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Abstract. Acoustic emission (AE) technique has been widely used for the classification of 
rub-impact in rotating machinery due to its high sensitivity, wide frequency response range and 
dynamic detection property. However, it is still unsatisfied to effectively classify the rub-impact 
in rotating machinery under complicated environment using traditional classification method 
tailored to a single AE sensor. Recently, motivated by the theory of compressed sensing, a sparse 
representation based classification (SRC) method has been successfully used in many 
classification applications. Moreover, when dealing with multiple measurements the joint sparse 
representation based classification (JSRC) method could improve the classification accuracy with 
the aid of employing structural complementary information from each measurement. This paper 
investigates the use of multiple AE sensors for the classification of rub-impact in rotating 
machinery based on the JSRC method. First, the cepstral coefficients of each AE sensor are 
extracted as the features for the rub-impact classification. Then, the extracted cepstral features of 
all AE sensors are concatenated as the input matrix for the JSRC based classifier. Last, the 
backtracking simultaneous orthogonal matching pursuit (BSOMP) algorithm is proposed to solve 
the JSRC problem aiming to get the rub-impact classification results. The BSOMP has the 
advantages of not requiring the sparsity to be known as well as deleting unreliable atoms. 
Experiments are carried out on real-world data sets collected from in our laboratory. The results 
indicate that the JSRC method with multiple AE sensors has higher rub-impact classification 
accuracies when compared to the SRC method with a single AE sensor and the proposed BSOMP 
algorithm is more flexible and it performs better than the traditional SOMP algorithm for solving 
the JSRC method. 
Keywords: acoustic emission, backtracking simultaneous orthogonal matching pursuit, joint 
sparse representation based classification, multiple sensors, rotating machinery, rub-impact. 

1. Introduction 

Rub-impact classification is one of the most important issues in the research filed of large 
rotating machinery. Traditional rub-impact classification techniques use vibration signals, which 
have some technical defects especially in the early rubbing stage [1]. Acoustic emission (AE) 
technique provides a new approach for the rub-impact classification because of its unique 
advantages, such as high sensitivity, wide frequency response range and dynamic detection 
property [2]. During the past few years, plenty of methods have been proposed in order to extract 
robust features of the AE signal employed in the rub-impact classification in rotating machinery. 
Modal acoustic emission (MAE) derived from the traditional propagation theory is an effective 
way to express the AE signal [3]. Following the MAE theory, an analytic expression of the AE 
signal was given and then used as feature representation for the rub-impact classification [4]. A 
rub-impact classification method based on Gaussian mixture model (GMM) [5] was proposed in 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2017.18292&domain=pdf&date_stamp=2018-02-15


2814. JOINT SPARSE REPRESENTATION BASED CLASSIFICATION OF RUB-IMPACT IN ROTATING MACHINERY WITH MULTIPLE ACOUSTIC EMISSION 
SENSORS. WEI PENG, JING LI, WEIDONG LIU, LIPING SHI, HAN LI 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. FEB 2018, VOL. 20, ISSUE 1. ISSN 1392-8716 763 

[6] using the cepstral coefficients of the AE signal as the input features. In [7], a new fractal 
dimension of the AE signal was used as the feature for the rub-impact classification, and 
simulation results demonstrated the effectiveness of the proposed wavelength based fractal 
dimension. However, it is still unsatisfied to effectively classify the rub-impact in rotating 
machinery under complicated environment using traditional classification method tailored to a 
single AE sensor. 

Recently, a sophisticated classification approach based on the theory of sparse representation 
has been proposed in the fields of compressed sensing [8]. This sparse representation based 
classification (SRC) scheme represents the test sample as a linear sparse combination of the 
training samples and then classifies the test sample to the class which yields the minimum 
representative error [8]. The SRC method has been successfully used in many applications, such 
as face recognition [8], power system transient recognition [9] and hyperspectral image 
classification [10]. As an extension of the SRC method, the joint sparse representation based 
classification (JSRC) method has been proposed for the multiple measurements classification 
which uses not only the sparse property of each measurement but also the structural sparse 
information across the multiple measurements [11]. The JSRC method has demonstrated 
advantageous over the SRC method in the classification problems of multiple measurements [11], 
multimodality [12] and multiple features [13]. 

Inspired by the amazing performance of the JSCR method for the multiple measurements 
classification problem, in this paper we investigate the use of multiple AE sensors for the 
classification of rub-impact in rotating machinery with the aid of the JSRC method. We build a 
rub-impact test bed with multiple AE sensors in our laboratory. As far as we known, this is the 
first attempt to use the JSCR method for the classification of rub-impact in rotating machinery. 
Previous works rely on simultaneous orthogonal matching pursuit (SOMP) [14-16] for solving the 
JSRC method. However, the SOMP algorithm should have the knowledge of the sparsity in 
advance which makes the algorithm less flexible. Moreover, once an atom has been wrongly 
selected, it will not have the chance to be deleted. Accordingly, in this paper we propose a novel 
algorithm called backtracking SOMP (BSOMP), by employing the backtracking strategy [17] to 
compensate for these shortcomings. 

The rest of this paper is organized as follows. Section 2 introduces cepstral coefficients which 
are extracted as features of the AE signal for the rub-impact classification, and then in Section 3 
we give a brief review of the SRC method. In Section 4 we first present the JSRC method for the 
rub-impact classification in rotating machinery with multiple AE sensors and then propose a 
BSOMP algorithm for solving it. Experiments on real-world data sets collected from our 
laboratory are carried out in Section 5, and final conclusions are given in Section 6. 

2. Feature extraction 

Feature extraction plays an important role for rub-impact faults classification in rotating 
machinery. Previous works have demonstrated the effectiveness of using the cepstral coefficients 
of the AE signal as the features for the rub-impact classification [6]. So, in this paper, we use the 
cepstral coefficients of each AE measurement to be the features for the rub-impact classification. 
And in this section, we will describe the method for extracting the cepstral coefficients in details. 

The analytic expression of the AE signal based on the modal acoustic emission (MAE) theory 
was derived in [4]. However, some AE mode waves would be separated or even disappeared in 
time domain due to different propagation speeds and different distances from source to sensors. 
So, it is reasonable to classify the rub-impact in rotating machinery using the frequency domain 
information with the filter banks. The frequency spectrum of the AE signals mainly concentrated 
form 100 kHz to 300 kHz, and different frequency bins provide different contributions for the 
rub-impact classification. This assumption is same as the speech recognition problem, so in this 
paper we employ the cepstral coefficients of the AE signal as the features for the rub-impact 
classification which have been proven to be effective as the frequency domain features for speech 
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recognition. The procedure for extracting the cepstral coefficients is shown in Fig. 1 and explained 
in steps as the following [4]:  

Step 1: Transform the input AE signal ݔ(݊) from the time domain to the frequency domain ܺ(߱) using the short-time Fourier transform (STFT): 

ܺ(߱) = ෍ ݊]ݓ[݉]ݔ − ݉]݁ି௝ఠ௠ାஶ
௠ୀିஶ , (1)

where ݓ[݊] is the window function. In this paper, we use the Hanning window. 

 
Fig. 1. The procedure for extracting the cepstral coefficients 

Step 2: Pass ܺ(߱) through the triangular filter banks and then calculate the output spectrum 
energy ܧ(݇) of each sub filter: 

(݇)ܧ = ௞ܣ1 ෍ | ௞ܸ(߱)ܺ(߱)|ଶ,௎ೖ
ఠୀ௅ೖ            ݇ = 1,2, ⋯ , (2) ,ܯ

where ܯ is the number of the sub filters, ௞ܸ(߱) is the frequency response of the ݇th sub filter, ܮ௞ 
and ܷ௞ are the low frequency limit and the high frequency limit of the ݇th sub filter respectively, ܣ௞ is the energy normalization factor defined as: 

௞ܣ = ෍ | ௞ܸ(߱)|ଶ௎ೖ
ఠୀ௅ೖ . (3)

The center frequencies of all the sub filters are equal distributed at the logarithm scale, 
meanwhile the low frequency limit ܮ௞ and the high frequency limit ܷ௞ of the ݇th sub filter equal 
to the center frequency ܥ௞ିଵ  and ܥ௞ାଵ  of its two adjacent sub filters at the logarithm scale, 
respectively. Accounting for higher attenuation of the AE signal happening in the lower frequency 
band, the center frequency ܥ௞ of ݇th sub filter, the low frequency limit ܮଵ and the high frequency 
limit ܷெ of the triangular filter banks should satisfy: ln[1 + ௞ܥ)ߙ − ଵ)/(ܷெܮ − ଵ)]ln(1ܮ + (ߙ = 2݇4 ,         ݇ = 1,2, ⋯ , (4) .ܯ

For AE signals we set ܮଵ = 100 kHz and ܷெ = 300 kHz. From Eq. (4) we can get all the 
design parameters of the triangular filter banks. 

Step 3: Following the logarithm operation and the discrete cosine transform (DCT), we can 
finally get the cepstral coefficients of the AE signal: 

௡ܥ = ෍ logܧ(݇)cos ቈߨ(݇ − ܯ݊(0.5 ቉ ,ெ
௞ୀଵ          ݊ = 1,2, ⋯ , (5) ,ܮ
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where ܮ is the desired order of the cepstral coefficients which usually ranges from 12 to 16. In this 
paper, we set ܮ = 12 as suggested in [4]. 

3. The sparse representation based classification (SRC) method 

Recently the sparse representation based classification (SRC) method motivated by the theory 
of compressed sensing [14-15] has been successfully used in many classification applications, 
such as face recognition [8], power system transient recognition [9] and hyperspectral image 
classification [10]. The basic idea of the SRC method is to correctly determine which class the 
test sample belongs to using the training samples collected from different classes with the sparse 
representation method [20]. This SRC scheme first constructs the dictionary using training 
samples, and then represents the test sample as a linear sparse combination of the dictionary atoms 
and finally classifies the test sample to the class which yields the minimum representative error 
[21]. The SRC approach is employed as a benchmark for the classification of rub-impact in 
rotating machinery with a single AE sensor in this paper.  

In the SRC approach, all the ݊௜ training samples from the ݅th class are arranged as the columns 
of a sub-dictionary matrix Α௜ = ,௜ଵ܉] ,௜ଶ܉ ⋯ , [௜௡೔܉ ∈ ℜ௅×௡೔. We can define a dictionary ۯ which 
includes the entire set of the training samples from all the ܭ classes given as follows: ۯ = ,ଵۯ] ,ଶۯ ⋯ , [௄ۯ = ,ଵଵ܉ൣ ,ଵଶ܉ ⋯ , ௄௡಼൧܉ ∈ ℜ௅×௡, (6)

where ݊ = ∑ ݊௜௄௜ୀଵ  is the total number of the training samples from all the ܭ classes, ܮ is the 
dimensionality of the cepstral coefficients extracted from its corresponding AE measurement. 

The basic assumption of the SRC method is that the test sample ܡ lies in the linear span of the 
training samples from the same class. Suppose the test sample ܡ belongs to the ݅th class linearly 
represented by all the atoms of the dictionary: ܡ = (7) ,ܠۯ

where ܠ = ଵ்ܠ] , ଶ்ܠ , ⋯ , ்[௄்ܠ  is the representation vector, in which ܠ௜  is the sub-representation 
vector associated with the sub-dictionary ۯ௜. In ideal situation when ܡ belongs to the ݅th class  ܠ = [૙, ⋯ , ௜்ܠ , ⋯ , ૙]் , so ܡ can represent as ܡ = ௜ܠ௜ۯ , i.e., directly classified to the ݅th class. 
However, in general case most of the representation coefficients are quite small while only the 
coefficients of the sub-representation vector ܠ௜ have large values. This means that the test sample ܡ can be accurately classified to the ݅th class by forcing the representation vector ܠ to be sparse, 
which leads to the l0-norm minimization problem: min‖ܠ‖଴     ݏ. ܡ    .ݐ = (8) .ܠۯ

For practical classification of the rub-impact in rotating machinery, we should account for the 
noises and rewrite the l0-norm minimization problem Eq. (8) as follows [22]: min‖ܠ‖଴     ݏ. ܡ‖   .ݐ − ଶ ‖ܠۯ ≤ (9) .ߝ

However, the l0-norm minimization problem Eq. (9) is NP-hard which is hard to solve. In 
practice, problem Eq. (9) can be solved using the greedy algorithm [23-26] or relaxing to its 
convex l1-norm minimization form [27, 28]: min‖ܠ‖ଵ     ݏ. ܡ‖   .ݐ − ଶ ‖ܠۯ ≤ (10) .ߝ

In this paper, we use the orthogonal matching pursuit (OMP) algorithm to solve the l0-norm 
problem Eq. (9), the general procedure of the OMP algorithm is described in Algorithm 1 [23]: 
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Algorithm 1 OMP. 
Input: dictionary ۯ, test sample ܡ, maximum number of iteration ܭ௠௔௫, error threshold ߝ. 
Initialization: the residual ܚ଴ = the index set Λ0 ,ܡ = ∅, the iteration counter ݅ = 1. 
while ‖1−݅ܚ‖ > ݅ and ߝ <   ௠௔௫ܭ
      1. Find the index ݅ߣ = argmax݆=1,⋯,݊|1−݅ܚۦ, :)ۯ , ݆)ۧ| 
      2. Set Λ݅ = Λ݅−1 ∪  ݅ߣ
      3. Solve the least squares problem ݅ܛ = argminܡ‖ܛ − :)ۯ , Λ݅)2‖ܛ 
      4. Renew the residual ݅ܚ = ܡ − :)ۯ , Λ݅)݅ܛ 
      5. ݅ = ݅ + 1 
end while 
Output: the sparse representation vector ܠ equals to 1−݅ܛ with the index in Λ݅−1 and 0 otherwise.  
Having obtained the sparse representation vector ܠ, we can identify the test sample ܡ to the 

class with the minimum representative error. The procedure of the SRC method for the 
classification of rub-impact in rotating machinery with a single AE sensor is described as follows: 

1) Use the feature extraction method described in Section 2 to get the training samples of all 
the ܭ classes to form dictionary ۯ = ,ଵۯ] ,ଶۯ ⋯ ,  .ۯ ௄] and then normalize the columns ofۯ

2) Use the feature extraction method described in Section 2 to get the test sample ܡ. 
3) Solve the problem Eq. (9) using the OMP algorithm and get the sparse representation  

vector ܠ. 
4) Calculate the representation error of each class: ݎ௜ = ܡ‖ − ݅     ,௜‖ଶܠ௜ۯ = 1, ⋯ , (11) .ܭ

5) The class associated with the smallest representation error is classified to be the right one: ଓሶመ = argmin௜ݎ௜. (12)

4. The joint sparse representation based classification (JSRC) method 

From the classification results of previous works [4, 6, 7], we can see that it is still unsatisfied 
to effectively classify the rub-impact in rotating machinery under complicated environment using 
traditional classification method tailored to a single AE sensor. Making a classification with 
multiple measurements using the joint sparse representation based classification (JSRC) method 
has shown its advantages to improve the classification accuracy in transient acoustic signal 
classification [11], so in this paper we investigate using the JSRC method for the classification of 
rub-impact in rotating machinery with multiple AE sensors. 

In this section, we first present the JSRC problem formulation for the classification of 
rub-impact with multiple AE sensors and introduce the SOMP algorithm [15, 16] which is used 
in the previous work [14] to solve the JSRC problem. Then we propose an algorithm called 
BSOMP by employing the backtracking strategy [17] and provide the procedure of the JSRC 
method for rub-impact classification. 

4.1. Problem formulation 

As an extension of the SRC method, the general idea of the JSRC method is the same with the 
SRC method with the exception that not only using the sparse property of each measurement but 
also the joint sparse information across the multiple measurements [11]. Suppose the number of 
AE sensors is ݌, then for each training sample there are ݌ measurements. So, in the JSRC method, 
the dictionary ۯ including the entire set of the training samples from all the ܭ classes can be 
defined as: ۯ = ,ଵۯൣ ,ଶۯ ⋯ , ௣൧ۯ ∈ ℜ௅×௣௡, (13)
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where ݊ is the number of the training samples of all the ܭ classes for each measurement, each 
sub-dictionary ટ௜ = ,௜,ଵۯ] ,௜,ଶۯ ⋯ , [௜,௄ۯ ∈ ℜ௅×௡ contains all training samples of all the ܭ classes 
from the ݅th measurement. 

In the JSRC method, the test sample is represented by a matrix ܇ ∈ ℜ௅×௣ which could be 
linearly represented by the dictionary: ܇ = (14) ,܆ۯ

where ܆ = ,ଵߙ] … , [௣ߙ ∈ ℜ௣௡×௣ is the representation coefficient matrix. 
There are two assumptions for the JSRC method [14]:  
First the ݅th measurement of the test sample should lie in the span of the training samples 

corresponding to the ݅th measurement, i.e. the representation coefficient matrix ܆ should have a 
block-diagonal structure with the columns have the following structure: 

ଵߙ =
ێێۏ
ێێێ
ଵ,௄૙⋮૙ߙ⋮ଵ,ଶߙଵ,ଵߙۍ ۑۑے

ۑۑۑ
ଶߙ     ,ې =

ێێۏ
ێێێ
ۍ ૙ߙଶ,ଵ⋮ߙଶ,௄૙⋮૙ ۑۑے

ۑۑۑ
ې

, ௣ߙ     ,… =
ێێۏ
ێێێ
ۍ ૙⋮૙ߙ௣,ଵߙ௣,ଶ⋮ߙ௣,௄ۑۑے

ۑۑۑ
ې
, (15)

where ૙ denotes a zero vector in ℜ௡ , each subvector ൛ߙ௜,௝ൟ௝ୀଵ௄ , ݅ = 1, ⋯ , lies in ℜ௡ೕ ݌  and ௝݊ 
denotes the number of the training samples for the ݆th class. 

Second the coefficients of the representation coefficient matrix ܆  corresponding to the ܭ 
measurements from the same training sample should be activated simultaneously to jointly and 
sparsely represent the test sample. For this assumption, we should transform the matrix ܆ to the 
sparse representation matrix ܆ᇱ by removing the zero coefficients of ܆: 

۸(۶ ∘ (܆ = ᇱ܆ = ൦ߙଵ,ଵ ⋯ ௜,ଵߙ ⋯ ଵ,ଶߙ௣,ଵߙ ⋯ ௜,ଶߙ ⋯ ⋮௣,ଶߙ ⋮ ⋮ ⋮ ଵ,௄ߙ⋮ ⋯ ௜,௄ߙ ⋯ ௣,௄൪, (16)ߙ

where ∘ denotes the matrix Hadamard product, the matrix ۶ and ۸ are defined as: ۶ = diag[૚, ૚, ⋯ , ૚] ∈ ℜ௣௡×௣,     ۸ = [۷௡    ۷௡     ⋯   ۷௡] ∈ ℜ௡×௣௡, (17)

where ૚ ∈ ℜ௡ is the vector of all ones and ۷௡ is the ݊-dimensional identity matrix. 
For the JSRC method, the matrix ܆ᇱ defined in Eq. (16) is constraint to be row wise sparse. 

Taking into the practical noises into consideration, this problem can be formulated as [14]: min‖܆ᇱ‖௟଴\௟ଶ     ݏ. ܇‖   .ݐ − ி ‖܆ۯ ≤ (18) ,ߝ

where ‖⋅‖௟଴\௟ଶ the l0\l2 norm is equals to the number of nonzero rows in the matrix. 
However, the l0\l2 norm minimization problem Eq. (18) is also NP-hard. In practice, it can be 

solved using the greedy algorithm [16] or relaxing to the l1\l2 norm minimization problem  
[29, 30]: min‖܆ᇱ‖௟ଵ\௟ଶ     ݏ. ܇‖   .ݐ − ி ‖܆ۯ ≤ (19) .ߝ
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4.2. SOMP algorithm 

Previous work [14] uses the simultaneous orthogonal matching pursuit (SOMP) algorithm 
[15, 16] to solve the l0\l2 norm problem Eq. (18), and the general procedure of the SOMP 
algorithm is described in Algorithm 2. 

Algorithm 2 SOMP. 
Input: dictionary ۯ, test sample ܇, maximum number of iteration ܵ௠௔௫, error thresholdߝ. 
Initialization: the residual ܀଴ = the index set Λ଴ ,܇ = ∅, the iteration counter ݇ = 1. 
while ‖܀௞ିଵ‖ி > ݇ and ߝ < ܵ௠௔௫ 
    1. Find the index ߣ௞ = argmax௜ୀଵ,⋯,௡ ∑ ฮൻ܀௞ିଵ(: , ݆), ௝,௜ൿฮி௣௝ୀଵۯ  
    2. Set Λ௞ = Λ௞ିଵ ∪  ௞ߣ
    3. Compute the orthogonal projector ܛ௜௞ = argmin܇‖ܛ(: , ݅) − :)௜ۯ , Λ௞)ܛ‖ଶ for ݅  ݌ ,…,1 =
    4. Renew the residual ܀௞ = ܇ − :)ଵۯ] , Λ௞)ܛଵ௞, ⋯ , :)௣ۯ , Λ௞)ܛ௣௞] 
    5. ݇ = ݇ + 1 
end while 
Output: the nonzero rows of the sparse representation matrix ܆ᇱ indexed by Λ௞ିଵequal to [ܛଵ௞ିଵ, ⋯ ,  .[௣௞ିଵܛ

4.3. BSOMP algorithm 

The main drawback of the SOMP is that the sparsity should be known in advance. So 
cross-validation should be used in order to obtain a better classification result which makes the 
algorithm less flexible. Additionally, once the atom has been selected, it will not have the chance 
to be deleted even if it is a wrong one. In [17] backtracking strategy is employed to improve the 
OMP algorithm by detecting the previous chosen atoms’ reliability and then deleting the unreliable 
atoms. With the aid of backtracking strategy, no prior knowledge of the sparsity is needed, so in 
this paper we propose a BSOMP algorithm by incorporating the backtracking strategy with SOMP. 
The general procedure of the BSOMP algorithm is described in Algorithm 3. 

Algorithm 3 BSOMP. 
Input: dictionary ۯ, test sample ܇, atom-adding threshold ߤଵ, atom-deleting threshold ߤଶ, 

error threshold ߝ. 
Initialization: the residual ܀଴ = the index set Λ଴ ,܇ = ∅, the iteration counter ݇ = 1. 
while ‖܀௞ିଵ‖ி >  ߝ
    1. Find the candidate set ۱  by choosing all the indexes of atoms that satisfying ∑ ฮൻ܀௞ିଵ(: , ݆), ௝,௜ൿฮி௣௝ୀଵۯ ≥ ଵmax௜ୀଵ,⋯,௡ߤ ∑ ฮൻ܀௞ିଵ(: , ݆), ௝,௜ൿฮி௣௝ୀଵۯ  
    2. Compute the orthogonal projector ܛ௜ = argmin܇‖ܛ(: , ݅) − :)௜ۯ , Λ௞ିଵ ∪ ଶ‖ܛ(ܥ  for  ݅   ݌ ,…,1 =
    3. Find the candidate deleting set D by choosing all the indexed of atoms that satisfying ඥܛଵ(݅)ଶ + ⋯ ௣(݅)ଶܛ ≤ ଵ(݅)ଶܛଶmax௜∈ஃೖషభ∪஼ඥߤ + ⋯  ௣(݅)ଶܛ
    4. Set Λ௞ = (Λ௞ିଵ ∪  ܦ\(ܥ
    5. Compute the orthogonal projector ܛ௜௞ = argmin܇‖ܛ(: , ݅) − :)௜ۯ , Λ௞)ܛ‖ଶ for ݅  ݌ ,…,1 =
    6. Renew the residual ܀௞ = ܇ − :)ଵۯ] , Λ௞)ܛଵ௞, ⋯ , :)௣ۯ , Λ௞)ܛ௣௞] 
    7. ݇ = ݇ + 1 
end while 
Output: the nonzero rows of the sparse representation matrix ܆ᇱ indexed by Λ௞ିଵ equal to [ܛଵ௞ିଵ, ⋯ ,  .[௣௞ିଵܛ

4.4. The procedure of JSRC 

The procedure of the JSRC method for the classification of rub-impact in rotating machinery 
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with multiple AE sensors is described as follows: 
1. Use the feature extraction method described in Section 2 to get the training samples of all 

the ܭ  classes from ݌  measurements to construct dictionary ۯ = ,ଵۯ] ,ଶۯ ⋯ , [௣ۯ  and then 
normalize the columns of ۯ. 

2. Use the feature extraction method described in Section 2 to get the test sample ܇. 
3. Solve the problem Eq. (18) using the SOMP/BSOMP algorithm and get the sparse 

representation matrix ܆ᇱ. 
4. Calculate the representation error of each class: ݎ௜ = ฮ܇ − ,ଵ,௜ߙଵ,௜ۯ] ⋯ , ݅     ,௣,௜]ฮிߙ௣,௜ۯ = 1, ⋯ , (20) .ܭ

5. The class associated with the smallest representation error is classified to be the right one: ଓሶመ = argmin௜ݎ௜. (21)

5. Experiment 

All the data for the experiment are collected in our laboratory. Data obtained from a rub-impact 
test bed for fault diagnosis of rotor are used in the paper as shown in Fig. 2(a). The test rig 
containing three bearings and two rubbing components can simulate two rub-impact faults at the 
same time through the steel arch case and the rub-impact screws in Fig. 2(a). The case is tightly 
fixed on the base support of the test rig by four fixed screws and drilled two rub-impact holes on 
the one side according to the size of the rub-impact screws. Also, the fault degree generated by 
rub-impact can be adjusted by screws. AE sensors with an operating range of 20 kHz to 1 MHz 
are marked as A, B, C and D form the left to the right respectively as shown in Fig. 2(b). The 
output signals from AE sensors are amplified to 40 dB. The AE signals are then passed through a 
band-pass filter 1 kHz-200 kHz to record AE signature rising from run-impact faults. The 
sampling rate for acquisition of AE signal waveforms is 2MSPS. 

 
a) 3-bearing 2-span rotor system 

 
b) AE signal collection system with 4 sensors 

Fig. 2. The data collection system 

Three classes rub-impact events are simulated in the experiments: the non-rub-impact event 
sampled at common condition, the medium rub-impact event and the heavy rub-impact event. The 
number of the AE signals collected for each is 300, the maximum number of iteration ܭ௠௔௫ and ܵ௠௔௫ are all set to 15 and the error threshold ߝ is set to 1×10-3. The atom-adding threshold and the 
atom-deleting threshold have wide choices to get similar good results, and here we set ߤଵ = 0.4 and ߤଶ = 0.6 as suggested in [30]. In order to demonstrate the effectiveness of the JSRC method using 
multiple AE sensors for the rub-impact classification, we also compare it with the SRC method 
using AE signal from a single AE senor. Moreover, a modified SVM classifier named 
concatenated SVM (CSVM) [11], concatenating the cepstral features of all AE measurements into 
a single vector as the input for the SVM, is also used for comparison. For each class 10 rounds 
3-fold-cross-validation are used as the evaluation type and the average performances are reported 
in Table 1. 
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Table 1. The classification accuracy of the rub-impact in rotating machinery (noted as ‘%’) 
Method Non Medium Heavy 

JSRC-BSOMP 98.87 91.28 94.58 
JSRC-SOMP 98.76 90.06 94.16 

CSVM 93.87 84.78 90.46 
SRC-A 95.42 86.63 92.58 
SRC-B 93.79 85.32 91.14 
SRC-C 93.56 85.28 90.79 
SRC-D 93.23 83.87 88.64 

It is drawn from Table 1 that, the JSRC method obtains better classification results than the 
SRC method which demonstrates the advantage of jointly using the information from multiple AE 
sensors over only using the information from a single sensor or directly concatenating the 
information from multiple AE sensors. Moreover, the classification accuracy of the proposed 
JSRC-BSOMP method is better than the JSRC-SOMP method. For the non-rub-impact event all 
the methods can get good classification accuracies, while the JSRC method performances best. 
The classification accuracy for the medium rub-impact is lower than the heavy rub-impact, due to 
the fact that the medium rub-impact may be misclassified into non-rub-impact or heavy  
rub-impact. For the SRC method with a single AE sensor, the classification accuracy becomes 
lower and lower form senor A to senor D because of the distance to the AE source getting farther 
and farther, which is coincident with the early analysis in paper [4]. 

 
a) Non-rub-impact 

 
b) Medium rub-impact 

 
c) Heavy rub-impact 

Fig. 3. The classification accuracies with various values of sparsity 

Further, in order to show the advantages of the BSOMP algorithm, we also investigate the 
effects of the parameter ܭ௠௔௫ and ܵ௠௔௫ namely the sparsity on the classification accuracies of the 
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JSRC-SOMP and the SRC methods. The performances of two methods with the sparsity within 
the range {5, 10, 15, 20, 25, 30, 35, 40} are showed in Fig. 3 for all the three rub-impact events. 
It is drawn from Fig. 3 that, the classification performances of the JSRC-SOMP and the SRC vary 
heavily with the sparsity which demonstrates the advantages of the proposed BSOMP algorithm. 
The accuracy performances of the JSRC-SOMP and the SRC methods first increase with increased 
sparsity, and then get the leading classification accuracy around the sparsity of 15. This is the 
reason for which we set ܭ௠௔௫ and ܵ௠௔௫ to 15 for fair comparison. The classification performances 
decease when the sparsity goes beyond 25 which mainly because more atoms of the training 
dictionary from the incorrect classes are selected with the sparsity increasing thus deteriorating 
the classification performance. However, with the backtracking strategy the BSOMP algorithm 
could delete the incorrectly selected atoms, thus obtain the leading performance without the prior 
knowledge of the sparsity. 

Wei Peng performed the data analyses and wrote the manuscript. Jing Li contributed to the 
conception of the study and the submission. Weidong Liu and Han Li contributed significantly to 
analysis and manuscript preparation. Liping Shi helped perform the analysis with constructive 
discussions 

6. Conclusions 

Inspired by the success of the joint sparse representation based classification (JSCR) method 
for the multiple measurements classification problem, in this paper we investigate the use of 
multiple acoustic emission (AE) sensors for the classification of rub-impact in rotating machinery. 
With the extracted cepstral coefficients of each AE sensor concatenated as the input matrix, the 
BSOMP algorithm is used to solve the JSRC problem to get the classification result. Experimental 
results demonstrate that the JSRC method with multiple AE sensors has higher rub-impact 
classification rate when compared to the SRC method with a single AE sensor. The proposed 
BSOMP algorithm is more flexible and better than the traditional SOMP algorithm for solving the 
JSRC method. In our future work, it is expected to employ a learned discriminative dictionary of 
the training data, in order to further improve the classification accuracy. 
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