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Abstract. Vibration signal modeling of a localized defective rolling bearing under unbalanced 
force excitations is carried out in this paper. A mass-spring-damping system with eight degrees of 
freedom is derived to consider the transverse vibrations and high frequency resonances of the rotor 
and bearing pedestals. External excitations come from the unbalanced mass and self-weight of the 
rotor. Due to the Hertz contact and bearing clearance, the dynamic model is coupled by the 
nonlinear stiffness. The inner/outer race defects are localized and modeled by additional contact 
deformations. The Runge-Kutta method is utilized to solve the nonlinear coupled differential 
equations and vibration signals with and without defects are obtained. Through envelope analysis, 
the fault characteristic frequencies of inner/outer raceway defects with and without unbalanced 
force excitations are presented. Detailed comparisons show that the unbalanced force excitations 
have significant influence on the fault characteristic frequencies. Finally, dynamic tests on a 
typical rotor-bearing system are conducted to verify the theoretical results. 
Keywords: rolling bearings, localized defects, vibration signal, unbalanced excitations. 

1. Introduction 

A lot of rotating machinery are supported by rolling element bearings. Due to manufacturing 
flaws or cyclic loading, localized defects frequently appear in bearing raceways. If undetected 
early, such defects can pose a potential source of catastrophic failures [1-3]. 

Thus, many researchers have therefore conducted extensive investigations on the dynamics of 
defected rolling bearings over the last decades. Patel et al. [4] developed a deep grooving ball 
bearing dynamics model that considers nonlinear contact force, investigated the dynamic 
characteristics when the inner and outer raceways contained single-point or multi-point local 
defects. Betea et al. [5] constructed a dynamics model of bearing systems with three degrees of 
freedom, which was employed to study the effect of inner and outer raceways defects on the 
dynamic characteristics of a system. Kankar et al. [6] established a high-speed bearing dynamics 
model that contains local defects on the inner and outer raceways. The established model considers 
nonlinear factors, such as the Hertz contact stiffness and the radial clearance. The characteristic 
frequencies of defects were successfully identified using the model and were verified using a test. 
Rafsanjania et al. [7] proposed an analytical model to study the nonlinear dynamic behavior of 
rolling element bearing systems including surface defects. Various surface defects due to local 
imperfections on raceways and rolling elements are introduced in the model. Using a six degrees 
of freedom dynamic model for deep groove and angular contact ball bearings, Ashtekar et al. [8] 
investigated the influence of race defects on the motions of bearing components (i.e. inner and 
outer races, cage, and balls). 

In actual rotating machinery, some interaction factors, such as the meshing gear and induction 
motor rotor, might also have significant influences upon the vibrational response of the defective 
rolling bearing system. Sawalhi and Randall [9, 10] presented a combined dynamic model for 
gears and bearings, in which an extended fault in the inner/outer race of rolling element bearings 
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was studied in the presence of gear interaction. Through detailed comparisons between the 
simulated and actual signals from the gear/bearing test rig for inner and outer race extended faults, 
they found a characteristic, referred to as double pulses, corresponding to entry into and exit from 
the localized fault. Immovilli et al. [11] proposed a novel bearing fault model for an induction 
motor, and the electromagnetic torque induced by air gap variations was considered as externally 
excitations. Both simulation and test results showed that the characteristic frequencies of bearing 
defects change due to the electromagnetic interaction. For the rolling element bearings used in the 
high speed spindle, dynamic modeling and vibration response simulation were conducted by Niu 
et al. [12] when localized surface defects occur in the raceways. Recently, the explicit dynamic 
finite element method was used to analyze the contact forces and vibration response of a defective 
rolling element bearing [13]. Various methods, such as empirical mode decomposition method 
[14], envelope analysis method [15] and singular spectrum method [16], were utilized for rolling 
element bearing fault diagnosis. 

Besides the interactions of meshing gears and electromagnetic forces, the excitations induced 
by the unbalanced mass of rotor should also be considered in the dynamic modeling of defective 
rolling element bearings. For the vertical rotating machinery, the self-weight is along the axial 
direction and has no component in the two transversal directions. In the aero engine, the rotor’s 
gravity force is relatively smaller because of the widely used thin-walled rotating structures. In 
the two cases, the unbalance forces are the dominant load among the external loads. As the 
unbalance force rotates with the rotor and varies with time, so the load zone of the rolling bearing 
also varies with time. The contacts between the rolling ball and localized defects become more 
complicate due to the simultaneous rotations of both rolling balls and the load zone. Obviously, 
the fault characteristics of localized defects would have distinct differences with that of the  
weight-dominant condition, in which the load zone maintains constant. 

Thus, dynamics of a localized defective rolling bearing is studied to show the difference 
between the weight-dominant and unbalance-force-dominant conditions. A mass-spring-damping 
system with eight degrees of freedom is derived to consider the transverse vibrations and high 
frequency resonances of the rotor and bearing pedestals. External excitations come from the 
unbalanced mass and self-weight of the rotor. Due to the Hertz contact and bearing clearance, the 
dynamic model is coupled by the nonlinear stiffness. The inner/outer race defects are localized 
and modeled by additional contact deformations. The Runge-Kutta method is utilized to solve the 
nonlinear coupled differential equations and vibration signals with and without defects are 
obtained. Through envelope analysis, the fault characteristic frequencies of inner/outer raceway 
defects are presented. Detailed comparisons are carried out to show the influence of unbalanced 
force excitations on the fault characteristic frequencies. Dynamic tests on a typical rotor-bearing 
system are conducted to verify the theoretical results. Finally, some conclusions are summarized. 

2. Vibrational model for a rotor-bearing system 

Fig. 1 gives a schematic diagram for a rotor supported by deep groove ball bearings. The inner 
raceway is connected to the rotor shaft and rotates under constant angular speed ߱௦, while the 
outer raceway is fixed on the bearing pedestals. A mass-spring-damping system with eight degrees 
of freedom is derived to consider the transverse vibrations and high frequency resonances of the 
rotor and bearing pedestals. These degrees of freedom are described as follows: 

1) Vibrations along two transversal directions and one axial direction for the rotor: ݔ௦, ݕ௦, ݖ௦ 
and the mass and damping are denoted by ݉௦, ܿ௦. The transversal supporting forces from the 
rolling bearings ݂௫, ݂௬ (݅ = 1, 2) will be derived based upon the Hertz contact theory in the 
following section. The axial support force from the rolling bearings is assumed to be linear and 
the support stiffness is denoted by ݇௦. 

2) Two bearing pedestals, respectively, have two transversal vibrations: ݔ ݕ ,  (݅ = 1, 2). 
The lumped mass, support stiffness and damping are repressed by ݉, ݇, ܿ (݅ = 1, 2). The 
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coupling between the vibrations of rotor and bearing pedestals are realized through the nonlinear 
supporting forces ݂௫, ݂௬. 

3) Moreover, the bearing pedestal would have high frequency resonance in working condition. 
Two mass-spring-damping systems with high resonant frequency are connected to the bearing 
pedestals [9]. The lumped mass, connection stiffness and damping are expressed by ݉, ݇, ܿ 
(݅ = 1, 2). 

 
Fig. 1. Dynamic model for the rotor-bearing system with localized defective rolling bearing 

The nonlinear restoring forces of bearing, unbalanced force excitations and self-weight of the 
rotor are considered in the dynamic model. By applying the energy theorem and Lagrange 
equation, a series of two order differential equations describing rotor vibrations are derived as 
follows: ݉௦ݔ௦ሷ + ܿ௦ݔሶ௦ + ௫ଵܨ + ௫ଶܨ = ߯௨݉௨݁௨߱௦ଶcos߱௦ݐ, ݉௦ݕ௦ሷ + ܿ௦ݕሶ௦ + ௬ଵܨ + ௬ଶܨ = ߯௨݉௨݁௨߱௦ଶsin߱௦ݐ − ߯݉௦݃, ݉௦ݖ௦ሷ + ܿ௦ݖሶ௦ + ݇௦ݖ௦ = ൫1 − ߯൯݉௦݃, ݉ଵݔଵሷ + ܿଵݔሶଵ + ݇ଵݔଵ − ௫ଵܨ = 0, ݉ଵݕଵሷ + ൫ܿଵ + ܿଵ൯ݕሶଵ − ܿଵݕሶଵ + ൫݇ଵ + ݇ଵ൯ݕଵ − ݇ଵݕଵ − ௬ଵܨ = 0, ݉ଵݕଵሷ + ܿଵ൫ݕሶଵ − ሶଵ൯ݕ + ݇ଵ൫ݕଵ − ଵ൯ݕ = 0, ݉ଶݔଶሷ + ܿଶݔሶଶ + ݇ଶݔଶ − ଶܨ = 0, ݉ଶݕଶሷ + ൫ܿଶ + ܿଶ൯ݕሶଶ − ܿଶݕሶଶ + ൫݇ଶ + ݇ଶ൯ݕଶ − ݇ଶݕଶ − ௬ଶܨ = 0, ݉ଶݕଶሷ + ܿଶ൫ݕሶଶ − ሶଶ൯ݕ + ݇ଶ൫ݕଶ − ଶ൯ݕ = 0. 

(1) 

In which ߯௨, ߯ represent the coefficients of unbalanced excitation and rotor’s self weight. For ߯௨ = 0, ߯ = 1, it means that the self-weight of the rotor is the dominant force (weight-dominant 
condition). When ߯௨ =  1, ߯ =  0, the unbalanced forces are dominant among the external 
excitations (unbalance-force-dominant condition). In the following, the nonlinear supporting 
forces of the rolling bearing with and without localized defects will be derived accordingly. 

3. Nonlinear supporting forces of localized defective ball bearings 

Here, the bearing 1 is taken as an example to show the derivation of bearing supporting forces 
utilizing the Hertz contact theory. The bearing has ܰ  the number of balls, and the ݆th ball’s 
location angle at time t could be expressed as follows: 

ߠ = ߱௧ + ݆)ߨ2 − 1)ܰ . (2) 

In which ߱ the orbital speed of the ball. For the pure rolling state, the relation between the 
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orbital speed ߱ and rotor speed ߱௦ could be given by: 

߱ = 12 ߱௦ ൬1 − ݀ܦ൰, (3)

where ݀ the ball diameter and ܦ the pitch diameter of the bearing. 
From the dynamic model shown in Fig. 1, the relative vibrational displacements between the 

inner race and bearing pedestals along the two transversal directions are expressed by (ݔ௦ଵ-ݔଵ) 
and (ݕ௦ଵ ଵݕ- ), respectively. Considering the radial clearance ܿ  of the bearing, the contact 
deformation for the ݆th ball at time ݐ is calculated by: ߜଵ = ൫ݔ௦ଵ − ଵߠଵ൯cosݔ + ൫ݕ௦ଵ − ଵߠଵ൯sinݕ − ܿ. (4)

The localized defects appear in the bearing raceways, as shown in Fig. 1. Obviously, additional 
clearance would be induced by these localized defect. This means that the expression of contact 
deformation in Eq. (4) should be modified to consider the additional clearance when the rolling 
ball contacts with the defective raceways. The actual shape of the defect is very complex. Here, 
without loss of generality, the half sinusoidal function is utilized to simplify the defect shape. For 
the outer and inner race defects, we use the ߠௗ, ߶ௗ and ho and ߠௗ, ߶ௗ and ℎ to describe their 
locations, sizes and depths, respectively. Thus, as long as the ݆ ball is contacting with the outer 
race defect, the contact deformation should be modified as follows: 

ଵߜ = ۔ۖەۖ
௦ଵݔ൫ۓ − ଵߠଵ൯cosݔ + ൫ݔ௦ଵ − ଵߠଵ൯sinݔ           − ቆܿ + ℎ sin ቆߨ൫ߠଵ − ௗ൯∅ௗߠ ቇቇ , ௗߠ ≤ ଵߠ ≤ ௗߠ + ∅ௗ,൫ݔ௦ଵ − ଵߠଵ൯cosݔ + ൫ݔ௦ଵ − ଵߠଵ൯sinݔ − ܿ, .݁ݏ݈݁             (5)

In this study, the outer race is fixed to the bearing pedestal, and thus the outer race defect has 
constant location angle ߠௗ . However, for the inner race defect, its location angle becomes  
time-variant because the inner race rotates with the rotor shaft. In this case, the location angle is 
expressed as ߠௗ = ߱௦௧ + ߰ , in which ߰  the initial angle with respect to the ܺ  axis at time  ݐ = 0. Except for this, the modified contact deformation is similar with that of the outer race defect 
in Eq. (5) by substituting the ߠௗ, ߶ௗ, ℎ to the ߠௗ, ߶ௗ, ℎ. 

After the contact deformation obtained, the contact force between the rolling ball and inner 
raceways is calculated based upon the classical Hertz contact theory: ܳଵ = ଵଷ/ଶ, (6)ߜܭߣ

where ߣ  the judge factor of contact state. For ߜଵ > ߣ ,0  =  1; otherwise, ߣ =  0. The ܭ 
represents the Hertzian contact stiffness. According the results of Harris [17], the stiffness value 
could be gained after the comprehensive curvature radius, elastic modulus and Poisson’s ratio of 
the contact pairs determined. Considering the number of balls in contact, the supporting forces of 
the bearing 1 along the two transversal directions could be derived as follows: 

௫ଵܨ =  ܳଵcosߠଵ =  ଵே್ߠଵଷ/ଶcosߜܭߣ
ୀଵ

ே್
ୀଵ ௬ଵܨ   , =  ܳଵsinߠଵ =  ଵே್ߠଵଷ/ଶsinߜܭߣ

ୀଵ
ே್

ୀଵ . (7)

The above derivation mainly aims to the bearing 1. Similarly, for bearing 2, one can also obtain 
its supporting forces as: 
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௫ଶܨ =  ܳଶcosߠଶ =  ଶଷଶߜܭߣ cosߠଶே್
ୀଵ

ே್
ୀଵ ௬ଵܨ    , =  ܳଵsinߠଶ =  ଶே್ߠଶଷ/ଶsinߜܭߣ

ୀଵ
ே್

ୀଵ . (8) 

The determination of ܳଶ, ߠଶ, ߜଶ is similar with that of ܳଵ, ߠଵ, ߜଵ, as given in the above 
equations. 

After considering the Hertz contact, bearing clearance and localized defects, the supporting 
forces induced by rolling bearings are nonlinear and time variable. Thus, the vibration model of 
rotor-bearing system (see Eq. (1)) should be solved using the numerical integration method, i.e. 
the Runge-Kutta method. The fault characteristics of the vibrational signal for the rotor-bearing 
system under various load conditions will be simulated in the following section. Both the  
weight-dominant and unbalance-force-dominant conditions will be considered in order for 
comparisons. 

4. Dynamic tests 

Most current studies focused on the fault diagnosis of defective rolling bearings under  
weight-dominant condition. The corresponding response signal and fault frequencies have been 
extensively analyzed and summarized. Thus, the dynamic tests will be carried out on the 
unbalance-force-dominant rotor-bearing system. For the vertical rotor, the self weight is along the 
axial direction and has no component in the two transversal directions. In this case, the unbalanced 
forces might be dominant. Thus, a vertical rotor system is chosen for dynamic tests and the 
schematic diagram is given in Fig. 2. The experimental system consists of a DC motor, a flexible 
shaft, a rotating disk and two deep groove rolling bearings (6208). In the test, the rotating disk is 
supported by the rolling bearing, and driven by a DC motor. The unbalanced force excitation is 
realized through mounting unbalanced mass on the disk. A tachometer is utilized to record the 
rotating speed. Two acceleration sensors are mounted on two transversal directions of the pedestal. 
Dynamic charge signals from the sensors are amplified and acquired by the dynamic signal 
acquisition system. For the sensors used in the test, the value of sensitivity parameter is about  
100 g/mV. The actual acceleration signal (unit: g) could be gained by transferring the analog 
voltage signal to the acceleration signal through the sensitivity parameter. Sampling frequency is 
set to be 10 KHz. The physical picture of the test system is shown in Fig. 3. 

 
Fig. 2. Schematic diagram for the experimental system 

The system parameters used in the dynamic simulation are listed in Table 1. From the values 
listed in the table, one can calculate the orbital frequency of the cage is ߱ = 0.41 ߱௦. Thus, the 
ball passing frequency of the outer race (BPFO) is ݂ = ܰ߱ = 4.1 ߱௦, and the ball passing 
frequency of inner race (BPFI) is expressed as ݂݅ = ܾܰ(߱௦ − ߱) = 5.9 ߱௦. In the following, 
one will see how the fault characteristic frequencies of bearing defects vary when the condition 
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changes from the weight-dominant condition to the unbalance-force-dominant condition. 

 
Fig. 3. Physical picture of the experimental system 

Table 1. System parameters 
Parameters Values Parameters Values 

Rotor mass (Kg) 3 Number of balls 10 
Rotor damping (N/s) 1200 Radial clearance (m) 1e-5 
Rotor stiffness (N/m) 1e6 Pedestal mass (Kg) 12.638 

Unbalanced mass (Kg) 0.01 Pedestal stiffness (N/m) 15e6 
Mass eccentricity (m) 5e-4 Pedestal damping (N/s) 2210 

Bearing pitch diameter (m) 0.06 Springs mass (Kg) 1 
Ball diameter (m) 0.0108 Springs damping (N/s) 9500 

Contact stiffness (N/m3/2) 8e9 Springs stiffness (N/m) 8e9 
Axial stiffness (N/m) 1e9   

5. Discussions 

5.1. Weight-dominant condition (Only rotor’s self-weight) 

In this section, only rotor’s self-weight is considered and thus the weight dominant condition 
is in operation, i.e. ߯௨ = 0, ߯ = 1. The rolling bearing considered in this study is deep groove 
type, and its contact angle is zero. This means that the coupling between the transversal and axial 
vibrations is weak. Thus, in the following simulations, the transversal vibrations will be mainly 
considered. 

The values of defect parameters are given: ߠௗ = 0.1 rad, ߶ௗ = 1e-3 rad, ℎ = 1e-3 m for the 
outer race defect and ߰ =  0.1 rad (initial angle with respect to the ܺ  axis at time ݐ =  0),  ߶ௗ = 1e-3 rad, ℎ = 1e-3 m for the inner race defect. As the acceleration sensor is used in the 
dynamic test, so the acceleration signal is gained in the test. In order for comparisons, the 
simulated signal should also be the acceleration signal. Using the numerical integration method, 
the vibration displacement and velocity are computed accordingly. By differencing the vibration 
velocity with time, the vibration acceleration is then obtained for comparison with the test results. 
The simulated acceleration signal and corresponding envelope spectra for the outer/inner race 
defects under weight-dominant condition are, respectively, given in Figs. 4 and 5. For the outer 
race defect, one can see from Fig. 4 that there is a series of impulse with equal amplitudes and 
intervals in the vibrational signal. The characteristic frequencies could be expressed by ݊ ݂  
(݊ = 1, 2, 3, ...), where ݂ is the BPFO. When the inner race has a localized defect, it is found 
from Fig. 5 that amplitude modulation appears in the vibrational signal, and side bands could be 
seen in the envelope spectra. The characteristic frequencies are the combinations of ݂ (BPFI) and 
rotating frequency ߱௦, i.e. |݊ ݂ ± ݉߱௦| (݊, ݉ = 0, 1, 2, ...). From Figs. 4 and 5, one can easily 
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find these identified characteristic frequencies. Currently, most studies focused on the fault 
diagnosis of rolling bearings under weight-dominant condition [1-8]. The obtained fault 
characteristic frequencies are consistent with current results, indicating that the present dynamic 
model is reasonable. 

 
a) 

 
b) 

Fig. 4. Simulated acceleration response and envelop spectra for the outer race defect under weight 
dominant condition: a) time response, b) envelope spectra. (ܺ-axis direction) 

 
a) 

 
b) 

Fig. 5. Simulated acceleration response and envelop spectra for the inner race defect  
under weight dominant condition: a) time response, b) envelope spectra. (ܺ-axis direction) 

5.2. Unbalance-force-dominant condition (Only unbalanced force excitation) 

For the vertical rotating machinery, the self weight is along the axial direction and has no 
component in the two transversal directions. In the aero engine, the rotor’s gravity force is 
relatively smaller because of the widely used thin-walled rotating structures. In order to simulate 
the unbalance-force-dominant condition, only the unbalanced force is considered in this section, 
i.e. ߯௨ = 1, ߯ = 0. From Eq. (1), the self-weight force is along the axial direction (ܼ axis). Due 
to the weak coupling between the transversal and axial vibrations, the transversal vibrations of the 
rotor are still the focus in the following simulation and experiment analysis. 

For the outer race defect, the simulated acceleration signal and corresponding envelope spectra 
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are plotted in Fig. 6. Dynamic tests on a vertical rotor-bearing system are also conducted and the 
results are given in Fig. 7. Compared with the weight-dominant condition (see Fig. 4), one can 
find that the time signal and fault frequencies differ distinctly for the unbalance-force-dominant 
condition. It is shown from Fig. 6 that the signal mainly contains the unbalanced response and 
sidebands are found in the envelop spectra. Fault characteristic frequencies for the outer race 
defect under unbalance-force-dominant condition could be summarized as: |݊ ݂ ± ݉߱௦|  
(݊, ݉ = 0, 1, 2, ...). In the tested spectra, one can also find these frequencies, as marked in Fig. 7. 
Thus, the simulation results are verified by the dynamic test. 

 
a) 

 
b) 

Fig. 6. Simulated acceleration signal and envelop spectra for the outer race defect under  
unbalance-force-dominant condition: a) time response, b) envelope spectra. (ܺ-axis direction) 

 
a) 

 
b) 

Fig. 7. Experimental acceleration signal and envelop spectra for the outer race defect under  
unbalance-force-dominant condition: a) time response, b) envelope spectra. (ܺ-axis direction) 

For the inner race defect, both the simulated and tested results are shown in Figs. 8 and 9, 
respectively. Compared with the weight-dominant condition (see Fig. 5), the time signal for the 
unbalance-force-dominant condition mainly contains the unbalanced response. Although the fault 
frequencies are still the combinations of BPFI and rotating frequency, the difference is that only 
the even times of rotating frequency are found in the sidebands. These frequencies are summarized 
as: |݊ ݂ ± 2݉߱௦| (݊, ݉ = 0, 1, 2, ...), and could also be found in the test results of Fig. 9. Thus, 
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the simulation results are also verified by the dynamic test. 

 
a) 

 
b) 

Fig. 8. Simulated acceleration signal and envelop spectra for the inner race defect under  
unbalance-force-dominant condition: a) time response, b) envelope spectra. (ܺ-axis direction) 

 
a) 

 
b) 

Fig. 9. Experimental acceleration signal and envelop spectra for the inner race defect under  
unbalance-force-dominant condition: a) time response, b) envelope spectra. (ܺ-axis direction) 

From the above numerical and experimental analysis, the fault characteristic frequencies for 
both the outer and inner race defects under unbalance-force-dominant condition could be 
summarized as: |݊ ݂ ± ݉߱௦| (݊, ݉ = 0, 1, 2, ...) for the outer race defect and |݊ ݂ ± 2݉߱௦|  
(݊, ݉ = 0, 1, 2, ...) for the inner race defect. One can find that the fault characteristic frequencies 
are all modulated by the rotating frequency ߱௦  besides the BPFO and BPFI. This is mainly 
because that the load zone of the rolling bearing induced by the unbalance force varies with time. 
Fig. 10 shows the variation of bearing load zone with rotation. Even for the outer race defect, 
although the defect holds still, the load zone rotates with the inner shaft and the modulation occurs 
in the fault characteristics. For the inner race defect, both the load zone and defect are all rotating, 
which causes the characteristic frequencies more complicate and even times of rotating frequency 
found in the modulation. Therefore, one can find that the fault characteristics of localized defects 
indeed have distinct differences with that of the weight-dominant condition, in which the load 
zone maintains constant. 
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a) 

 
b) 

 
c) 

 
d) 

Fig. 10. Schematic diagram for the variation of bearing load zone with rotation under  
unbalance-force-dominant condition: a) ߱௦ݐ = 0, b) ߱௦ݐ = ݐc) ߱௦ ,2/ߨ = ݐd) ߱௦ ,ߨ =  2/ߨ3

6. Conclusions 

Vibration signal modeling of a localized defective rolling bearing under unbalanced force 
excitations is carried out and the fault characteristics are studied. Through envelope analysis, the 
fault characteristic frequencies of inner/outer raceway defects with and without unbalanced force 
excitations are presented. Detailed comparisons through dynamic simulations and tests show that 
the unbalanced force excitations have significant influence on the fault characteristic frequencies: 

1) Fault characteristic frequencies for the outer race defect under non-weight dominant 
condition are expressed as |݊ ݂ ± ݉߱௦| (݊, ݉ = 0, 1, 2, ...). 

2) For the inner race defect, its fault frequencies are still the combinations of BPFI and rotating 
frequency, the difference is that only the even times of rotating frequency are found in the 
sidebands. These frequencies are summarized as: |݊ ݂ ± 2݉߱௦| (݊, ݉ = 0, 1, 2, ...). 
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