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Abstract. For online monitoring and identifying gear faults, a new fault indicator is proposed 
based on a multivariate statistical technique, dynamic principal component analysis (DPCA), 
under variable load conditions. In this method, a tri-axial vibration sensor is used to acquire the 
3-direction vibration signals of gear in the gear box because it can pick up more abundant fault 
information than a single axis sensor does. By monitoring the value of the fault indicator, the 
running state of the gear (normal condition or faults) can be directly identified according to the 
set thresholds without using any other fault classification methods. To verify the effectiveness, the 
proposed method is applied on the QPZZ-II rotating machinery fault simulation rig in which the 
root crack and the tooth broken faults are introduced into the gearbox’s driving gear. Experimental 
results show that the fault indicator not only can effectively reveal the health state of the gear, but 
also is without being influenced by the load fluctuation. And, the accuracy rate of fault diagnosis 
is over 96 %.  
Keywords: gear faults, feature extraction, principal component analysis, three-direction vibration 
signals, fault indicator. 

1. Introduction 

The gear transmission is one of the most widely used transmission forms in the mechanical 
system for the gear box has its own advantages, such as fixed transmission ratio, transmission 
torque, compact structure. Meanwhile, like bearings, gears in the gear box become one of the key 
components which are prone to failure and their running state has a great influence on the working 
performance of the whole rotating machine. Compared with the bearing failure, the study of gear 
faults is ignored. In fact, 80 % of faults in transmission machineries are caused by gears, and gear 
faults in rotating machinery account for about 10 % of the total faults. Hence, online monitoring 
and diagnosis for gears is extremely challenging and beneficial to reduce maintenance costs and 
avoid catastrophic accidents and so on.  

At present, the vibration-signal-based analysis technologies are still the main and popular 
means of gear and bearing condition monitoring and fault diagnosis, not only because the change 
of the vibration pattern can reflect the occurrence of a fault, but also vibration signals are easily 
acquired by vibration sensors. So, vibration-based fault diagnosis methods are paid more attention 
by many scholars. As described in Ref. [1], 41 % of vibration-based papers published from 2004 
to 2012 are related to bearing faults, followed by rotor faults (27 %) and gear faults (20 %). 
Compared with the bearing failure, the study of gear fault has not been paid enough attention. 

Most of existing fault diagnosis methods generally contains two key phases: feature extraction 
and fault identification. The most commonly used feature extraction methods include empirical 
mode decomposition (EMD) [2-4], singular value decomposition (SVD) [5, 6], wavelet transforms 
[7-9], variational mode decomposition (VMD) [10-12] and so on. After fault features extracted, 
BP neural network [13], support vector machine (SVM) [12], 𝑘 -nearest neighbor algorithm  
(𝑘-NN) [14] and so on are used to identify the types of faults. Although many methods have 
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adaptive properties, such as EMD, VMD, 𝑘 -NN, their greatest weakness is that their 
computational burden is too heavy to be suitable for online application. Although frequency 
domain based methods, such as fast Fourier transform, have been successfully used to online 
monitor tooth root crack faults of gear, the Fourier transform is powerless when the signals contain 
large amounts of non-stationary or transient information. 

The principal component analysis (PCA) as a multivariate statistical technique is most 
commonly used in signal and image processing aiming at reducing the dimensionality of data [15] 
and fault monitoring for the multivariate statistical processes [16, 17]. In terms of mechanical 
systems, PCA technology is mainly used to obtain the best fusion features from high dimensional 
feature space [18, 19] and determine the optimal feature set from time, frequency, and 
time-frequency features [20, 21]. The dynamic PCA (DPCA) has been developed to handle the 
process measurements with dynamic relationship. So, the residuals of the DPCA model are much 
more uncorrelated than those of the traditional PCA model. In recent years, the PCA/DPCA 
technique is successfully used to monitor the running state of rolling bearing by applying SPE 
statistic [22-23]. The biggest advantage of the PCA/DPCA based methods is the models are 
established offline and online calculating burden is low, so they are very suitable for online 
applications. However, the PCA method is rarely used alone for fault diagnosis of gears or 
bearings. 

In this paper, a novel fault indicator is presented based on Hotelling 𝑇ଶ statistic and the square 
predicted error (SPE) statistic of DPCA aiming at proposing an efficient approach for online gear 
monitoring and fault diagnosis. The proposed method with simple construction and no complex 
computation can be used online because of the DPCA model offline established and on need to 
extract a lot of features. In fact, it was proved that 3-direction (radial-direction, axial-direction and 
rotational) vibration signals acquired from a tri-axial acceleration/vibration sensor give the more 
useful fault information than ones from a single axis vibration sensor [24]. Furthermore, when 
collecting vibration signals of 3 directions, the acquisition time of the tri-axis sensor is shorter 
than that of the 3 single-axis sensors. So, the use of tri-axis sensor not only helps to improve the 
accuracy of fault detection and diagnosis, but also saves time for online applications. Experimental 
results show that we can clearly and easily judge the health state and fault types of the gear only 
by monitoring the proposed indicator. 

2. PCA and DPCA 

2.1. Theory of PCA 

PCA is a well-known and multi-variable feature extraction method based on 2-order statistics. 
It determines a set of orthogonal vectors, called loading vectors, which can be ordered by the 
amount of variance explained in the loading vector directions. By PCA, the high-dimensional 
correlated measurements are transformed into the low-dimensional uncorrelated variables.  

Consider an 𝑛-by-𝑚  history data matrix 𝐗 which has been scaled to zero mean and unit 
variance to avoid problems associated with some measurement having large values and others 
with small ones, where 𝑛 is the sample size and 𝑚 is the number of the measured variables. By 
applying PCA, the matrix 𝐗 is decomposed into the summation of cross products of 𝑚 score 
vectors 𝐭௜ ∈ ℜ௡ and 𝑚 loading vectors 𝐩௜ ∈ ℜ௠, that is: 

𝐗 = ෍ 𝐭௜𝐩௜்௠
௜ୀଵ = 𝐓𝐏், (1)

where 𝐭௜  and 𝐩௜  are the 𝑖th score vector and loading vector respectively, and each 𝐩௜  is a unit 
vector; 𝐓 = ሾ𝐭ଵ 𝐭ଶ ⋯ 𝐭௠ሿ௡×௠ is called the score matrix and 𝐏 = ሾ𝐩ଵ 𝐩ଶ ⋯ 𝐩௠ሿ௠×௠, 
an orthogonal transformation matrix, is called the loading matrix. Both score vectors and loading 
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vectors are orthognals. If 𝐭௜  is sorted in decrease according to its length, namely  ‖𝐭ଵ‖ > ‖𝐭ଶ‖ > ⋯ ‖𝐭௠‖, the first principal component explains the greatest amount of variability. 
The first loading vector 𝐩ଵ  defines the direction of the greatest variance, 𝐩ଶ  does the second 
greatest variance, and so on. Therefore, the full principal components decomposition of 𝐗 can be 
given as: 𝐓 = 𝐗𝐏. (2)

If only the first 𝑙 (𝑙 ≪ 𝑚) principal componets are kept, the Eq. (1) can be rewritten as: 

𝐗 = ෍ 𝐭௜𝐩௜்௟
௜ୀଵ + ෍ 𝐭௜𝐩௜்௠

௜ୀ௟ାଵ = 𝐓௟𝐏௟் + 𝐄௟, (3)

where 𝐄௟ is a matrix of residuals which represents the variability corresponding to process noise. 𝐏௟  composed of the first 𝑙 loading vectors is usually called the PCA model. Using 𝐏௟ , an original 𝑚-dimensional space is transposed into two orthogonal subspaces: the 𝑙-dimensional principal 
subspace 𝑆መ  and the (𝑚 − 𝑙) -dimensional residual subspace 𝑆ሚ . Their relationship can be  
expressed as:  𝑆 = 𝑆መ ⊕ 𝑆ሚ. (4)

Once the PCA model is built via the singular value decomposition (SVD), a new measured 
vector 𝐱௡௘௪,௞  at 𝑘th sampling time can be mapped into the principal subspace, and corresponding 1 × 𝑙 score vector 𝐭௡௘௪,௞  is given as following: 𝐭௡௘௪,௞ = 𝐱௡௘௪,௞் 𝐏௟ . (5)

So, the estimated value of 𝐱௡௘௪,௞ , 𝐱ො௡௘௪,௞, is: 𝐱ො௡௘௪,௞ = 𝐏௟𝐭௡௘௪,௞் = 𝐏௟𝐏௟் 𝐱௡௘௪,௞. (6)

Therefore, the estimation error 𝐞௡௘௪,௞ is obtained by: 𝐞௡௘௪,௞ = 𝐱௡௘௪,௞ − 𝐱ො௡௘௪,௞ = (𝐈 − 𝐏௟𝐏௟் )𝐱௡௘௪,௞. (7)

When monitoring if a system is normal by PCA based method, Hotelling 𝑇ଶ  statistic in 
principal subspaces and SPE statistic (also known as 𝑄 statistic) in residual subspace are used. 
The 𝑇ଶ statistic and the SPE statistic of the 𝑘th new sample are respectively represented as: 𝑇௞ଶ = 𝐭௡௘௪,௞𝜆ିଵ𝐭௡௘௪,௞் = 𝐱௡௘௪,௞் 𝐏௟𝜆ିଵ𝐏௟் 𝐱௡௘௪,௞, (8)𝑆𝑃𝐸௞ = ‖𝐞௞‖ଶ = 𝐱௡௘௪,௞் (𝐈 − 𝐏௟𝐏௟் )𝐱௡௘௪,௞, (9)

where 𝜆 is an 𝑙-by-𝑙 the diagonal matrix composed of the first 𝑙 eigenvalues of the matrix 𝐗்𝐗/𝑛. 𝑇ଶ  statistic reflects changes of variables through fluctuation of principal component vector 
module of the PCA model. SPE is the sum of errors between the data and its estimates, so it 
describes the deviation degree of the measured value not to be captured by the PCA model at a 
certain time. In general, as long as one or both of the two statistics exceeds their own control limits, 
the system is out control. In other words, some fault occurs.  
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2.2. Dynamic principal component analysis 

In general, static monitoring, such as PCA-based method, doesn’t function well for 
auto-correlated data. So, the dynamic PCA (DPCA) is developed to handle the process 
measurements with dynamic relationship [25]. The difference between DPCA and PCA is mainly 
reflected in the composition of modeling data. In DPCA, when the data are stacked with the current 
observation vector and the previous 𝑑 observations, the modeling data matrix is formed as: 

𝐗ௗ = ⎣⎢⎢
⎡ 𝐱்(𝑘) 𝐱்(𝑘 − 1) ⋯ 𝐱்(𝑘 − 𝑑)𝐱்(𝑘 + 1) 𝐱்(𝑘) ⋯ 𝐱்(𝑘 − 𝑑 + 1)⋮ ⋮ ⋮𝐱்(𝑘 + 𝑛 − 1) 𝐱்(𝑘 + 𝑛 − 2) ⋯ 𝐱்(𝑘 + 𝑛 − 𝑑 − 1)⎦⎥⎥

⎤, (10)

where 𝐱(𝑘) = ሾ𝑥ଵ,௞ 𝑥ଶ,௞ ⋯ 𝑥௠,௞ሿ் is the 𝑚-dimensional observation vector at time point 𝑘; 𝐱(𝑘 − 𝑑) is the observation vector at time point 𝑘-𝑑. The rest of the process of building the DPCA 
model is the same as that of PCA. The residuals of the DPCA model are much more uncorrelated 
than those of the traditional statistic PCA model. This means that DPCA is much better than the 
traditional static PCA in detecting the fault occurrence from serially correlated data. 

3. Fault indicator based on DPCA 

3.1. Fault indicator 

As the previous section described, SPE statistic reflects how well each sample conforms to the 
PCA model, and 𝑇ଶ statistic is a measure of the variation of each sample within the PCA model. 
Although, preliminary research results indicated that SPE statistic, rather than 𝑇ଶ statistic, could 
be used to monitor the rolling bear by vibration analysis, the types of faults cannot be identified 
by only these two statistics. Hence, aiming at directly monitoring and diagnosing faults of the gear, 
a new fault indicator is proposed based on two statistics. In addition, the vibration signals in each 
direction may contain information that reflects the fault characteristics. Therefore, in order to 
improve the accuracy of fault detection and diagnosis, a tri-axis acceleration sensor is used to 
collect radial-direction, axial-direction and rotational vibration signals denoted as ሼ𝐱(𝑡), 𝐲(𝑡), 𝐳(𝑡)ሽ.  

As we all know, the vibration signals of rotating parts, such as gear and bearing, are periodic 
and non-stationary, which leads to values of 𝑇ଶ and SPE is not as smooth as ones of the stationary 
process, such as Tennessee Eastman (TE) process in chemical industry. According to the 
characteristics of gear vibration signals and the properties of these two statistics, the fault indicator 
of the 𝑖th sample, 𝐹𝐼௜, can be defined as:  

𝐹𝐼(𝑖) = 1𝑛 ∑ 𝑆𝑃𝐸௜(𝑗)௡௝ୀଵ1𝑛 ∑ 𝑇௜ଶ(𝑗)௡௝ୀଵ , (11)

where, 𝑛 is the number of subgroups. That is, each sample is divided into 𝑛 equal parts. 𝑇௜ଶ(𝑗) and 𝑆𝑃𝐸௜(𝑗) are respectively the values of 𝑇ଶ and SPE of the 𝑗th subgroup in 𝑖th sample. It can be seen 
that the fault indicator describes the distribution characteristics of two statistics in the two-
dimensional feature space and overcomes the fault cannot be effectively diagnosed by 𝑇ଶ and SPE 
because of overlapping of their range. For different faults, there are obvious differences in their 
distributions. Hence, a fault can be detected and diagnosed by monitoring FI.  

The overall strategy of the proposed approach is summarized in Fig. 1. It mainly includes two 
phases: offline building and online applying.  
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3.2. Offline building DPCA model 

As shown Fig.1, two major tasks need to be completed in offline modeling phase. One is to 
build the DPCA model which is developed to obtain two statistics as the features of the gear. The 
other is to determine the fault diagnosis thresholds which can be used to distinguish the fault types 
of the gear.  

The main steps of offline building the DPCA model are summarized as follows:  
Step 1: Acquire 3-D vibration signals ሼ𝐱(𝑡), 𝐲(𝑡), 𝐳(𝑡)ሽ when the gear without any faults is 

operated under the unload condition.  
Step 2: Determine the size of a sample 𝑚 and the number of subgroups 𝑛. That is to say, each 

sample with 𝑚 points is equal divided 𝑛 subgroups without overlap. Each subgroup has 𝑑 = 𝑚/𝑛 
points. Hence, a 𝑗th vector belonging to the 𝑖th sample is organized in the following form: 𝐗௜,௝ = ሾ𝑥௜(𝑗𝑑) ⋯ 𝑥௜((𝑗 − 1)𝑑 + 1) 𝑦௜(𝑗𝑑) ⋯ 𝑦௜((𝑗 − 1)𝑑 + 1) 𝑧௜(𝑗𝑑) ⋯ 𝑧௜((𝑗 − 1)𝑑 + 1)ሿ, 𝑗 = 1,2, … , 𝑛. (12)

If there are 𝑁 samples, according to Eq. (10), an 𝑛𝑁-by-3𝑑 building data matrix 𝐗ௗ is given 
by: 𝐗ௗ = ሾ𝐗ଵ,ଵ் ⋯ 𝐗ଵ,௡் 𝐗ଶ,ଵ் ⋯ 𝐗ଶ,௡் ⋯ 𝐗ே,ଵ் ⋯ 𝐗ே,௡் ሿ். (13)

 
Fig. 1. The strategy of the proposed approach 

Obviously, each row of 𝐗ௗ is the measurement variables with a time-lagged window 𝑑 − 1. 
Step 3: Compute the sample mean vector 𝐱ௗ  and the sample standard deviation vector 𝐬ௗ .  

Then, normalize 𝐗ௗ to become a matrix 𝐗ௗᇱ  with zero mean and unit variance using 𝐱ௗ  and 𝐬ௗ . 
Step 4: Apply PCA to 𝐗ௗᇱ . A DFCA model of the gear system, denoted as 𝐏௟, is built after 

determining the number of principal componets 𝑙. 
Step 5: Save the information of the DPCA model, including the loading matix 𝐏௟, 𝐱ௗ  and 𝐬ௗ . 
When there are clear distinctions among the different faults, the threshold based diagnosis 

method can be used to certain the fault types. So, the second work that needs to be done offline is 
to set the fault diagnosis thresholds. Three-sigma (3𝜎) quality level translates to a process yield of 
99.73 % under the assumption of normality. That it is: 𝑃𝑟(|𝐹𝐼 − 𝜇| < 3𝜎) = 99.73 %. (14)

 FIi
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So, 𝜇 + 3𝜎 can be set as the fault warning threshold (FWT) to detect whether any failure 
occurs. The FWT can be computed based on the FIs of the healthy state: 

𝐹𝑊𝑇 = 𝜇 + 3𝜎 = 1𝑁 ෍ 𝐹𝐼(𝑖)ே
௜ୀଵ + 3ඨ 1𝑁 − 1 ൤෍ ൬𝐹𝐼(𝑖) − 1𝑁 ෍ 𝐹𝐼(𝑖)ே௜ୀଵ ൰ே௜ୀଵ ൨ଶ, (15)

where, 𝜇 and 𝜎ଶ are the mean and variance of the fault indicators of health state. If FIs of the 
vibration signals are greater than a fault warning threshold, it can say there is a fault. 

3.3. Online fault monitoring and diagnosing via FI 

Once the DPCA model and the thresholds are determined, the gear can be online monitored 
and diagnosed. The central idea in online fault monitoring and diagnosing using the FI is 
summarized as follows:  

Step 1: Download the information of the DPCA model and the fault diagnosis thresholds. 
Step 2: Acquire 3-D vibration signals in real time. Each sample has 𝑚 points.  
Step 3: Obtain 𝑛 new subgrups according to Eq. (12) and scale respectively them with 𝐱ௗ  and 𝐬ௗ  which were obtained at offline modeling phase. 
Step 4: Apply DPCA model on each scaled subgroups to obtain 𝑇௜ଶ(𝑗)  and 𝑆𝑃𝐸௜(𝑗)  

(𝑗 = 1,2, … , 𝑛) according to Eqs. (8-9). 
Step 5: Compute FI value of the current sample according to Eq. (11). 
Step 6: Determine the gear state via the thresholds. Namely, detect and diagnose for the 

running gear.  
Step 7: Return Step 2 and monitor the gear at the next new samples. 

4. Experimental results 

4.1. Fault simulation rig and 3D vibration data collection 

In this section, to evaluate the performance of the proposed method, the experiments were 
carried out at a QPZZ-II rotating machinery fault simulation rig as shown in Fig. 2, which 
manufactured by Jiangsu Qianpeng Diagnosis Engineering Co., Ltd. The gear test part of the 
QPZZ-II rig is made of a gearbox, a 5 Nm (Rated Torque) and 0.5A (current) magnetic powder 
brake (MPB), a 0.55 kW power and 1450 rpm (Rated Speed) AC motor and a speed and load 
controller. Here, the controller is not shown in Fig. 2. The gearbox has a 55-tooth pinion (driving 
gear) and 75-tooth wheel (driven gear), which modules both are 2 mm. As shown in Fig. 3, the 
root-crack fault (RCF) and the one tooth-broken fault (TBF) were introduced into driven gear 
using the electron discharge machining (EDM) method. So, the driven gear has three conditions 
including healthy gear (HG).  

 
Fig. 2. QPZZ-II Rotating machinery fault simulation rig 
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The hardware of the data acquisition system mainly includes an 8-slot NI CompactDAQ 
Ethernet chassis (cDAQ-9188XT), a NI 9234 dynamic signal acquisition module, a B&K 4056 
tri-axis acceleration sensor and a laptop. The data acquisition software was programmed by the 
National Instruments Labview. 

The data sampling frequency was set as 5.12 kHz. The radial load for the gear box was 
respectively set as unload, 50 % load and full-load. The tri-axis acceleration sensor was placed on 
the top of the driven gear of the gearbox to acquire the gear’s radial-direction, axial-direction and 
rotational vibration signals.  

 
a) One tooth broken 

 
b) Tooth root crack 

Fig. 3. Test gears with faults 

4.2. The results and analysis using fault indicator based on 3D vibration signals  

Here, the time-domain waveforms of the raw three-direction vibration signals of all gear 
conditions under unload condition are respectively plotted in Figs. 4-6 when the rotation speed of 
AC motor was 1450 rpm. 

Vibration signals of the healthy gear under unload condition at 1450 rpm are selected to build 
the DPCA model. Each 1024 sampling points are as a group. At the same time, a group is divided 
into 16 sub-groups in order to construct the modeling data set again. Obviously, each sub-group 
has 64 sampling points. There are 60 groups. Namely, 𝑁 = 60, 𝑚 = 1024, 𝑛 = 16 and 𝑑 = 64. So, 
a 960-by-192 building data matrix is obtained. After applying PCA, the original space with 192 
dimensions is decomposed into a 52-dimensional principal subspace and a 140-dimensional 
residual subspace. After modeling, the fault warning threshold (FWT) is determined to be 1.1558 
according to Eq. (15). If the fault indictor is greater than 1.1558, a fault occurs in the gear. 
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Fig. 4. Three-direction vibration signals from a good gear 
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Fig. 5. 3D vibration signals from a root crack gear 
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Fig. 6. 3D vibration signals from a tooth broken gear  

 
Fig. 7. Fault indicator of testing samples under unloading at 1450 rpm 

In order to test the proposed method affected by load changes, the testing samples of three gear 
states operated three different loading conditions at 1450 rpm are used. Fault indicators under 
unloading condition are calculated and plotted in Fig. 7. In this figure, lines with ‘o’, ‘*’ and ‘·’ 
indicate that the values of fault indicators come from a healthy gear, a gear with RCF and a gear 
with TBF, respectively. As shown in Fig. 7, faults are easily detected by the fault warning 
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threshold (see the long dashed line in Fig. 7), and the accuracy reaches 100 %. To identify the 
types of faults, another threshold is determined based on the fault indicators of TBF since there is 
clear boundary between two faults. In this work, it is 2.5290. Table 1 lists the fault detection rates 
and fault recognition rates of testing data under all the loading conditions. As seen in Table 1, 
overall accuracy of fault detection is up to 100 %, and fault diagnosis rate of two faults is greater 
than 96 %. So, the proposed method is effective and robust to load variations. 

Table 1. Fault detection rate (%) and fault diagnosis rate (%) under different loading conditions 

 Unloading 1450 rpm 50 % loading 1432 rpm Full loading 1417 rpm Overall 
Detection Diagnosis Detection Diagnosis Detection Diagnosis Detection Diagnosis 

HG 100 100 100 100 
RCF 100 97 100 95 100 97 100 96.33 
TBF 100 98 100 98 100 96 100 97.33 

Further, the vibration data at 1305 rpm, 1160 rpm, 1015 rpm, 870 rpm and 725 rpm are used 
to test the proposed method. Figs. 8-12 give the results at different driven speeds using the model 
built at 1450 rpm. Fig. 8 shows that the accuracy of gear health monitoring is up to 100 %, and 
TBF’s and RCF’s diagnose accuracies are respectively 92 % and 82 %. The result suggests that 
the fault of the gear can be diagnosed effectively by the fault indicator when the speed is reduced 
by 10 %. When the speed is reduced by 20 % and 30 %, although the failure types cannot be 
effectively diagnosed, as shown in Figs. 9-10, only 1 % of testing samples is not correctly 
monitored by FWT. The failure of gear can still be detected by resetting FWT (0.5498) when the 
speed drops to a lower level (see Figs. 11-12). So, the DPCA model at 1450 rpm can be used to 
monitor the health of gears at different speeds. 

 
Fig. 8. Fault indicator of testing samples at 1305 rpm 

  
Fig. 9. Fault indicator of testing samples at 1160 rpm 
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Fig. 10. Fault indicator of testing samples at 1015 rpm 

   
Fig. 11. Fault indicator of testing samples at 870 rpm 

 
Fig. 12. Fault indicator of testing samples at 725 rpm 

The proposed method is of less computation, and its average elapsed time for making fault 
detection only is 0.0047 second. In contrast, EMD spends 0.3402 second in processing a sample 
with 3×1024 points. And VMD needs 0.6387 second to get 6 modes. The proposed method greatly 
reduces the computation time comparing with EMD-based and VMD-based so that it can be 
applied to real-time fault detection. 

4.3. Compared with traditional DPCA based method  

For the purposed of comparison, the traditional control limit monitoring method using 𝑇ଶ 
statistic and SPE statistic is used to determine whether faults are present. There are two cases to 
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consider: one is to monitor the gear based on 𝑇ଶ and SPE statistics of each subgroup with 64  
points, the other is based on the statistics of each group with 1024 points. Detailed determining 
method of control limits of two statistics can be found in Ref. [22]. 

For the first case, SPE statistic and 𝑇ଶ statistic of 1600 subgroups for all gear conditions are 
shown in Fig. 9. Here, 95 % and 99 % control limits of 𝑇ଶ statistic are respectively 82.7132 and 
72.4265. 95 % and 99 % control limits of SPE statistic are respectively 44.0892 and 39.0683. As 
the two charts show, it can be observed that the 𝑇ଶ statistic cannot detect whether the gear is failure 
using the method of control limit because almost all 𝑇ଶ values of the tooth broken gear and most 𝑇ଶ values of the crack fault gear both are within its control limits. At the same time, the SPE 
statistic is also not suitable to monitor the running state of gear because it will lead to a higher 
false alarm rate. As a consequence, monitoring gear states by mean of each subgroup’ two 
statistics doesn’t work well and it is invalid for gear fault detection and diagnosis.  

In the second case, the SPE’s mean and the 𝑇ଶ’s mean value of each group including 16 
subgroups replace its subgroup’s SPE and 𝑇ଶ values, and the corresponding results are shown in 
Fig. 13.  
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b) Hotelling 𝑇ଶ statistic 

Fig. 13. Two statistics of the subgroups under unload condition at 1450 rpm 

Fig. 14 shows that the performance of fault detection can be improved significantly using the 
mean of SPE, and the 𝑇ଶ can also monitor the gear running state. However, by the mean values 
of two statistics, fault reasons cannot be directly identified due to the similar distribution 
characteristics of the tooth broken fault and the root crack fault. In other words, the kinds of gear 
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faults cannot be distinguished using SPE statistic. Therefore, the mean of SPE can effectively 
monitor the health of the gear, but cannot be used to identify the types of faults. 

 
a) SPE statistic 

 
b) Hotelling 𝑇ଶ statistic 

Fig. 14. The mean values of two statistics of each group under unload condition at 1450 rpm 

4.4. Compared with the proposed method using single direction signals 

Furthermore, in order to verify the superiority of FI based method using tri-axis vibration 
signals, the same building and testing data are used to construct 3 DPCA models only using each 
direction signals. All the FIs of testing samples are computed and the corresponding results are 
displayed in Fig. 15.  

Fig. 15(a) shows that HG and TBF are completely separated, but there are overlaps between 
RCF and HG, between RCF and TBF. Under unload condition, the overlaps between RCF and 
HG is the most serious so that RCF doesn’t discern from HG. So, the monitoring and diagnosis of 
the gear cannot be realized only using radial-direction signals. In Fig. 15(b) and Fig. 15(c), the 
discrimination between HG and the other faults is obviously improved, but there are still serious 
overlaps between RCF and TBF. The above experimental results show the FIs based on only one 
direction vibration signals can’t be used to diagnose the gear faults. 
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a) The results using radial-direction vibration signals 

 
b) The results using axial-direction vibration signals 

 
c) The results using rotational vibration signals 

Fig. 15. The fault indicator of testing samples using one direction vibration signal at 1450 rpm 

5. Conclusions 

Vibration analysis is a reliable method for gear fault monitoring and identification. Compared 
with the most commonly used single-axis acceleration sensor, the tri-axial vibration sensor can 
capture higher frequency stress wave activity from different directions that is beneficial for 
detecting impacting, fatiguing and friction. DPCA is a multivariate feature extraction and 
monitoring technology which can deal with the process measurements with dynamic relationship. 
In order to online monitor and diagnose gear faults more accurately and effectively, hence, a novel 
fault indicator based on DPCA theory was proposed in this paper. Unlike the most methods, the 
3D vibration signals are used in the proposed method. Here, the DPCA model was developed to 
obtain SPE statistic and 𝑇ଶ  statistic from 3D vibration signals. The fault indicator which 
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organically combines the two statistics is computed to indicate the gear states. The main 
advantages of the proposed method include the following: Just by monitoring the value of FI, the 
health state and fault types of gear can directly be identified without the aid of other classification 
methods; the proposed method is not affected by the load fluctuation; it achieves online 
applications because it takes less computation time. The proposed method was verified by the 
QPZZ-II Rotating machinery fault simulation rig. Comparison results indicate that the proposed 
method has a better diagnostic performance.  
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