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Abstract. Because the power consumption of a controlled suspension is huge, the power harvest 
potential of a nonlinear controlled suspension is analyzed. Instead of simplifying the suspension 
to a linear model or adopting some control strategies to solve the problem, this paper investigates 
the effect of the nonlinear characteristics on the power harvesting potential. A mathematic model 
is introduced to calculate the nonlinear vibration, and the amount of harvested power was obtained 
using the multi-scale method. A numerical validation is carried out at the end of this study. The 
results show that the investigated mechanical parameters affect both the vibration amplitude and 
the induced current, while the electric parameters only affect the induced current. The power 
harvesting potential of the nonlinear suspension is generally greater than the linear suspension 
because the frequency band of the actual pavement also contains bandwidth surrounding the body 
resonance point. The only exception occurs if the vehicle travels on a road with a particular profile, 
e.g. a sine curve. To optimize harvested power, it is better to consider the nonlinear characteristics 
rather than simplifying the suspension to a linear model. 
Keywords: nonlinear suspension, power harvest, induced current, multi-scale method, stable 
focus area. 

1. Introduction 

Power harvesting in nonlinear devices is an important and popular research topic. Nonlinear 
vibration power harvesting, in particular, has been studied extensively [1-3]. Because the 
frequency band for which vibration energy can be recycled is wider than for linear vibration, 
nonlinear vibration devices are widely used to recover vibration energy. A nonlinear device was 
designed in reference [4] with the axis coil containing a magnetic pole for vibration-energy 
recovery. An energy recovery device in article [5] contains a mechanical design limit device, 
which means it is practically a mechanical synchronous switch. Another research group [6] 
analyzed the effect of external load, external excitation, internal system-parameters, and the 
equilibrium positions on the dynamic responses of nonlinear tristable energy harvesters. The group 
found that high-energy interwell oscillations can be achieved in the multi-solution ranges of 
tristable energy harvesters to improve energy-harvesting from low-level ambient excitations. 
Several other nonlinear energy-recovery devices have been reported previously [7-9]. 

Most of these nonlinear vibration-energy recovery devices rely on piezoelectric materials to 
convert vibration energy into electrical energy. The system parameters in article [10] were 
optimized globally to maximize the dissipated energy by the nonlinear energy sink and to increase 
the harvested energy by the piezoelectric element. Article [11] describes nonlinear devices with a 
spring and beam structure. This structure can increase the deformation of the beam to harvest more 
power. A linearization method was analyzed in Ref. [12] for nonlinear piezoelectric  
energy-recovery devices. The numerical simulation shows that this method is effective. Another 
group [13] studies a random excitation nonlinear vibration-energy harvester potential. Energy 
recovery of nonlinear vibration with piezoelectric materials were studied in references [14-16]. 
These studies aim to increase deformation as much as possible, in order to generate more 
electricity. 
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Apart from increasing the deformation of piezoelectric materials to obtain more energy, the 
energy recovery bandwidth can be improved. This includes changing the structure to adjust its 
resonant frequency [17-20] or employing a structure with two degrees of freedom [21-23]. The 
nonlinear structure in article [17] was optimized to improve the energy recovery bandwidth. The 
energy-recovery bandwidth was increased in another study [18] using nonlinear damping. In 
reference [20], the natural frequency of a nonlinear vibration-energy recovery device can be 
adjusted, to harvest power near the resonance frequency. Because there are two resonance peaks 
in a structure with two degrees of freedom, its energy-recovery bandwidth is broader. 

However, in certain special circumstances, such as at very high or low frequencies, the  
energy-recovery efficiency is low. To address this problem, a nonlinear energy-recovery device 
was designed [24], which is suitable for low frequencies as well as large vibration amplitudes. 
Some studies [25, 26] focused on nonlinear devices, which are suitable for high-frequency  
energy-recovery. They attempt to solve energy recovery problems in critical conditions. Other 
groups investigated 3D printing to manufacture components for nonlinear vibration energy 
recovery [27], the use of shape memory alloys [28], structures without a spring [29], and other 
relevant nonlinear vibration-energy recovery related topics [30, 31]. 

Many nonlinear devices have been very successful, with great applications for low power 
consumption devices, such as sensors. Studies of large vibration energy harvesting, however, are 
rare. Vehicle suspension systems are typical nonlinear vibration models with two degrees of 
freedom. For a controlled suspension system, energy consumption is high, and suspension systems 
that feature energy recovery are seen as problematic. However, most current research focuses on 
linearization of the suspension system or the use of different control strategies to facilitate energy 
recovery. At the same time, this also reduces the bandwidth of energy recovery, which limits 
further improvement of energy-recovery efficiency. Therefore, in order to make energy recovery 
more efficient, this work investigates the energy-recovery potential of a suspension system with 
respect to its nonlinear properties. 

2. Governing equations for a nonlinear power-harvesting suspension 

Neglecting complications of a turning vehicle, a suspension model can be described as shown 
in Fig. 1. The figure includes the sprung mass ݉௦ and the unsprung mass ݉௨, which is connected 
by a nonlinear spring ݇௦(ߜ௦), a shock absorber ܿ௦, and an actuator ܨ. The actuator can harvest 
power when it functions as a generator. Its parameters include magnetic strength ܤ, resistance ܴ, coil length ܮ, and the coil inductance ܮௗ. The wheel can be simplified as a nonlinear spring ݇௨(ߜ௨) and a damper ܿ௨. Excitation from the road is small when a car travels on a freeway, or a 
construction/military vehicle moves slowly. The unevenness of the ground is considered in the 
parameter ݍ.  

 
Fig. 1. Nonlinear quarter-car model 
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According to Newton’s second law, the governing equations are: ݉௦ݖሷ௦ + ݂௦(ݖሶ௦ − (ሶ௦ݖ + ݂௦(ݖ௦ − (௨ݖ + ݂(݅) = 0, (1a)݉௨ݖሷ௨ − ݂௦(ݖሶ௦ − (ሶ௦ݖ − ݂௦(ݖ௦ − (௨ݖ − ݂(݅) + ݂௨(ݖሶ௨ − ሶݍ ) + ݂௨(ݖ௨ − (ݍ = 0, (1b)ܮௗ ⋅݅ + ܴ݅ − ሶ௦ݖ)ܮܤ − (ሶ௨ݖ = 0, (1c)

where: 

݂௦(ݖሶ௦ − (ሶ௦ݖ = ܿ௦(ݖሶ௦ − ௦ݖ)ሶ௨),   ݂௦ݖ − (௨ݖ = ݇௦(ݖ௦ − (௨ݖ + ௦ݖ)௦ߜ − (݅)௨)ଷ, ݂ݖ = ሶ௨ݖ)݅,   ݂௨ܮܤ − ሶݍ ) = ܿ௨(ݖሶ௨ − ሶݍ ), ݂௨(ݖ௨ − (ݍ = ݇௨(ݖ௨ − (ݍ + ௨ݖ)௨ߜ −  .ଷ(ݍ
Eqs. (1a), (1b), and (1c) can be rewritten as: ݔሷ + 2߫௫ݓ௫(ݔሶ − (ሶݕ + ݔ)௫ଶݓ − (ݕ + ݔ)௫ߚ − ଷ(ݕ + Γ௫݅ = ݂cos(Ωݐ), (2a)ݕሷ − 2߫௫௬ݓ௫௬(ݔሶ − (ሶݕ − ௫௬ଶݓ ݔ − ݔ)௫௬ߚ − ଷ(ݕ − Γ௬݅       +2߫௬ݓ௬ݕሶ + ݕ௬ଶݓ + ଷݕ௬ߚ = ݂cos(Ωݐ), (2b)ܮௗଓሶ + ܴ݅ − ሶݔ)ܮܤ − ሶݕ ) = 0, (2c)

where: 

௦ݖ − ݍ = ௨ݖ   ,ݔ − ݍ = ௫߫   ,ݕ = ܿ௦2ݓ௫݉௦(߬),   ݓ௫ଶ = ݇௦݉௦(߬),   ߚ௫ = ௦݉௦(߬), ߫௫௬ߜ = ܿ௦2ݓ௫௬݉௨ ௫௬ଶݓ   , = ݇௦݉௨ ௫௬ߚ   , = ௦݉௨ߜ ,   ߫௬ = ܿ௨2ݓ௬݉௨ ௬ଶݓ   , = ݇௦ + ݇௨݉௨ ௬ߚ   , = ௨݉௨, Γ௫ߜ = ݉௦ܮܤ ,   Γ௬ = ݉௨ܮܤ ,   − ሶݍ = ݂cos(Ωݐ). 
The sprung mass varies due to load changes. When ݉௦ ≈ 9݉௨݇௦/(݇௦ + ݇௨), a 3:1 internal 

resonance occurs. 
Because the exact solution for Eq. (2) cannot be found, we use the method of multiple scales 

to solve the equation. A small perturbation parameter ߝ is introduced, and a scale transformation 
is carried out: ߫௫ → ௫,   ߫௫௬߫ߝ → ௫ߚ   ,௫௬߫ߝ → ௫௬ߚ   ,௫ߚߝ → ௫௬ଶݓ   ,௫௬ߚߝ ݔ → ௫௬ଶݓߝ ݂   ,ݔ → Γ௫    ,݂ߝ = Γ௫,     Γ௬ߝ = Γ௬, (3a)߫௬ߝ → ௬ߚ   ,ଶ߫௬ߝ → ௬. (3b)ߚଶߝ

Because the stiffness of the tire ݇௨ is much bigger, the nonlinearity ߜ௨ is much smaller than 
the spring, the equivalent damping-coefficient ܿ௨  is much smaller than the damper, and the 
perturbation parameter is ߝଶ Eq. (3b) after rescaling the stiffness and damping coefficients of the 
tire in the same equation. 

Substituting Eq. (3) into (2) and retaining the ߝ and ߝଵ term yields the following equations: ݔሷ + ሶݔ)௫ݓ௫߫ߝ2 − (ሶݕ + ݔ)௫ଶݓ − (ݕ + ݔ)௫ߚߝ − ଷ(ݕ + Γ௫݅ߝ = ..ݕ(4a) ,(ݐΩ)cos݂ߝ − ሶݔ)௫௬ݓ௫௬߫ߝ2 − (ሶݕ − ௫௬ଶݓߝ ݔ − ݔ)௫௬ߚߝ − ଷ(ݕ + ݕ௬ଶݓ − Γ௬݅ߝ = ௗଓሶܮ(4b) ,(ݐΩ)cos݂ߝ + ܴ݅ − ሶݔ)ܮܤ − ሶݕ ) = 0. (4c)

The term ݓ௫௬ଶ  Therefore, this term is regarded .ݕ௬ଶݓ in Eq. (2b) is much smaller than the term ݔ
as a small perturbation term, and it can be rescaled as ݓߝ௫௬ଶ  .in Eq. (4b) ݔ
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According to the multi scale method, the approximate solution can be expressed as: ݐ)ݔ, (ߝ = )ݔ ܶ, ଵܶ) + )ଵݔߝ ܶ, ଵܶ) + ,ݐ)ݕ(5a) ,(ଶߝ)ܱ (ߝ = )ݕ ܶ, ଵܶ) + )ଵݕߝ ܶ, ଵܶ) + ,ݐ)݅   ,(ଶߝ)ܱ (ߝ = ݅( ܶ, ଵܶ) + )ଵ݅ߝ ܶ, ଵܶ) + (5b) ,(ଶߝ)ܱ

where ܶ = can be seen as faster time scale, and ଵܶ ݐ =  .can be seen as slower time scale ݐߝ
For a 3:1 internal resonance, we can write: Ω = ௫ݓ + ௬ݓ(6a) ,ߪߝ = ௫ݓ3 + ଶ, (6b)ߪߝ

where ߪ  is a detuning parameter expressing the closeness of Ω  to ݓ௫ , and ߪଶ  is a detuning 
parameter expressing the closeness of ݓ௬ to 3ݓ௫. 

We can use the following differential operators: ݀݀ݐ (⋅) = ܦ) + ଶݐଵ)(⋅),   ݀ଶ݀ܦߝ (⋅) = ଶܦ) + ܦଵ)(⋅), (7a)ܦܦߝ2 = ߲߲ܶ ଵܦ   , = ߲߲ܶଵ. (7b)

Substituting Eqs. (5), (6), and (7) into Eq. (4), and balancing equal powers of ߝ leads to the 
following equations: ߝ:  ܦଶݔ + ݔ௫ଶݓ = ݕଶܦ, (8a)ݕ௬ଶݓ + ݕ௬ଶݓ = 0, (8b)ܮௗܦ݅ + ܴ݅ = ݔ)ܦܮܤ − ଵݔଶܦ  :ଵߝ), (8c)ݕ + ଵݔ௫ଶݓ = ݔଵܦܦ2− − 2߫௫ݓ௫ܦ(ݔ − ଵݕ௫ଶݓ+       (ݕ − ݔ)௫ߚ − )ଷݕ − Γ௫݅ + ݂cos(Ω ܶ), (9a)ܦଶݕଵ + ଵݕ௬ଶݓ = ݕଵܦܦ2− + 2߫௫௬ݓ௫௬ܦ(ݔ − (ݕ + ݔ௫௬ଶݓ + ݔ)௫௬ߚ − )ଷ     +Γ௬݅ݕ + ݂cos(Ω ܶ),  (9b)ܮௗܦ݅ଵ + ܴ݅ଵ = ଵ݅ܦௗܮ− − ݔ)ଵܦ]ܮܤ − (ݕ + ଵݔ)ܦ − ଵ)]. (9c)ݕ

The general solution to the Eq. (8) can be expressed as: ݔ = ௪݁ܤܩ బ் + ௪ି݁ܤܩ బ் + ௪ೣ݁ܣ బ் + ௪ೣି݁ܣ బ், (10a)ݕ = ௪݁ܤ బ் + ௪ି݁ܤ బ், (10b)݅ = ܩ)ܮܤ − ܴܤ௬ݓ݅(1 + ௗܮ௬ݓ݅ ݁௪ బ் − ܩ)ܮܤ − ܴܤ௬ݓ݅(1 − ௗܮ௬ݓ݅ ݁ି௪ బ்
     + ܴܣ௫ݓ݅ܮܤ + ௗܮ௫ݓ݅ ݁௪ೣ బ் − ܴܣ௫ݓ݅ܮܤ − ௗܮ௫ݓ݅ ݁ି௪ೣ బ் + )ܧ ଵܶ)݁ି ோ బ், (10c)

where the amplitudes ܣ  and ܤ  are functions of slower time ଵܶ ܣ .  and ܤ  are the complex 
conjugates of ܣ and ܤ, and ܩ = ௫ଶݓ)/௫ଶݓ −  .(௬ଶݓ

Substituting Eq. (10) into (9), and eliminating the secular terms results in the following 
equations: −2ܣᇱ݅ݓ௫ − 2߫௫ݓ௫ݓ݅ܣ௫ − ௫ߚ ቂ3ܣଶܣ + ܩ)ܤܤܣ6 − 1)ଶ + ܩ)ܤଶܣ3 − 1)݁ఙమ భ்ቃ      −Γ௫ ܴܣ௫ݓ݅ܮܤ + ௗܮ௫ݓ݅ + 12 ݂݁ఙ భ் = 0,  (11a)
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௬ݓᇱ݅ܤ2− − 2߫௫௬ݓ௫௬ݓ݅ܤ௬ + 2߫௫௬ݓ௫௬ݓ݅ܤܩ௬ + ܩ)ܤܣܣ௫௬[6ߚ+     ܤܩ௫௬ଶݓ − 1) + ܩ)ܤଶܤ3 − 1)ଷ + ଷ݁ିఙమܣ భ்] + Γ௬ ܩ)ܮܤ − ܴܤ௬ݓ݅(1 + ௗܮ௬ݓ݅ = 0, (11b)ܧ( ଵܶ) = 0. (11c)

Converting ܣ and ܤ into their polar form yields: 

ܣ = 12 ܽ݁ఉ, (12a)ܤ = 12 ܾ݁ఏ, (12b)

where ܽ, ܾ, ߚ and ߠ are real functions of the slower time ଵܶ. 
Substituting Eq. (12) into Eq. (11), and separating real and imaginary parts yields the following 

equations: ܽᇱ = −݈ଵܽ + ℎସܽଶܾsin(߶ − (ߛ3 − ℎହsinߛ, (13a)ܽߛᇱ = − ଵ݃ܽ + ℎܽଷ + ℎܾܽଶ − ℎସܽଶܾcos(߶ − (ߛ3 − ℎହcosߛ, (13b)ܾᇱ = −݈ଶܾ + ߶)ସܽଷsinݏ − ᇱ߶ܾ(13c) ,(ߛ3 = −݃ଶܾ + ହܽଶܾݏ + ܾଷݏ + ߶)ସܽଷcosݏ − (13d) ,(ߛ3

where: 

݈ଵ = ௫߫௫ݓ + 12 ܴܴଶܮܤ + ௗଶܮ௫ଶݓ Γ௫,   ℎସ = − 38 ௫ݓ௫ߚ ܩ) − 1),   ℎହ = 12  ,௫ݓ݂
ଵ݃ = ߪ − 12 ௗܴଶܮ௫ݓܮܤ + ௗଶܮ௫ଶݓ Γ௫,   ℎ = 38 ௫ݓ௫ߚ ,   ℎ = 34 ௫ݓ௫ߚ ܩ) − 1)ଶ, ݈ଶ = ߫௫௬ݓ௫௬(1 − (ܩ + 12 ܩ)ܴܮܤ − 1)ܴଶ + ௗଶܮ௬ଶݓ Γ௬,   ݏସ = − 18 ௬ݓ௫௬ߚ , 

݃ଶ = ߪ3 − ଶߪ + 12 ௬ݓ௫௬ଶݓ ܩ − 12 ܩ)ௗܮ௬ݓܮܤ − 1)ܴଶ + ௗଶܮ௬ଶݓ Γ௬,   ݏହ = − 34 ௬ݓ௫௬ߚ ܩ) − ݏ ,(1 = − ௬ݓ௫௬8ߚ3 ܩ) − 1)ଷ,   ߛ = ߚ − ߪ ଵܶ,   ߶ = ߠ + ଶߪ ଵܶ − ߪ3 ଵܶ. 
3. Stability analysis of the solutions 

The steady-state response of the system can be found by letting ܽᇱ = ܾᇱ = 0 and ߛᇱ = ߶ᇱ = 0 
in Eq. (13): 

ℎହଶ − ݈ଵଶܽଶ + 2݈ଶ݈ଵℎସܾଶݏସ − ℎସଶܾଶܽସ − 2ℎସ( ଵ݃ − ℎܽଶ − ℎܾଶ)(݃ଶ − ହܽଶݏ − ସ     −(݃ଵݏܾଶ)ܾଶݏ − ℎܽଶ − ℎܾଶ)ଶܽଶ = 0,  (14a)ݏସଶܽ − ݈ଶଶܾଶ − (݃ଶ − ହܽଶݏ − ܾଶ)ଶܾଶݏ = 0. (14b)

There are two kinds of solutions: uncoupled (ܽ ≠ 0 and ܾ = 0), and coupled (ܽ ≠ 0, ܾ ≠ 0). 
In the uncoupled case, Eq. (14) can be simplified as follows: ℎହଶ − ݈ଵଶܽଶ − ( ଵ݃ − ℎܽଶ)ଶܽଶ = 0. (15)

The numbers of solutions for Eq. (15) are 1 or 3. When the intensity of the excitation coming 
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from the road exceeds a certain critical value, there are three solutions. These lead to a saddle node 
bifurcation and jump in the amplitude/frequency curve. When the excitation intensity is below 
that critical value, however, only one solution exists. In addition, the critical value can be found 
when there is only one solution in Eq. (15) for the whole frequency band: 

ℎହ_௦௧ = ඨ൬ 83√3൰ ቆ݈ଵଷℎቇ. (16)

According to Eq. (16), the critical value depends on damping coefficient and nonlinear 
stiffness of the spring. 

Combining Eq (6), (10), and (12) yields: ݔ = ݐcos(3Ωܾܩ + (ߛ + ܽcos(Ωݐ + ߶) + Ο(ߝ), (17a)ݕ = ܾcos(3Ωݐ + (ߛ + Ο(ߝ), (17b)݅ = ௬ටܴଶݓܮܤ + ௗଶܮ௬ଶݓ ܩ) − 1)ܾcos൫3Ωݐ + ߛ +  ௬൯ߴ
      + ௫ඥܴଶݓܮܤ + ௗଶܮ௫ଶݓ ܽcos(Ωݐ + ߶ + (௫ߴ + Ο(ߝ), (17c)

ܲ = ݅ଶܴ, (17d)

where tanߴ௬ = ܴ ⁄ௗܮ௬ݓ , tanߴ௫ = ܴ ⁄ௗܮ௫ݓ . 
From Eq. (17) we can see that for the coupled case, two vibration frequencies exist because of 

internal resonance: a forced vibration frequency (Ω) and a free vibration frequency (3Ω). The free 
vibration frequency is exactly three times the forcing frequency. For the uncoupled case, vehicle 
vibration is mainly reflected by the vibration of sprung mass. Hence, there is only one vibration 
frequency. 

4. Numerical validation 

4.1. Frequency response 

Let ݉௦ = 45 kg, ݉௨ = 45 kg, ݇௦ = 2000 N/m, ߜ௦ = 660 N/m, ݇௨ = 16000 N/m. When the 
damper is inactive, the damping coefficient decreases sharply to ܿ௦ =  20 Ns/m, then  ݓ௬ = 20 rad/s, ݓ௫ = 6.6667 rad/s, which leads to ݓ௬ ≈  .௫ݓ3

According to Eq. (16), the maximum excitation acceleration for which bifurcation does not 
occur in the steady state is ௦݂௧ = ௫ℎହ_௦௧ݓ2 = 2.05 m/s2. When the excitation acceleration 
increases, the amplitude of the sprung mass vibration will appear as bifurcation caused by the 
saddle node. In other words, a jump is observed in the amplitude-frequency curve. 

Fig. 2 is obtained from Eq. (15), (17c), (17d) and ܾ = 0. It shows that when the excitation 
acceleration is below ௦݂௧, the amplitude-frequency curve is single-valued and remains the same 
for forward and backward frequency sweeping. When the excitation acceleration is much bigger 
than ௦݂௧, a jump occurs. When the frequency increases, the amplitude is getting higher to reach 
a maximum before it drops to a much lower level. If the frequency continues to increase, the 
amplitude decreases. When the frequency decreases, a jump in the opposite direction occurs. In 
other words, the jump is caused by bifurcation in the amplitude-frequency curve. The curves are 
different for forward and backward frequency sweeps. With an increase in excitation acceleration, 
both vibration amplitude of the sprung mass and harvesting power increase for all frequency  
bands. This is also the case for the unstable frequency band and the band in which energy can be 
recycled. 
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Fig. 3 is obtained from Eq (15), (17c), (17d) and ܾ = 0. It shows the frequency response curve 
for ௦݂௧ = 2.05 m/s2. As seen in Fig. 3, when the damping coefficient of the damper exceeds 
20 Ns/m, the solution is stable and the steady-state solution of the sprung mass vibration does not 
bifurcate. On the other hand, bifurcation occurs for the steady-state solution of sprung mass 
vibration. Furthermore, the smaller the damping coefficient is, the wider the unstable bands 
become. Unlike the situation shown in Fig. 2, only the amplitude for which the frequency is close 
to the resonant frequency will become larger when the damping coefficient decreases. Everything 
else changes little. This indicates that a decreasing nonlinear damping coefficient affects the 
amplitude for which the frequency is close to the resonant frequency. This increases, both the 
amplitude and the unstable frequency bands. For the remaining frequency band, the damping 
coefficient does not affect the amplitude. 

 
a) 

 
b) 

Fig. 2. The effect of varying acceleration ݂on the frequency response. a) Suspension working space and  
b) harvested power. ݂ = 2 m/s2 (black squares), ݂ = 4 m/s2 red triangles), and ݂ = 6 m/s2 (blue crosses) 

 
a) 

 
b) 

Fig. 3. The effect of a varying damping coefficient ܿ௦ on the frequency response.  
a) Suspension working space and b) harvested power. ܿ௦ = 15 Ns/m (black squares),  ܿ௦ = 20 Ns/m (red triangles) and ܿ௦ = 25 Ns/m (blue crosses) 

Fig. 4. is obtained from Eqs. (15), (17c), (17d) and ܾ = 0. It shows that the nonlinear stiffness 
of the spring does not increase the vibration amplitude of the sprung mass; instead, it causes the 
resonance point to shift to the right and generate unstable bands. The larger the nonlinear stiffness, 
the wider is the bandwidth for which power is recyclable. In addition, the amount of harvested 
power increases. Figs. 2, 3, and 4 suggest that both the amplitude of the vibration and the recovered 
energy depend on the mechanical parameters of the suspension. The increasing acceleration of the 
excitation, the decreasing nonlinear damping coefficient of the damper, and the increasing 
nonlinear stiffness of the spring result in increasingly wider and unstable frequency bands. In other 
words, a larger amount of power can be harvested. 

Fig. 5 is obtained from Eqs. (15), (17c), (17d), and ܾ = 0. From Fig. 5 we can see that the 
effect of magnetic strength on the vehicle vibration amplitude is very small. The vibration curves 
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for different magnetic strengths are very similar for the whole band. The magnetic strength, 
however, can affect power recovery significantly. The greater the magnetic strength is, the more 
power the actuator harvests. 

Fig. 6 is obtained from Eqs. (15), (17c), (17d), and ܾ = 0. It shows that the coil length in the 
actuator affects the vibration amplitude very little. As the coil length increases, the vibration 
amplitude decreases slightly only near the resonance point. It is essentially the same for the 
remaining band. The coil length, however, can change the harvested power significantly. The 
longer the coil length is, the more power the actuator can harvest. 

 
a) 

 
b) 

Fig. 4. Effect of varying nonlinear stiffness ߜ௦ on the frequency response.  
a) Suspension working space and b) harvested power. ߜ௦ = 660 N/m (black squares),  ߜ௦ = 860 N/m (red triangles) and ߜ௦ = 1060 N/m (blue crosses) 

 
a) 

 
b) 

Fig. 5. The effect of varying magnetic strength ܤ on the frequency response.  
a) Suspension working space and b) harvested power. ܤ = 0.5 T (black squares),  ܤ = 0.6 T (red triangles) and ܤ = 0.7 T (blue crosses) 

 
a) 

 
b) 

Fig. 6. Effect of varying coil length ܮ on the frequency response.  
a) Suspension working space and b) harvested power. ܮ = 10m (black squares),  ܮ = 20 m (red triangles) and ܮ = 30 m (blue crosses) 
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Fig. 7 is obtained from Eqs. (15), (17c), (17d) and ܾ = 0. It indicates that variation of coil 
inductance has no effect on the vibration amplitude and harvested power. 

Fig. 8 is obtained from Eqs. (15), (17c), (17d) and ܾ = 0. As seen from Fig. 8, the load 
resistance affects the vibration amplitude of the vehicle body very little, and the vibration curve 
for different load resistances is largely the same for the whole frequency band. However, the load 
resistance can change the harvested power by the actuator. The larger the load resistance, the less 
power the actuator harvests. According to Figs. 5, 6, 7, and 8, the electrical parameters of the 
actuator affect the vibration amplitude of the vehicle body hardly. However, they can change the 
amount of recovered power significantly. If the magnetic strength and the coil length increase, 
more power can be harvested by the actuator. On the other hand, less power can be harvested 
when the load resistance increases. The coil inductance, it turns out, affects the power recovery 
hardly. 

Table 1 summarizes how unstable frequency bands, the maximum amplitude of suspension 
working space, and induced current are affected by the investigated parameters. 

 
a) 

 
b) 

Fig. 7. Effect of varying coil inductance ܮௗ on frequency response.  
a) Suspension working space and b) harvested power. ܮௗ = 0.058 H (black squares),  ܮௗ = 0.078 H (red triangles), and ܮௗ = 0.098 H (blue crosses) 

 
a) 

 
b) 

Fig. 8. Effect of varying resistance ܴ on the frequency response. a) Suspension working space and  
b) harvest power. ܴ = 200 Ω (black squares), ܴ = 400 Ω (red triangles) and ܴ = 600 Ω (blue crosses) 

Table 1. Varying trends of result affecting by different parameters 
Parameters 

Results 
݂ (m/s2) ܿ௦ (Ns/m) ߜ௦ (N/m) ܤ (T) ܮ (m) ܮௗ (H) ܴ (Ω) ↑ ↑ ↑ ↑ ↑ ↑ ↑ |ݕଵ|(݉) Unstable frequency bands ↑ ↓ ↑ – – – – 

Maximum amplitude ↑ ↓ – – – – – ܲ(ݓ) Unstable frequency bands ↑ ↓ ↑ ↑ ↑ – ↓ 
Maximum amplitude ↑ ↓ – ↑ ↑ – ↓ 

Note: ”↑” represents an increase; ”↓” represents a decrease; ”–” represents no change 

6.5 6.6 6.7 6.8 6.9
0

0.2

0.4

0.6

0.8

Su
sp

en
si

on
 w

or
ki

ng
 s

pa
ce

 |y
1|(m

)

Force frequency Ω(rad/s)

Increase in inductance

Lind=0.058, 0.078, 0.098H

6.5 6.6 6.7 6.8 6.9
0

5

10

15

20

Po
w

er
 h

ar
ve

st
 P

(W
)

Force frequency Ω(rad/s)

Increase in inductance

Lind=0.058, 0.078, 0.098H

6.55 6.6 6.65 6.7 6.75 6.8
0

0.2

0.4

0.6

0.8

Su
sp

en
si

on
 w

or
ki

ng
 s

pa
ce

 |y
1|(m

)

Force frequency Ω(rad/s)

Increase in resistence

R=200, 400, 600Ω

6.55 6.6 6.65 6.7 6.75 6.8
0

5

10

15

20

Po
w

er
 h

ar
ve

st
 P

(W
)

Force frequency Ω(rad/s)

Increase in resistence

R=200, 400, 600Ω



2727. ANALYSIS OF NONLINEAR SUSPENSION POWER HARVEST POTENTIAL.  
JIN QIU ZHANG, JUN YAO, MING MEI ZHAO, XIN LI 

6074 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. DEC 2017, VOL. 19, ISSUE 8. ISSN 1392-8716  

4.2. Time-domain analysis 

Fig. 9 is obtained from Eqs. (13a), (13b), (17c) and ܾ = 0. The critical lower limit frequency 
is ݓௗ௪, and the critical upper limit frequency is ݓ௨. When the force frequency Ω approaches ݓௗ௪, all vibrations for the different initial conditions are attracted to the stable focus ଵܲ. Once 
the force frequency Ω satisfies Ω >  ௗ௪, another stable focus ଷܲ generates, which is shown inݓ
Figs. 9(a) and 9(b). According to Fig. 9(c), when the force frequency Ω  satisfies  ݓௗ௪ < Ω < ௨ݓ , there are two stable focuses ଵܲ, ଷܲ, and a saddle node ଶܲ. Only certain 
initial values lead to a trajectory that can reach the saddle node ଶܲ. For a small disturbance, the 
system state will move to focus areas ଵܲ or ଷܲ. The dotted line in Fig. 9(c) is the dividing line 
between the two regions. The state outside the dotted line moves to the stable focus area ଷܲ and 
the states within the dotted line move to the stable focus area ଵܲ. As the force frequency continues 
to increase, at the time Ω >  ௨, the focus area ଵܲ disappears, and all states move towardsݓ
focus area ଷܲ . The region covered by the red dashed line changes from large to small, and 
ultimately disappears. These phenomena indicate that both the upper and the lower two solutions 
are asymptotically stable in the amplitude frequency curve. The intermediate solution, however, 
is unstable. Because only asymptotically stable motion can be achieved in the actual physical 
world, a jump can be seen in the diagram. 

 
a) 

 
b) 

zv 
c) 

 
d) 

Fig. 9. Evolution of the phase plane with force frequency: a) 6.79, b) 6.80, c) 6.88, d) 6.94 rad/s 

From Eqs. (13a), (13b), and (17c) we can obtain the induced current function ݅. Since the 
excitation is described by a sine function, the time domain function ݅ can be written as ݅sin(ݓ௫ݐ). 
As a result, Fig. 10 can be obtained. 

Because the steady state of the nonlinear system depends on the initial values, the final stable 
state with different initial values is different. Because the initial values of the system are not the 
same, the resulting induced current is different – see Fig. 10. The stable value of the induced 
current (red curve) is high, and the corresponding stable focus area is ଵܲ . Furthermore, the 
stabilization process requires only a short time ݐ. The other stable value (blue curve) is small, 
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requiring a longer time ݐଵ to become stable. Its corresponding stable focus area is ଷܲ. This is 
consistent with the result shown in Fig. 9, which also confirms that the saddle node ଶܲ  is 
impossible to achieve in practice. 

 
Fig. 10. Time-domain plot for the induced current 

4.3. Comparison with a linear suspension 

The difference between the nonlinear system and the linear system is that the bandwidth for 
which the amplitude exceeds certain critical value is larger for the nonlinear system. Thus, the 
total amount of recovered energy by nonlinear systems is higher. 

 
a) 

 
b) 

Fig. 11. Amplitude frequency responses for linear and nonlinear suspensions 

 
a) 

 
b) 

Fig. 12. Power harvesting potential 

Fig. 11 shows the frequency response curve for linear and nonlinear suspensions with  ߜ௦ = 660 N/m. When the amplitude exceeds a critical value, the actuator in the suspension can 
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recover energy. Then, the frequency band for the linear suspension (blue curve) is Ω . The 
frequency band for the nonlinear suspension is Ωଵ. It is clear that Ωଵ > Ω. Therefore, the energy 
recovery potential of nonlinear suspensions is greater than that of linear suspensions. The change 
in the energy-recovery band depends on the nonlinear stiffness. Fig. 12 reflects this change. In  
Fig. 12, for an increasing nonlinear stiffness, the energy recovery bandwidth increases from 
0.21 rad/s (ߜ௦ = 0 N/m) to 0.24 rad/s (ߜ௦ = 660 N/m) for the suspension working space, and 
0.18 rad/s (ߜ௦ = 0 N/m) to 0.23 rad/s (ߜ௦ = 660 N/m) for harvested power. However, the change 
in nonlinear stiffness does not affect the peak value of the vibration amplitude, so the maximum 
power remains unchanged. However, the peak area moves to the right, and the amount of harvested 
energy increases. 

In addition, from Fig. 11 and Fig. 12 we can see that the energy recovery potential for the 
nonlinear suspension is greater than for the linear suspension across the whole frequency band Ω. For the frequency band Ω, the linear suspension energy recovery potential is higher. For 
the frequency band Ω, on the other hand, the nonlinear suspension energy recovery potential is 
higher. Because the road surface can be considered white noise, the frequency band covers the 
natural frequency of the vehicle body. This includes Ω, and therefore, in reality, the nonlinear 
suspension energy recovery potential is higher. Further improving the energy recovery potential 
of nonlinear suspension can increase nonlinear stiffness. 

5. Conclusions 

For nonlinear suspensions, the damping coefficient of the shock absorber can change the 
vibration amplitude of the vehicle, and thus affect the magnitude of the induced current. Although 
nonlinear stiffness does not change the vibration peak, shifting the resonance point to the right 
changes the bandwidth for the induced current. The electric parameters of the actuator hardly 
affect the vibration amplitude of the vehicle but they can affect the harvested power significantly. 
The greater magnetic strength the permanent magnet produces, the longer is the coil and the 
smaller is the load resistance, and the actuator harvests more power. The inductance of the coil 
has little effect on the harvested power. Changing these parameters affects the harvested power of 
the suspension. However, because the nonlinear system is affected by the initial value, the 
resulting induced current may not be the same-even with the same parameters and different initial 
conditions. Furthermore, the process to reach the final steady state takes different amounts of time, 
which also affects the harvested power. 

In addition, the power harvest bandwidth for the nonlinear suspension is greater for the whole 
frequency band. The power harvesting potential of the nonlinear suspension is generally greater 
because the frequency band of the actual pavement also contains bandwidth surrounding the body 
resonance point. The only exception occurs if the vehicle travels on a road with a particular profile, 
e.g. a sine curve.  

The harvested power can be increased by increasing the nonlinear stiffness, but this can lead 
to other problems. 

Overall, the energy recovery potential of the nonlinear suspension is greater than that of the 
linear suspension. To optimize harvested power, it is better to consider the nonlinear 
characteristics rather than simplifying the suspension to a linear model. 
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