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Abstract. The bending oscillations of the plate, resting in Pasternak foundation and interacting 
with a vibrating stamp through a thin layer of viscous incompressible liquid, are investigated. On 
the basis of hydroelasticity problem solution, the laws of the plate deflections and pressure in the 
liquid are found. The functions of the deflections amplitude distribution and liquid pressure along 
the channel are constructed. The obtained results allow to define oscillations resonance 
frequencies and to study viscous liquid interaction with elastic plates, resting on Pasternak 
foundation. 
Keywords: hydroelastic oscillations, vibrating stamp, viscous liquid, plate, vibration, Pasternak 
foundation. 

1. Introduction 

The investigation of elastic construction elements oscillation with consideration as of their 
interaction with heterogeneous bodies, as of elastic pliability of the foundations, on which they 
are rested, presents an important issue of contemporary technology. For example, references [1-4] 
study the oscillations and stability of multi-layer beams and plates, rested on an elastic foundation 
under the influence of local and distributed loads of various origins. Winkler and Pasternak models 
are used for foundation reactions modeling. Reference [5] is devoted to numerical investigation 
of rectangular plates natural oscillations, the plates being fully plunged into motionless ideal liquid 
or floating on its free surface. The various variants of the plates fixing are considered. The 
analogous investigation for the case of rectangular plates interacting with the ideal liquid flow is 
made in reference [6]. The plate eigenfrequencies analysis is made and the flow critical velocities, 
corresponding to stability loss, are found. The issues of the chaotic oscillations of the plate, 
interacting with an ideal incompressible liquid flow, are studied in reference [7]. However, the 
liquid dumping properties, conditioned by its viscosity are excluded from consideration. 
Reference [8] deals with investigating vibrations of endlessly long beam on viscous liquid layer. 
The investigation of the cross oscillations of the elastic-fixed solid wall of the flat channel of finite 
sizes is made in [9]. Hydroelastic oscillations of cantilever beam, plunged into a viscous 
incompressible liquid, are investigated in reference [10]. The problem of vibrating discs dynamics 
interaction with a layer of viscous incompressible liquid between them is solved in reference [11]. 
The present paper studies the case when the discs are considered being solid, as well as the case 
with one of the discs being elastic. The analogous problem in a flat setting for the two vibrating 
plates of finite sizes is studied in reference [12]. Reference [13] investigates hydroelastic 
oscillation of the beam in a viscous liquid flow for the case of piezo-electric elements with the 
aim of obtaining energy from the flow. Reference [14] deals with solution of the problem of the 
bending hydroelastic oscillations of the plate, forming the narrow channel wall under the impact 
of the viscous liquid pulsating layer. The forced hydroelastic oscillations of the three-layered 
round plate interacting with viscous incompressible liquid layer under the channel foundation 
vibration are investigated in [15]. Alongside with this, the evaluation of foundation elasticity 
impact on hydroelastic oscillations is of theoretical and practical interest. Reference [16] 
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investigates the oscillations of the membrane, resting on Winkler elastic foundation, the 
membrane being on the bottom of reservoir, filled with an ideal incompressible liquid with a free 
surface. The hydroelastic oscillations of the rectangular plates, resting on Pasternak foundation 
and interacting with an ideal incompressible liquid with a free surface, are investigated in 
references [17-19]. The investigation of the oscillations of the plate, resting on the elastic Winkler 
foundation and interacting with viscous incompressible liquid pulsating layer, was made in 
references [20-22]. 

2. Statement of the problem 

Let us consider the elastic plate 2 resting on Pasternak foundation and interacting with a 
vibrating stamp 1 through the viscous incompressible liquid layer 3 between them (Fig. 1). We 
will study the problem in a flat setting. Let us connect Cartesian coordinate ܱݖݔ with the center 
of the plate medium surface in an undisturbed state. The stamp movement takes place under the 
assigned harmonic law in a vertical plane. The plate possesses the thickness ℎ, the length 2ℓ. It 
is simply supported on the edges. The viscous liquid fully fills a narrow channel, formed by a plate 
and a vibrating stamp, the medium thickness of a liquid layer in the channel being ߜ ≪ ݈ and the 
plate deflection amplitudes being significantly less than ߜ. The liquid at the edges freely leaks 
out in the same liquid with a constant pressure level . Taking into account the fact, that liquid 
viscosity consideration leads to quick going down of transition processes, we can exclude the 
initial processes impact from the very beginning [23]. Further, we will consider the stationary 
forced harmonic oscillations. 

 
Fig. 1. A schematic diagram of a narrow slit channel on Winkler foundation 

3. The theory 

We will present the law of the stamp movement in the form of: ݖ = (ݐ߱)݂   ,(ݐ߱)݂ݖ = sin߱(1) ,ݐ

where ݖ is the stamp oscillation amplitude, ߱ is the oscillation frequency, ݐ is the time.  
Due to the channel narrowness, we will consider the liquid dynamics in it in terms of 

hydrodynamic lubrication theory, i.e. we investigate liquid creeping flow in the channel, which is 
described by the equation [24]: 1ߩ ݔ߲߲ = ߥ ቆ߲ଶݑ௫߲ݔଶ + ߲ଶݑ௫߲ݖଶ ቇ,    1ߩ ݖ߲߲ = ߥ ቆ߲ଶݑ௭߲ݔଶ + ߲ଶݑ௭߲ݖଶ ቇ,    ߲ݑ௫߲ݔ + ݖ௭߲ݑ߲ = 0, (2)

where ݑ௫, ݑ௭ are liquid velocity projections on the coordinate axis, ߩ is the density of the liquid, ߥ is the kinematic coefficient of the liquid viscosity,  is the pressure.  
The boundary conditions (the conditions of liquid and walls shifts velocities coincidence, as 

well, as the conditions for the liquid pressure at edges) are corresponded to the Eq. (2): 
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௫ݑ = ݑ߲ ⁄   ,ݐ߲ ௭ݑ = ݓ߲ ⁄,ݐ߲ ݖ ݐܽ    = ℎ   2⁄ + ௫ݑ ,ݓ = ௭ݑ   ,0 = ݖ (ݐ߱)݂݀ ⁄,ݐ݀ ݖ ݐܽ    = ℎ   2⁄ + ߜ + (3) ,(ݐ߱)݂ݖ = ݔ ݐܽ    , = ±݈, (4)

where ݓ ,ݑ are longitudinal movement and deflection plate laws. 
The equation of the bending oscillations of the plate, resting on Pasternak foundation, can be 

written down, as in references [21, 25]: 

ܦ ߲ସݔ߲ݓସ + ݓߢ − ߟ ߲ଶݔ߲ݓଶ + ℎߩ ߲ଶݐ߲ݓଶ = ௭௭ |௭ୀబݍ− ଶ⁄ ା௪. (5)

Here ݓ is the plate deflection, ܦ is the bending stiffness of plate, ߩ is the density of plate, ߢ 
is the foundation normal stiffness, ߟ is the foundation shear coefficient, ݍ௭௭ =–  + ߥߩ2 డ௨డ௭   is the 
normal stress in a liquid layer [24]. 

Boundary conditions for Eq. (5) are the conditions of simply supported edges: ݓ = ߲ଶݓ ⁄ଶݔ߲ = ݔ ݐܽ    ,0 = ±݈. (6)

Let us introduce dimensionless variables and small parameters into our consideration: ߦ = ݔ ݈⁄ ߞ   , = ݖ) − 0,5ℎ) ⁄   ,ߜ ߬ = ௭ݑ    ,ݐ߱ = ߱ ݓ ܷ,   ݑ௫ = ߱ݓ)   ߰)⁄ కܷ, ݓ = ݑ   ,ܹ ݓ =    ,ܷ ݑ =  + ܲ  ߱߰ିଶݓߩߥ ⁄ߜ ߣ   , = ⁄ߜ ݓ ≪ 1, ߰ = ߜ ݈⁄ ≪ 1. (7)

Taking into account Eq. (7), the hydrodynamic problem in dimensionless variables in zero 
approximation on ߰ and ߣ will be written down, as: ߲߲ܲߦ =  ߲ଶ కܷ߲ߞଶ ߞ߲߲ܲ    , =  0,   ߲ కܷ߲ߦ + ߲ ܷ߲ߞ  =  0. (8)

With boundary conditions: 

కܷ = 0,   ܷ = ݖ) ⁄ݓ ) ݂݀(߬) ݀߬⁄ ߞ ݐܽ    , = 1,   కܷ = ݑ)߰ ⁄ݓ ) ߲ܷ ߲߬,⁄  ܷ = ߲ܹ ߲߬⁄ ߞ ݐܽ   , = 0,   ܲ = ߦ ݐܽ   ,0 = ±1. (9)

The normal stress in the liquid layer in the variables Eq. (7) is written down, as: ݍ௭௭ = − − ߜ ߱߰ଶݓߩߥ ܲ. (10)

Further, in the course of solving the problem of Eqs. (8)-(9), we will assume, that  ݑ ⁄ݓ = ܱ(1),  i.e. we consider, that in boundary conditions Eq. (9) will be  కܷ = ݑ)߰ ⁄ݓ ) ߲ܷ ߲߬⁄ =  :As a result, we get .(1)

కܷ  = ଶߞ − 2ߞ ߦ߲߲ܲ ,   ܷ  = ߲ܹ߲߬ + ଷߞ2) − (ଶߞ3 ൬߲ܹ߲߬ − ݓݖ ݂݀݀߬൰. (11)

As well, as the equations for the pressure: ߲ଶ߲ܲߦଶ = −12 ൬߲ܹ߲߬ − ݓݖ ݂݀݀߬൰. (12)
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By integrating Eq. (12) and satisfying the boundary conditions for the pressure Eq. (9), we 
find: 

ܲ = ଶߦ)6 − 1) ݓݖ ݂݀݀߬ − 12 න න ߲ܹ ߲߬⁄  ߦ݀ߦ݀
 

క
ିଵ + ߦ)6 + 1) න න ߲ܹ ߲߬⁄  .ߦ݀ߦ݀

 
  ଵ

ିଵ  (13)

Taking into account the boundary conditions Eq. (6), we present the form of the plate elastic 
deflections as the series of Sturm-Liouville problem eigenfunctions: 

ݓ = ܹ ݓ =  ൫ܴݓ + ܴ (߬)൯ஶ
ୀଵ cos((2݇ − ߦߨ(1 2⁄ ). (14)

Here ܴ (߬) is the harmonic time function, ܴ is the constant. 
As a result, dimensionless pressure Eq. (13) with consideration of the deflection chosen form 

Eq. (14), takes form of: 

ܲ = 12  ቈݖݓ ݂݀݀߬ 4(−1)(2݇ − ߨ(1 ൬ 2(2݇ − ൰ଶߨ(1 +  ൬ 2(2݇ − ൰ଶߨ(1 ܴ݀݀߬ ஶ
ୀଵ cos 2݇ − 12 (15) .ߦߨ

By substituting Eq. (15) in the expression for the normal stress Eq. (10) and disintegrating the 
constant pressure  in the series of Sturm-Liouville problem eigenfunctions, we get: 

௭௭ݍ =   4(−1)(2݇ − ஶߨ(1
ୀଵ cos 2݇ − 12 ߦߨ

− ߰ଶߜ߱ݓߥߩ 12  ൬ 2(2݇ − ൰ଶஶߨ(1
ୀଵ

ܴ݀݀߬ cos 2݇ − 12 ߦߨ
+ 12 ݓݖ ݂݀݀߬  4(−1)(2݇ − ߨ(1 ൬ 2(2݇ − ൰ஶߨ(1

ୀଵ
ଶ cos 2݇ − 12  .൨ߦߨ

(16)

Taking into account Eqs. (14), (16) we write down the plate dynamics equations in the  
form of: 

൭݈ܦସ ቆ(2݇ − 2ߨ(1 ቇସ + ߢ + ଶߟ݈ ቆ(2݇ − 2ߨ(1 ቇଶ൱ (ܴݓ + ܴ) + ݓℎ߱ଶߩ ݀ଶܴ݀߬ଶ+ 12 ߰ଶߜ߱ߥߩ ൬ 2(2݇ − ൰ଶߨ(1 ݓ ܴ݀݀߬=  4(−1)(2݇ − ߨ(1 − 12 ߰ଶߜ߱ߥߩ 4(−1)(2݇ − ߨ(1 ൬ 2(2݇ − ൰ଶߨ(1 ݖ ݂݀݀߬. 
(17)

Due to Eq. (17) linearity for the constant pressure component, we get the following expression: 

ܴݓ =  4(−1)(2݇ − ߨ(1 ቆ݈ܦସ ൬(2݇ − 2ߨ(1 ൰ସ + ଶߟ݈ ൬(2݇ − 2ߨ(1 ൰ଶ + ቇିଵ. (18)ߢ

The solution of Eq. (17) for the stationary harmonic oscillations regime has the form of: 
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= ܴݓ ݖ− ቈ ෩ܦ)௪߱ଶܭ௭ܭ − ℎ߱ଶ)ଶߩ + ଶ(௪߱ܭ) ݂(߬) + ෩ܦ௭߱൫ܭ − ෩ܦ)ℎ߱ଶ൯ߩ − ℎ߱ଶ)ଶߩ + ଶ(௪߱ܭ) ݂݀(߬)݀߬ , 
෩ܦ = ସܦ݈ ൬(2݇ − 2ߨ(1 ൰ସ + ଶߟ݈ ൬(2݇ − 2ߨ(1 ൰ଶ + ௭ܭ   ,ߢ = 12 ߰ଶߜߥߩ 4(−1)(2݇ − ߨ(1 ൬ 2(2݇ − ൰ଶ, (19)ߨ(1

௪ܭ = 12 ߰ଶߜߥߩ ൬ 2(2݇ −  .൰ଶߨ(1
Finally, the law of the plate hydroelastic oscillations, caused by the stamp movement and with 

consideration of Eq. (18) and (19), takes the form: 

ݓ = ܦ݈ସ  4(−1)(2݇ − ஶߨ(1
ୀଵ ൭ቆ(2݇ − 2ߨ(1 ቇସ + ܦଶ݈ߟ ቆ(2݇ − 2ߨ(1 ቇଶ + ܦସ݈ߢ ൱ିଵ  

    ∙ cos ൬2݇ − 12݈ ൰ݔߨ − ,ݔ)ܣݖ ߱)sin൫߱ݐ + ,ݔ)߮ ߱)൯, ݔ)ܣ, ߱) = ඥܥଶ + ,ݔ)߮   ,ଶܤ ߱) = arctg(ܤ ⁄ܥ ܥ ,( =  ෩ܦ)௪߱ଶܭ௭ܭ − ℎ߱ଶ)ଶߩ + ଶ(௪߱ܭ) cos 2݇ − 12݈ ஶ,ݔߨ
ୀଵ  

ܤ =  ෩ܦ)௭߱ܭ − ෩ܦ)(ℎ߱ଶߩ − ℎ߱ଶ)ଶߩ + ଶ(௪߱ܭ) cos 2݇ − 12݈ ஶ.ݔߨ
ୀଵ  

(20)

By substituting Eq. (19) in Eq. (15) and taking into account Eq. (7), the pressure in a liquid 
layer between the stamp and the plate can be written down as:  =  + ,ݔ) Πݖ ߱)sin ቀ߱ݐ + ߮(ݔ, ߱)ቁ ,   Π(ݔ, ߱) = ඥܵଶ + ܳଶ, ߮(ݔ, ߱) = ܳ)݃ݐܿݎܽ ܵ⁄ ),   ܳ =  ௭߱ܭ ቆ1 − ෩ܦ)ଶ(௪߱ܭ) − ℎ߱ଶ)ଶߩ + ଶቇ(௪߱ܭ) cos 2݇ − 12݈ ஶ,ݔߨ

ୀଵ  

ܵ =  ෩ܦ)௭߱ଶܭ௪ܭ − ෩ܦ)(ℎ߱ଶߩ − ℎ߱ଶ)ଶߩ + ଶ(௪߱ܭ) cos 2݇ − 12݈ ஶ.ݔߨ
ୀଵ  

(21)

4. Summary and conclusion 

The obtained analytical solution of the problems allows making the following conclusions. 
The first component of the expression for the deflection Eq. (20) is conditioned by static pressure 
in liquid  , the second component being a dynamic deflection, which is conditioned by the 
plate-stamp interaction through viscous liquid layer. The value of second deflection component is 
defined by the function ݔ)ܣ, ߱), which may be considered as a frequency dependent amplitude 
sag distribution along the channel. The analogous remarks can be made in relation to the law of 
pressure change in the channel Eq. (21). The value of the second pressure component is defined 
by the function Π(ݔ, ߱) , which is a frequency dependent amplitude distribution of dynamic 
pressure along the channel. The functions ߮(ݔ, ߱), ߮(ݔ, ߱) are frequency dependent functions 
of the plate deflection phase shift distribution and the pressure phase shift distribution along the 
channel, correspondingly.  

The investigation of the functions behavior depending on oscillations frequency allows 
studying dynamic processes in the considered oscillation system. The analysis of the obtained 
expression for the plate deflection Eq. (20) makes it possible to assume that the coefficients, 
defining Pasternak foundation reaction, will influence the plate static deflection, as well as 
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deflection dynamic amplitude. Also, the transition from Pasternak foundation to Winkler one is 
possible in terms of the obtained solution, the coefficient of the foundation shift ߟ being zero. 
Thus, the obtained results can be used for modeling and analyzing hydroelastic oscillations of 
elastic elements of the constructions, resting on the foundations and interacting with viscous  
liquid. 
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