 0 0 0 0 00 −14378 28755 −14378 0 0 0 0 0 00 0 −14378 28755 −14378 0 0 0 0 00 0 0 −14378 28755 −14378 0 0 0 00 0 0 0 −14378 28755 −14378 0 0 00 0 0 0 0 −14378 28755 −14378 0 00 0 0 0 0 0 −14378 28755 −14378 00 0 0 0 0 0 0 −14378 28755 −143780 0 0 0 0 0 0 0 −14378 14378 ۑۑے

ۑۑۑ
ۑۑۑ
ې
. 

Λଵ and ଵܺ are given by: 

Λଵ = ൦3542.3 0 00 31431 00 0 84477൪ , ଵܺ =
ێێۏ
ێێێ
ێێێ
ۍ 0.2216 −0.64306 −1.00160.43773 −1.1459 −1.41640.64309 −1.3989 −1.00140.8326 −1.347 0.000263231.0016 −1.0014 1.00181.1459 −0.43742 1.41641.262 0.22188 1.00121.3471 0.83281 −0.000526461.3989 1.2622 −1.00191.4163 1.4164 −1.4164 ۑۑے

ۑۑۑ
ۑۑۑ
ې
. 

The measured modal data are given by: 

Σଵ = 6860.3 0 00 34657 00 0 87519൩ , ଵܻ =
ێێۏ
ێێێ
ێێێ
0.19769−ۍ −0.39804 0.70546−0.37712 −0.7149 1−0.52683 −0.88309 0.71252−0.64539 −0.86194 0.01126−0.73952 −0.64814 −0.6951−0.81844 −0.2805 −0.99674−0.8876 0.16449 −0.72222−0.94563 0.58764 −0.038058−0.98562 0.89032 0.64988−1 1 0.93509 ۑۑے

ۑۑۑ
ۑۑۑ
ې
. 

Let control feedback matrix ܤ be: 
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ܤ =
ێێۏ
ێێێ
ێێێ
9.0206݁ۍ − 017 −0.013541 −0.12815 0.362640.35388 −0.072726 −0.24211 0.53765−0.45575 −0.19181 −0.32024 0.444230.14096 −0.34151 −0.33384 0.15324−0.12794 −0.46385 −0.25796 −0.155660.30127 −0.50566 −0.08754 −0.299330.11106 −0.45106 0.15068 −0.1971−0.62835 −0.33348 0.39956 0.0841730.36456 −0.21942 0.58834 0.372068.3267݁ − 017 −0.08628 0.32903 0.24579 ۑۑے

ۑۑۑ
ۑۑۑ
ې
. 

It is easy to check that the conditions (28) and (31) hold: ‖ ଶܹఁ(ܯ ଵܻΣଵ − ܭ ଵܻ)‖ = 3.7989݁ − 011, ‖ ଵܹఁܣ( ଵܹఁ ଵܻ)ା ଵܹఁ ଵܻ − ଵܹఁܣ‖ = 4.5297݁ − 013, ‖ ଵܻఁ ଵܹ ଵܹఁܣ − ఁܣ ଵܹ ଵܹఁ ଵܻ‖ = 3.005݁ − 011. 
By the Algorithm, we can obtain the following unique solution of Problem 2: 

ఁܨ =
ێێۏ
ێێێ
ێێێ
1.4248݁−ۍ − 014 67.459 −98.657 106.18−2.2092݁ − 014 88.246 −155.53 158.09−2.0327݁ − 014 42.007 −148.4 130.64−1.0395݁ − 014 −54.103 −83.778 40.5372.669݁ − 015 −155.7 8.6985 −64.4271.3126݁ − 014 −216.78 93.102 −133.091.7578݁ − 014 −215.7 145.36 −139.31.6446݁ − 014 −166.45 162.77 −94.791.3131݁ − 014 −108.89 160.22 −39.3895.7334݁ − 015 −41.968 78.221 −7.521 ۑۑے

ۑۑۑ
ۑۑۑ
ې
. 

In which case, the optimal updated stiffness matrix can be figured out. ܭ = ܭ +  ܨܤ

      =
ێێۏ
ێێێ
ێێێ
ۍ 28805 −14302 65.822 26.169 −22.37 −57.257 −66.223 −52.978 −33.341−12.183−14302 28871 −14275 46.013 −25.422−78.329 −94.401 −78.266 −52.049−19.92965.822 −14275 28852 −14323 −1.5409−47.354 −67.057 −62.305 −47.92 −20.3426.169 46.013 −14323 28808 −14338 22.558 3.7905 −12.02 −22.336−12.933−22.37 −25.422 −1.5409 −14338 28835 −14281 84.24 49.976 15.311 0.46016−57.257−78.329 −47.354 22.558 −14281 28896 −14240 98.291 52.827 16.625−66.223−94.401 −67.057 3.7905 84.24 −14240 28902 −14260 81.024 32.199−52.978−78.266 −62.305 −12.02 49.976 98.291 −14260 28868 −14281 44.616−33.341−52.049 −47.92 −22.336 15.311 52.827 81.024 −14281 28859 −14326−12.183−19.929 −20.34 −12.933 0.46016 16.625 32.199 44.616 −14326 14406 ۑۑے

ۑۑۑ
ۑۑۑ
ې
. 

Fig. 2 indicates the absolute values of the stiffness discrepancy matrix obtained from the 
proposed model updating method. We define the residual as: ߪ) ݏ݁ݎ, (ܡ =∥ ܡܯߪ − ܡܭ ∥, 
and the numerical results are shown in the Tables 1 and 2. 
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Fig. 2. The absolute values of the stiffness discrepancy matrix (SDM) using the proposed method 

 
Fig. 3. The frequencies of the measured  

and updated models 

 
Fig. 4. The frequencies of the analytical  

and updated models 

Table 1 shows that the measured modal data are embedded in the new model ܯ ଵܻΣଵ = ܭ ଵܻ 
(Fig. 3 shows the comparison of frequencies of the measured model with the updated model) and 
Table 2 implies that the model is updated with no spill-over (Fig. 4 shows the comparison of 
frequencies of the analysis model with the updated model) and the updated stiffness matrix is also 
symmetric and positive definite.  

Table 1. Numerical results 
Eigenpairs  ߪ) ݏ݁ݎ, ,ଵߪ)  (ܡ ,ଶߪ)  ଵ)  1.6404e-011ܡ ,ଷߪ)  ଶ)  3.0154e-011ܡ   ଷ)  2.2863e-011ܡ

 

Table 2. Numerical results 
Eigenpairs  ߣ) ݏ݁ݎ, ,ସߣ)  (ܠ ,ହߣ)  ସ)  7.0668e-011ܠ ,ߣ)  ହ)  6.7161e-011ܠ ,ߣ)  )  3.3355e-011ܠ ,଼ߣ)  )  2.1904e-011ܠ ,ଽߣ)  2.7824e-011  (଼ܠ ,ଵߣ)  ଽ)  5.457e-011ܠ   ଵ)  6.671e-011ܠ

 

5. Conclusions 

A no spill-over direct updating method for undamped vibration systems with vibration test 
data using displacement feedback technique has been presented. When the conditions (28) and 
(31) hold, the required displacement feedback gain matrix can be determined, and the optimal 
updated stiffness matrix which satisfies the characteristic equation can be achieved. The method 
is easy to implement, and allows the control matrix to be specified beforehand. Although the 
proposed method can guarantee that the updated matrix is symmetric and positive semidefinite, it 
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failed to preserve the pattern of the FE stiffness matrix. How to maintain the physical connectivity 
of the updated matrix is worthy of further study. 
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