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Abstract. De-noising of signal processing is crucial for fault diagnosis in order to successfully 
conduct feature extraction and is an efficient method for accurate determination of cause. In this 
paper, the empirical mode decomposition (EMD) thresholding-based de-noising method and 
probabilistic neural network (PNN) are respectively used in the de-noising of the vibration signal 
and rotor fault diagnosis and compared with wavelet thresholding-based de-noising technology 
and back propagation neural network (BPNN). The results show that the clear iterative EMD 
interval thresholding performs better than wavelet thresholding in the de-noising of the vibration 
signal, and avoids the determination of wavelet basis and decomposition level. In addition, the 
PNN created by feature samples does not require training and has a higher accuracy than BPNN. 
Keywords: EMD thresholding de-noising, probabilistic neural-network, fault diagnosis,  
feature-extract, wavelet de-noising. 

1. Introduction 

Vibration is the main form of fault in the performance of mechanical equipment. The cause of 
fault can be effectively identified by processing and analyzing the vibration signals. Shaft orbit 
and spectrum analysis are commonly used for detecting the fault of rotor. The shaft orbit of 
different rotor fault differs sharply from each other. However, the relevant researches are limited 
because the shape of shaft orbit is two-dimensional image, making it hard for the feature to be 
extracted. Peng et al. [1] extracted maxima lines and corresponding Lipschitz exponents based on 
wavelet modulus maxima and processed them into feature vectors to detect fault. Wang et al. [2] 
proposed a kind of shaft orbit representation by using the chain code and shape numbers and 
obtained a desirable effect. Different from shaft orbit, spectrum analysis focuses on the inherent 
properties, such as the frequency, amplitude and phase of fault signals, which are easier to be 
diagnosed accurately. At present, there are many methods that can be used for spectrum analysis, 
such as Fast Fourier transform (FFT), wavelet analysis, and Empirical Mode Decomposition 
(EMD) [3]. Mogal et.al [4] studied the amplitude and phase of the vibration signal from three 
directions by using FFT and order analysis, making a number of conclusions applicable to fault 
recognition. Singh et al. [5] analyzed the characteristics of combined rotor fault in time-frequency 
Hilbert spectrum, overcoming the limitation of FFT. 

Signals sampled from an object under investigation inevitably contain some noise that is 
uncorrelated with the signal to be analyzed due to the environment of data acquisition and the 
instruments used. Sometimes the noise contains a large amount of energy that forms a great part 
of the original signal. If this signal is directly analyzed without processing, the results differ from 
the real situation and corrupt the fault diagnosis. Therefore, it is important to eliminate the 
unwanted noise within the measured signal before the research objective is pursued. EMD has 
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been developed and widely used for signal processing in recent years. The main principle of EMD 
is to adaptively decompose the multicomponent signal into several branches called intrinsic mode 
functions (IMFs), the frequencies of which are sorted in descending order according to the local 
characteristic and time scale. Based on multi-resolution, this method absorbs the advantage of 
wavelet transform and overcomes the difficulty of choosing the correct basis for the use of wavelet 
[6]. Flandrin et al. [7] proposed the idea of a filter bank, which adaptively designs high-pass, 
low-pass, band-pass or band-rejection filters by altering the IMF order. Inspired by wavelet 
thresholding de-noising, Kopsinis et al. [8] filtered and de-noised the signals by adopting different 
thresholds for every IMF and partial reconstruction of the signal [9, 10]. 

In the fault diagnosis of machinery [11], EMD is a common application often used together 
with other methods such as wavelet, independent component analysis (ICA), support vector 
machine (SVM) and neural networks [12-15]. In these methods, probabilistic neural network 
(PNN) is widely used for pattern recognition. Rai et al. [16] used EMD to acquire the IMF of 
vibration signals of a bearing, and extracted IMF’s frequency spectrum from FFT. Pines et al. [17] 
used EMD and Hilbert phase technology to monitor the structural health status. Barszcz et al. [18] 
adopted PNN to effectively classify the feature set that contains harmonics from vibration 
spectrum and proved the better performance of PNN. Wu et al. [19] integrated wavelet 
decomposition with PNN to diagnose the fault of machinery vibration in Aero-Engine. To solve 
the mode mixing problem in traditional EMD, Yu et al. [20] proposed a novel fault diagnosis 
method based on Modified Ensemble Empirical Mode Decomposition (MEEMD) and PNN. 
However, most papers focus on the technologies of feature extraction or pattern recognition, 
ignoring the significance of de-noising in fault diagnosis and using general de-noising methods 
without consideration of those signal characteristics. 

This paper presents a method for rotor fault diagnosis, combining the advantages of the  
EMD-CIIT, the PNN and the modified feature extraction. The EMD is used as the adaptive filter 
to de-noise the noisy vibration signal into a useful signal, and the fault features are determined 
using FFT and modified feature extraction. By passing the modified features into a PNN, accurate 
and reasonable results can be obtained. The rest of this paper is organized as follows. In Section 2, 
the EMD thresholding-based de-noising is briefly introduced. The structure and principle of PNN 
and the procedure of fault diagnosis are presented in Section 3. In Section 4, some key parameters 
for fault diagnosis are determined. In Section 5, a contrast experiment on the performance of 
wavelet and EMD severally combined with PNN and BPNN is designed and the result is analyzed. 
Concluding remarks are the final section. 

2. EMD-CIIT method 

Inspired by wavelet thresholding-based de-noising, some novel methods based on EMD 
thresholding-based de-noising for signal processing are proposed by Kopsinis et al. [21] such as 
the direct application of wavelet thresholding in the EMD (EMD-DT), thresholding adapted to 
EMD characteristics (EMD-IT), iterative EMD interval-thresholding (EMD-IIT) and clear 
iterative EMD interval-thresholding (EMD-CIIT). Results from many comparison experiments on 
the de-noising of diverse well-known and normal signals prove that the EMD-CIIT provides better 
signal noise reduction and reconstruction. The fundamental principle of this approach is described 
in the following steps: 

(1) Perform an EMD expansion of the original noisy signal (ݐ)ݔ and obtain a series of IMFs, ܿଵ(ݐ), ܿଶ(ݐ), …, ܿ௅(ݐ). 
(2) Because useful signal may exist in the first IMF, separate the noisy signal and useful signal 

from the IMF by way of a thresholding operation to obtain a de-noised version, ܿ̃ଵ(ݐ). 
(3) Compute the actual noise signal that existed in ܿଵ(ݐ): ܿଵ(௡) = ܿଵ(ݐ) − ܿଵ෥  (1) .(ݐ)
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(4) Conduct a partial reconstruction using the last ܮ − 1  IMFs (ܮ  is the total number of 
obtainable IMFs) plus the useful signal contained in the first IMF, that is: 

(ݐ)෤௣ݔ = ෍ ௝ܿ +௅
௝ୀଶ ܿଵ෥ (2) .(ݐ)

(5) Alter the sample positions of noise-only component ܿଵ(௡) of the first IMF to get a new 
version of the original noisy signal as: ݔ෤௔(ݐ) = (ݐ)෤௣ݔ + ܿଵ(௔)(ݐ), (3)

where ݔ෤௔(ݐ) is not the same as the original signal (ݐ)ݔ in that the pure noise signal ܿଵ(௡) in the 
first IMF is changed artificially; ܿଵ(௔)(ݐ) provides the processed noise-only component ܿଵ(௡) and 
it can be computed as follows: ܿଵ(௔)(ݐ) = ൫ܿଵ(௡)൯. (4)ݎ݁ݐ݈ܽ

The altering function can take several forms; random circulation and random permutation are 
the most common strategies of alteration to produce modified noised signals. The distinction 
between them is that the sample positions are changed circularly or randomly. 

(6) Perform an EMD expansion of the new altered signal ݔ෤௔(ݐ) and adopt EMD-IT de-noising 
defined as Eq. (5) or (6) on the IMFs: 

ℎ෨(௜)൫ܢ௝(௜)൯ = ൝ℎ(௜)൫ܢ௝(௜)൯,    หℎ(௜)൫ݎ௝(௜)൯ห ≥ ௜ܶ,0,    หℎ(௜)൫ݎ௝(௜)൯ห < ௜ܶ.  (5)

And: 

۔ۖەۖ
௝(௜)൯ܢℎ෨(௜)൫ۓ = ۔ۖەۖ

௝(௜)൯ܢℎ(௜)൫ۓ หℎ(௜)൫ݎ௝(௜)൯ห − ௜ܶቚℎ(௜) ቀݎ௝(௜)ቁቚ ,     หℎ(௜)൫ݎ௝(௜)൯ห ≥ ௜ܶ,0,   หℎ(௜)൫ݎ௝(௜)൯ห < ௜ܶ.  (6)

For ݆ = 1, 2, …, ௭ܰ௜ ( ௭ܰ௜ is the number of zero in the ݅th IMF), where ℎ(௜)൫ܢ௝(௜)൯ indicates the 
samples between zero-crossing instants ܢ௝(௜)  and ܢ௝ାଵ(௜)  of the ݅ th IMF. The single extrema that 
corresponds to this interval is ℎ(௜)൫ݎ௝(௜)൯. It should be noted that ௜ܶ here is an adaptive threshold, 
which means that it can be changed with the variation of IMF.  

(7) Get the first de-noised version ݔ෤ଵ(ݐ), of the original signal from the previous steps. Then 
iterate ݇ − 1 times from step (5) to (6), where ݇ is the number of averaging iterations to obtain 
various de-noised versions, i.e., ݔ෤ଵ(ݐ), ݔ෤ଶ(ݐ), …, ݔ෤௞(ݐ). 

(8) Average the resulting de-noised signals by Eq. (7) and then form the eventual ideal  
de-noised signal: 

(ݐ)෤ݔ = 1݇ ෍ ௞(ݐ)෤௜ݔ
௜ୀ௜ . (7)

To add flexibility and rationality for the number of optional low-order IMFs during the 
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EMD-IT process in step (6), a generalized reconstruction of the de-noised signal is given by: 

(ݐ)ොݔ = ෍ ℎ෨(௜)(ݐ) + ෍ ℎ(௜)(ݐ).௅
௞ୀெమାଵ

ெమ
௞ୀெభ  (8) 

The introduction of parameters M1 and M2 is to realize the above objective. 

3. Diagnosis technology and procedure 

3.1. Framework and fundamental principle of PNN 

The main idea of PNN [22] is to separate the decision-making space from a multi-dimensional 
space by applying Bayes decision rule, which leads to the least expected risk of misclassification. 
PNN is a feed forward artificial neural network based on mathematical statistics principles and 
the activation function is a radial basis function. In pattern classification, the advantages of PNN 
are obvious compared with some other traditional feed-forward neural networks due to its 
incorporation of radial basis function network and classical probability density estimation theory. 
The framework of PNN is shown in Fig. 1. 

 
Fig. 1. Architecture of PNN 

The network is made up of four layers. The first layer is the input layer which represents the 
input vector ݔ expressed as (ݔଵ, ݔଶ, …, ݔ௡). The number of neurons of the current layer equals 
that of the variables in vector ݔ. The pattern layer is connected to the input layer and each neuron 
in it corresponds to one pattern in the training set [23]. The weight values of the neurons in this 
layer are set equal to the different training patterns. By Computing the Euclidean distance between 
the input sample and training sample and passing it to the activation function, the level of 
similarity is obtained as a form of decimals in the range of [0,1]. The function of summation layer 
lies in calculating the synthetic probability for every pattern using the output of each neuron in the 
pattern layer. The pattern associated with the biggest probability will be exported by the output 
layer as the final result. 

3.2. Fault diagnostic procedure 

The diagnostic procedure for rotor fault in this paper is shown as follows: 
1) Signal de-noising. As the main method, EMD-CIIT is used for the noise reduction of 

original signals, minimizing the impact to feature extraction. 
2) Feature extraction. By using FFT and frequency analysis, the amplitude at every 

characteristic frequency will be effectively processed and the obtained feature vector utilized as 
the basis for classification. According to the law of conservation of energy, the total stays the same 
in any domain for an identical signal. Ignoring some high frequencies that are not relevant to fault 
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information, the fault feature is obtained by selecting amplitudes at one to four multiples of 
rotational frequency and processed with fellow function: 

ܲ( ௜݂) = ሾܺ( ௜݂)ሿଶ∑ ൣܺ൫ ௝݂൯൧ଶସ௝ୀଵ , (9)

where ݆ represents the multiple of shaft rotation speed and ܺ( ௜݂) represents the corresponding 
amplitude. The vector ܺ = ൛ܲ( ଵ݂), ܲ( ଶ݂), ⋯ , ܲ൫ ௝݂൯, ⋯ , ܲ( ௡݂)ൟ is the vector of feature as well as 
the input vector of PPN. 

3) Fault diagnosis. Build the PNN by using part of feature samples and the best spread of radial 
functions to perform an effective classification for input vectors. The diagnosis is evaluated by a 
comparison with the actual situation. 

The whole block diagram of fault diagnosis is shown as Fig. 2. 

 
Fig. 2. Procedure of fault diagnosis for rotor 

4. The selection of best parameters 

To confirm the reliability and advantage of this rotor diagnosis method, the wavelet de-noising 
and BPNN are respectively used with EMD and PNN to conduct comparison experiments. For the 
realization of best performance to all used methods, the optimal parameter should be determined 
before the test. 

4.1. The selection of wavelet basis and decomposition level 

It is necessary to select proper wavelet type and decomposition level before wavelet 
thresholding-based de-noising for noisy signals. In order to find the best wavelet basis, db, coif, 
sym, demy and bior wavelets are used to decompose the rotor fault signals. Computed  
signal-to-noise ratio(SNR) is presented in Fig. 3. It is obvious that the db wavelet has a better 
performance and the highest SNR is reached under a decomposition level of 3. 

Apart from the above parameters, the best wavelet basis is also needed. There are many 
wavelet bases in the db wavelet family. By utilizing them to decompose rotor fault signals under 
a decomposition level of 3, the relationship between db wavelet basis and SNR is obtained after 
de-noising and is presented in Fig. 4. The result indicates that db8 has the best performance among 
all used db wavelet basis and is therefore selected for later experiments. 
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Fig. 3. Comparison of different wavelet types  

in de-noising 

 
Fig. 4. Comparison of different db wavelet basis  

in de-noising 

4.2. The determination to key parameters of EMD-CIIT 

It is crucial for de-noising result and accuracy of feature extraction to correctly select the order 
of IMF to be processed. To determine the best parameters M1 and IM2, an EMD expansion of the 
rotor fault signal is performed and a test of the resulting 10 IMFs is conducted with different M1 
and IM2 selected by their relationship. The simulation result is shown in Table 1. It can be seen 
from the table that the SNR first increases and then decreases with the increase of M1 when IM2 
is not changed, and gradually decreases with the increase of IM2 when M1 is not changed; this is 
because much noise can be restrained by a smaller M1 and useful information will be lost with a 
greater M1. 

Table 1. Comparison of differentM1 and IM2 to EMD-CIIT in de-noising 
M1\IM2 1 2 3 4 5 6 7 8 

1 6.5269 6.5254 6.5098 6.4616 6.4716 6.4267 5.7039 4.5051 
2 7.1087 7.1082 7.0923 7.0382 7.0480 6.9942 6.1914  
3 8.8040 8.8015 8.7751 8.6939 8.7049 8.6358   
4 8.7506 8.7479 8.7192 8.6439 8.6574    
5 1.2731 1.2732 1.2697 1.2496     
6 0.0358 0.0358 0.0326      
7 –0.0077 –0.0075       
8 –0.0142        

Research shows that a value in [0.3, 0.4] for the multiplication factor (MF) of the universal 
threshold produces better results when using the EMD-CIIT method. The impact of different 
multiplication factors to the de-noising performance of the rotor fault signal is shown in Table 2. 
It can be seen that the SNR is highest when the multiplication factor equals 0.38. 

Table 2. Comparison of different multiplication factors to EMD-CIIT in de-noising 
MF 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 

SNR 8.220 8.344 8.401 8.395 8.634 8.599 8.585 8.634 8.795 8.695 8.791 

4.3. The selection of thresholding function 

There are two kinds of thresholding functions used in de-noising: hard thresholding function 
and soft thresholding function. Reconstructed signal approaches the real value but has 
discontinuities in respect of the hard thresholding operation. Though the discontinuity can be 
avoided by the soft thresholding operation, there are deviations between the original and 
reconstructed signals. To estimate the effect of the above two functions on the keep to signal 
feature, they are respectively combined with wavelet and EMD technologies for signal de-noising 
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where the parameters are determined by the conclusions in Section 4.1 and 4.2 and the Eq. 9 is 
used to decrease the influence of error. The results are shown in Fig. 5 and 6 respectively.  

The figures illustrate that hard thresholding function has a better performance on the keep of 
signal feature regardless of wavelet or EMD method and is therefore selected for later experiments. 

 
Fig. 5. Features of rotor fault using wavelet method 

with different thresholding functions 

 
Fig. 6. Features of rotor fault using EMD method 

with different thresholding functions 

4.4. Structure and parameter of neural network 

The structure of PNN is determined by samples and the spread of radial functions is the key 
parameter. The best spread can be easily found by the cut-and-try method because it usually 
belongs to a numerical interval. So far there is no standard to select the number of layers and 
neurons for BPNN and the optimum number is mainly dependent on experience and 
experimentation. 

5. Experiments and result 

5.1. Data acquisition and processing 

The original data samples are obtained by a rotor test bed described in Fig. 7 under the 
condition of setting the value 2048 for sampling frequency and 1200 r/min for rotation speed of 
the rotor. The rotor test bed includes adjustable-speed motor, rotor disk, coupling, sensor and 
bearing. The motor is controlled by a controller and the sensor signal is captured and passed to a 
computer by the acquisition instrument.  

 
Fig. 7. Rotor test bed 

The studied states of rotor include four common types: healthy rotor, unbalanced rotor, 
misaligned rotor and rotor contact-rubbing. We carried out the experiment on each rotor states and 
obtained 150 groups of experimental data. Among them, the number of healthy, contact-rubbing 
and unbalanced rotors is 40 and the number of misaligned rotors is 30. The original data samples 
are divided into two aspects: one for the building of PNN and the other for confirmatory 
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experiment. The original signal and de-noised signal of vertical vibration in four states are shown 
in Figs. 8 to 11. The IMFs of healthy rotor signal are presented in Fig. 12. The  
amplitude-frequency diagrams of original signals and de-noised signals processed by the EMD-
CIIT method, at four states, are shown in Fig. 13 and 14 respectively. 

 
Fig. 8. Vertical vibration of healthy rotor 

 
Fig. 9. Vertical vibration of rotor contact-rubbing 

 

 
Fig. 10. Vertical vibration of unbalanced rotor 

 
Fig. 11. Vertical vibration of misaligned rotor 

 

 
a) 

 
b) 

Fig. 12. IMFs of healthy rotor 

The amplitude-frequency diagrams, before and after signal processing, indicate that the noise 
contained in the original signals are effectively filtered by using the EMD-CIIT method. The high 
frequencies that are not associated with fault information are restrained and the one to four 
multiples of rotational frequency are reserved. The waveform of each fault in the time domain is 
obviously different, reflecting the different amplitudes of characteristic frequency in the frequency 
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domain. It can be concluded from Fig. 12 that the frequency detected by IMF is decreased with 
the increase of the IMF order, that the noise focus on the first three IMFs proves the conclusion 
of the parameter selection of EMD-CIIT in Section 4. 

Performing feature extraction for all samples, the mean value and standard deviation of 
characteristic values at differing frequency of each fault are shown in Table 3. It can be seen that 
all standard deviations are less than 0.1 which indicates the fault features of the same type is close 
to each other without great fluctuation, thus contributing to the reduction of incorrect diagnosis. 
From the view of the fault feature, the biggest characteristic value is at one multiple of rotational 
frequency for the first three faults and at two multiples of rotational frequency for the fourth fault, 
which can be one of the bases for distinguishing fault types. Although feature information focuses 
at rotational frequency for first three faults, the proportion is not the same, which provides further 
evidence. 

 
Fig. 13. The magnitude-frequency  
characteristic of original signals 

 
Fig. 14. The magnitude-frequency  
characteristic of de-noised signals 

Table 3. Mean value (MV) and standard deviation (SD) of the energy proportion of  
characteristic frequencies(CF) corresponding to rotor fault types (FT) 

FT/CF 1×rpm 2×rpm 3×rpm 4×rpm 

1 MV 0.9265 0.0148 0.0571 0.0015 
SD 0.0160 0.0068 0.0112 0.0011 

2 MV 0.8902 0.0150 0.0649 0.0299 
SD 0.0614 0.0091 0.0390 0.0240 

3 MV 0.9880 0.0061 0.0057 0.0002 
SD 0.0039 0.0027 0.0018 0.0002 

4 MV 0.0908 0.6853 0.1705 0.0535 
SD 0.0665 0.0682 0.0850 0.0576 

Note: 1 represents the normal rotor, 2 rotor contact-rubbing, 3 imbalance, 4 misaligned fault 

5.2. Comparison experiments 

In order to verify the EMD-CIIT advantage over the common thresholding-based de-noising 
method in feature extraction and to illustrate the performance of PNN in pattern recognition, a 
comparison experiment is conducted by adding wavelet thresholding method and BPNN. There 
are four combined diagnostic approaches to utilize for comparison: (1) wavelet thresholding 
combined with BPNN; (2) wavelet thresholding combined with PNN; (3) EMD-CIIT combined 
with BPNN; (4) EMD-CIIT combined with PNN. 

The comparison results of the above combined methods are shown in Figs. 15 to 18 under the 
condition of 70 samples used for training, 80 samples used for testing, a 4-5-1 structure designed 
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for BPNN and a spread of radial functions set to 0.01 for PNN. It is evident from the figures that 
the proposed method of combined EMD-CIIT with PNN has the best performance in rotor fault 
pattern recognition, with a diagnostic success rate of 100 %. Some conclusions are also drawn 
concurrently: (1) The result from EMD-CIIT method is better than that of wavelet de-noising no 
matter whether BPNN or PNN is used for classification; (2) The result from PNN is greater than 
that of BPNN when the EMD-CIIT is used for de-noising; (3) The result from PNN is the same 
as that of BPNN when wavelet de-noising is used. 

 
Fig. 15. Wavelet-HT combined with BP network 

 
Fig. 16. EMD-CIIT-HT combined with BP network 

 

 
Fig. 17. Wavelet-HT combined with PNN 

 
Fig. 18. EMD-CIIT-HT combined with PNN 

Finally, this paper explores the diagnostic accuracy range using EMD-CIIT and wavelet 
threshold de-noising under the condition that training samples are randomly selected but the 
number is not changed. The result from 30 simulations is presented in Table 4. 

It can be seen that the average diagnostic success rate(DSR)of EMD-CIIT in 30 simulations is 
higher than that of wavelet de-noising when they are combined with PNN. Meanwhile, the 
accuracy range, 96.25 %-100 %, is better than that of wavelet de-noising, 92.5 %-96.25 %, which 
indicates that the EMD-CIIT is always stable and more effective with changed training samples. 

Table 4. Statistical result of DSR when using different method for 30 simulations 
 Wavelet-HT EMD-CIIT-HT 

Max DSR 96.25 % 100 % 
Min DSR 92.50 % 96.25 % 
Ave DSR 95.10 % 97.75 % 

Liu Dong, Zeng Hongtao, Xiao Zhihuai carried out the concepts, design, definition of 
intellectual content, literature search, data acquisition, data analysis and manuscript preparation. 
Peng Lihong provided assistance for data acquisition, data analysis, statistical analysis and 
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manuscript editing. Malik O. P. performed manuscript review. All authors have read and approved 
the content of the manuscript. 

6. Conclusions 

This paper describes rotor fault diagnosis using EMD-CIIT combined with PNN and the result 
indicates that it has a higher accuracy than current methods. The parameters of the proposed 
method are simply obtained, avoiding the trouble of selecting wavelet basis and decomposition 
level. Also, combined with PNN, the EMD-CIIT has a better accuracy range. In conclusion, the 
combined method has superior potential and easier application in rotor fault diagnosis. 
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