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Abstract. Lamb wave-based structural health monitoring is one of the most widely used damage 
detection techniques. For quantitatively identifying the damage, damage features that Lamb waves 
carry may need to be carefully studied by numerical simulation. In this paper, spectral element 
method (SEM) is used to simulate Lamb wave interaction with open and closed crack. Cracked 
spectral element models are established for open and closed cracks, respectively. Results 
calculated by SEM are compared with the conventional finite element method to verify the 
proposed model. Some simulations are conducted to study different damage features between open 
and closed crack models. Wave reflection and transmission ratios with different crack depths are 
also quantitatively analyzed. Damage features obtained are used to conduct a simple experiment 
to identify the location and size of the crack. 
Keywords: Lamb wave propagation, open and closed crack, reflection and transmission, damage 
feature. 

1. Introduction 

On-line structural health monitoring (SHM) techniques, based on Lamb waves, has been an 
affordable technology. Plenty of experimental works have been carried out to identify the damage 
[1-3]. Generally, for identifying quantitative damage characteristics, e.g. the crack size, depth, etc., 
theoretical and numerical studies on the damaged structures must be developed. 

In theory, Shkerdin et al. [4] have analytically studied the mode conversion of Lamb wave 
from each other at the tip of delamination in a composite plate. Wang et al. [5] and Yuan et al. [6] 
have investigated reflection and transmission of wave mode in metal and composite beams 
containing delamination and inhomogeneity. In addition, power reflection and transmission at the 
damage location have been carried out and demonstrated to meet energy conservation law [5-7]. 
Lee et al. [8] used the local interaction simulation approach to analyze Lamb wave interaction 
with fatigue cracks in an aluminum plate, and the study shows that Lamb wave amplitude and 
arrival time are different for fully open and closed fatigue cracks. Peng et al. [9] investigated the 
interaction between waves and fully open delamination in a composite laminate by 2D 
pseudo-spectral element method, and some unique mechanisms are obtained. 

Spectral element method (SEM), a finite element method in frequency domain introduced by 
Beskos et al. [10] and developed by Doyle [11], attracts wide attention for its high performance 
and little memory in simulating wave propagation. Ostachowicz [12] used SEM to model wave 
scattering at the location of embedded open delamination in composite beams. 

The objective of this paper is to look for some damage features by using SEM to model Lamb 
wave propagation in an isotropic beam containing a horizontal fully open or closed crack. The 
paper is organized as follows. Spectral element formulas in a contact beam are given in Section 2. 
Damaged spectral element formulas, under fully and open crack condition separately, are derived 
in Section 3. In Section 4, comparison of SEM results and conventional FEM results is made, and 
some damaged features are obtained by simulations under open and closed crack condition, 
separately. Damaged features obtained are conducted a concise experiment to identify the location 
and size of the crack in Section 5. Finally, some conclusions are drawn in Section 6. 
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2. Spectral element formulation in a beam 

Based on first shear deformation theory, the displacement of a beam can be written as: ܷ(ݔ, ,ݕ ,ݖ (ݐ = ,ݔ)ݑ (ݐ − ,ݔ)߶ݖ ,ݔ)ܹ    ,(ݐ ,ݕ ,ݖ (ݐ = ,ݔ)ݓ (1) ,(ݐ

where ݔ)ݑ, ,ݔ)߶ ,(ݐ ,ݔ)ݓ and (ݐ  are the axial displacement, the rotation of the cross section and (ݐ
the transverse displacement of the beam, respectively. ݔ-axis is the centroidal axis. 

The force including axis force ܰ, bending moment ܯ, and shear force ܸ can be expressed as: ܰ = ௫,ݑܣܧ ,    ܸ = −௫,ݓ)ܣܩଶߢ ܯ    ,(߶ = ௫, (2),߶ܫܧ−

where ܧ and ܩ are Young’s modulus and shear modulus, respectively; ܣ and ܫ is the area and the 
rotational inertia of the cross section; ߢଶ is shear correction factor [13].  

Hamilton theory is employed to derive wave motion equations as: ݑܧ,௫௫ = ሷݑߩ −௫௫,ݓ)ܩଶߢ   , ߶,௫ ) = ሷݓߩ +௫௫,߶ܫܧ   , −௫,ݓ)ܣܩଶߢ ߶) = ሷ߶ܫߩ , (3)

where ߩ is the mass density of the beam. 
Substituting ݑ = ܷ݁ି௜(௞௫ିఠ௧) ݓ , = ܹ݁ି௜(௞௫ିఠ௧)  and ߶ = Φ݁ି௜(௞௫ିఠ௧)  into Eq. (3), there 

exists 6 roots of ݇  (wavenumber), which denote six wave modes. The extensional wave 
wavenumbers can be obtained as: ݇ଵ,ଶ = ±ඥ(4) .߱ܧ/ߩ

The wavenumbers of flexural waves can be obtained as: 

݇ଷ,ସ = ±ඩ12 ቆ1 + ܿ௟ଶߢଶܿ௦ଶቇ + ඨ ܿ௟ଶݍଶ߱ଶ + 14 ቆ1 − ܿ௟ଶߢଶܿ௦ଶቇଶ ߱ܿ௟ ,  (5)

݇ହ,଺ = ±ඩ12 ቆ1 + ܿ௟ଶߢଶܿ௦ଶቇ − ඨ ܿ௟ଶݍଶ߱ଶ + 14 ቆ1 − ܿ௟ଶߢଶܿ௦ଶቇଶ ߱ܿ௟ ,  (6)

where ܿ௦ = ඥߩ/ܩ and ܿ௟ = ඥߩ/ܧ are shear and longitudinal wave velocities respectively. These 
wave velocities are independent of the beam thickness. ݍ = ℎ/√12. 

There exists a cut-off frequency, ߱௖ = ߱ When .ݍ/௦ܿߢ < ߱௖, ݇ହ and ݇଺ are purely imaginary, 
which represent non-propagating flexural waves but two evanescent (near-field) waves. 

For a beam with length ܮ, the spectral displacement can be written as: ݑ = ෤ଵ݁ି௜௞భ௫ݑ + ݓ ,෤ଶ݁௜௞మ(௅ି௫)ݑ = ෤ଷ݁ି௜௞య௫ݑ + ෤ସ݁௜௞ర(௅ି௫)ݑ + ෤ହ݁ି௜௞ఱ௫ݑߚ − ߶ ,෤଺݁௜௞ల(௅ି௫)ݑߚ = ෤ଷ݁ି௜௞య௫ݑߙ − ෤ସ݁௜௞ర(௅ି௫)ݑߙ + ෤ହ݁ି௜௞ఱ௫ݑ + ෤଺݁௜௞ల(௅ି௫), (7)ݑ

where there is a time dependence term ݁ି௜ఠ௧ which has been suppressed here; ݑ෤ଵ, ݑ෤ଷ and ݑ෤ହ are 
spectral amplitudes of incident wave, and ݑ෤ଶ, ݑ෤ସ and ݑ෤଺ are reflected amplitudes; ߙ and ߚ are 
given by: 

ߙ = ଷଶ݇ܩଶߢ − ଷ݇ܩଶߢଶ݅߱ߩ ߚ    , = ହଶ݇ܩଶߢହ݇ܩଶߢ݅ − ଶ. (8)߱ߩ
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Thus, Eq. (7) can be expressed as: ݔ)ݑ, ߱) = ܴΛ଴ݑ෤ = ଵܶ(ݔ, ෤, (9)ݑ(߱

where ݑ෤ = ሼݑ෤ଵ ෤ଶݑ ෤ଷݑ ෤ସݑ ෤ହݑ  :෤଺ሽ், andݑ

ܴ = ൥1 1 0 0 0 00 0 1 1 ߚ 0ߚ− 0 ߙ ߙ− 1 1 ൩. (10)

Λ଴  is a diagonal (6×6) matrix with asymptotic entries in characteristic wavenumbers  
( ௝݇, ݆ = 1, 2, …, 6), which can be expressed as: 

Λ଴௝௝ = ۔ۖەۖ
௜௞ೕ௫,     ௝݇ି݁ۓ ݏ݅   + ݏ݅  ା௜௞ೕ(௅ି௫),     ௝݇݁,݈ܽ݁ݎ ݁ݒ − ݏ݅  ା௜௞ೕ(௅ି௫),    ௝݇݁,݈ܽ݁ݎ ݁ݒ + ௜௞ೕ௫,    ௝݇ି݁,ݕݎܽ݊݅݃ܽ݉݅ ݁ݒ ݏ݅    − .ݕݎܽ݊݅݃ܽ݉݅ ݁ݒ  (11)

By evaluating Eq. (9) at the element nodes at ݔ  the element nodal displacement vector ,ܮ ,0 =
can be expressed as: ݑ௘ = ൤ ଵܶ(ݔ, ߱௡)| ௫ୀ଴ଵܶ(ݔ, ߱௡)| ௫ୀ௅൨ ෤ݑ = ଶܶݑ෤. (12)

The non-singular (6×6) complex matrix ଶܶ  represents the local wave characteristics of 
displacement field. Eliminating the unknown wave coefficient vector ݑ෤  from Eq. (9) using  
Eq. (12), the generic displacement field can be written in terms of the nodal displacements as: ݔ)ݑ, ߱) = ଵܶ(ݔ, ߱) ଶܶି ଵݑ௘ = ℵ(ݔ, ߱)௘ݑ௘, (13)

where ℵ(ݔ, ߱)௘  is the exact spectral element shape function matrix. Next, the force boundary 
conditions can be evaluated for particular beam model at ݔ  which yield the element nodal ,ܮ ,0 =
force vector as: ݂௘ = ൤−ܳ଴ܴΛ଴| ௫ୀ଴ − ܳଵܴΛଵ| ௫ୀ଴ܳ଴ܴΛ଴| ௫ୀ௅ + ܳଵܴΛଵ| ௫ୀ௅ ൨ ଶܶି ଵݑ௘ = ௘, (14)ݑ௘ܭ

where ܭ௘ is the (6×6) exact spectral element stiffness matrix. From Eq. (2), ܳ଴ and ܳଵ are both 
(3×3) real matrix as follows: 

ܳ଴ = ൥0 0 00 0 0ܣܩଶߢ− 0 0 ൩,   ܳଵ = ൥ܣܧ 0 00 ܣܩଶߢ 00 0  .൩ܫܧ−
Λଵ is a (6×6) diagonal matrix obtained as: 

Λଵ௝௝ = ݔ߲߲ Λ଴௝௝,    ݆ = 1, . . . ,6. 
3. Cracked spectral element formulation 

As in Fig. 1, a breathing fatigue crack in a beam usually have two typical conditions, open 
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crack in Fig. 1 and closed crack in Fig. 2. In the SEM, the crack divides the beam into three regions, 
two uncracked regions and one open- or closed-crack region. Each region can be considered as a 
spectral beam element, whose stiffness matrix needs to be derived as ܭ௘  for uncracked beam 
element in Eq. (14). In the following sections, spectral element formulations for open and  
closed-crack beam elements will be drawn. 

 
Fig. 1. A beam containing open crack 

 
Fig. 2. A beam containing closed crack 

3.1. Formulations for open-crack beam element 

Taking the crack as boundary, an open-crack beam element can be separated into upper and 
lower elements in Fig. 3. In Fig. 4. 

Fig. 3. Open-crack beam element 
 

Fig. 4. Force equilibrium at tip of the open-crack 

The upper and lower elements are both considered as individual elements, whose stiffness can 
be obtained by Eq. (14) as follows: 

൜ ଷ݂݂ସൠ = ൤ܭଵଵ௨ ଶଵ௨ܭଵଶ௨ܭ ଶଶ௨ܭ ൨ ቄݑଷݑସቅ,   ൜ ହ݂݂଺ൠ = ቈܭଵଵ௟ ଶଵ௟ܭଵଶ௟ܭ ଶଶ௟ܭ ቉ ቄݑହݑ଺ቅ. (15)

At the two tips of crack, displacement continuity and force equilibrium conditions can be 
written as: 

൝ݑଷݓଷ߶ଷൡ = ൥1 0 −ℎ௟0 1 00 0 1 ൩ ൝ݑଵݓଵ߶ଵൡ,   ൝ݑହݓହ߶ହൡ = ൥1 0 ℎ௨0 1 00 0 1 ൩ ൝ݑଵݓଵ߶ଵൡ,   ൝ݑସݓସ߶ସൡ = ൥1 0 −ℎ௟0 1 00 0 1 ൩ ൝ݑଶݓଶ߶ଶൡ, 
൝ݑ଺ݓ଺߶଺ൡ = ൥1 0 ℎ௨0 1 00 0 1 ൩ ൝ݑଶݓଶ߶ଶൡ,   ൝ ଵܰଵܸܯଵൡ = ൥1 0 00 1 0ℎ௟ 0 1൩ ൝ ଷܰଷܸܯଷൡ + ൥ 1 0 00 1 0−ℎ௨ 0 1൩ ൝ ହܰହܸܯହൡ, 
൝ ଶܰଶܸܯଶൡ = ൥1 0 00 1 0ℎ௟ 0 1൩ ൝ ସܰସܸܯସൡ + ൥ 1 0 00 1 0−ℎ௨ 0 1൩ ൝ ଺ܰ଺ܸܯ଺ൡ. 

(16)

Eq. (16) can be labeled as: ݑଷ = ହݑ   ,ଵݑ௨ݏ = ସݑ   ,ଵݑ௟ݏ = ଺ݑ   ,ଶݑ௨ݏ = ଶ,   ଵ݂ݑ௟ݏ = ௨ᇱݏ ଷ݂ + ௟ᇱݏ ହ݂,   ଶ݂ = ௨ᇱݏ ସ݂ + ௟ᇱݏ ଺݂. (17)

Open crack
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Substituting Eq. (15) into Eq. (17), it yields: 

൜ ଵ݂݂ଶൠ = ቈݏ௨ᇱ ଵଵ௨ܭ + ௨ݏ ଵଵ௟ܭ௟ᇱݏ ௨ᇱݏ ௟ݏ ଵଶ௨ܭ + ௨ݏ ଵଶ௟ܭ௟ᇱݏ ௨ᇱݏ ௟ݏ ଶଵ௨ܭ + ௨ݏ ଶଵ௟ܭ௟ᇱݏ ௨ᇱݏ ௟ݏ ଶଶ௨ܭ + ௨ݏ ଶଶ௟ܭ௟ᇱݏ ௟ ቉ݏ ቄݑଵݑଶቅ = ௢௣௘௡ܭ ቄݑଵݑଶቅ. (18)

3.2. Formulations for closed-crack beam element 

As shown in Fig. 5, assuming the contacted pressure between the upper and lower elements as ݔ)݌,  .(ݐ

 
Fig. 5. Closed-crack beam element 

The transverse displacement is identical, i.e., ݓഥ = ഥ௨ݓ =  ഥ௟, and the governing equations ofݓ
flexural waves can be derived as: ߢଶܣ̅ܩ௨(ݓഥ,௫௫− ߶ത௨,௫ ) = ഥሷݓ௨ܣ̅ߩ + +௨̅߶ത௨,௫௫ܫܧ(19) ,݌ ഥ,௫ݓ௨൫ܣ̅ܩଶߢ − ߶ത௨൯ = −ഥ,௫௫ݓ)௟ܣ̅ܩଶߢ௨̅߶തሷ௨, (20)ܫߩ ߶ത௟,௫ ) = ഥሷݓ௟ܣ̅ߩ − +௟̅߶ത௟,௫௫ܫܧ(21) ,݌ ഥ,௫ݓ௟൫ܣ̅ܩଶߢ − ߶ത௟൯ = ௟̅߶തሷܫߩ ௟. (22)

Combining Eqs. (19) and (21) may eliminate the contact pressure ߢ :݌ଶ(ݓܣܩഥ,௫௫− −௨߶ത௨,௫ܣ̅ܩ ௟߶ത௟,௫ܣ̅ܩ ) = ഥሷݓܣ̅ߩ . (23)

Assume the displacements as: ݓഥ = ഥܹ ݁௜(௞ത ௫ିఠ ௧),    ߶ത௨ = Φഥ ௨݁௜(௞ത ௫ିఠ ௧),   ߶ത௟ = Φഥ ௟݁௜(௞ത ௫ିఠ ௧). (24)

By substituting Eq. (24) into Eqs. (23), (20) and (22), the dispersion relation can be  
obtained as: 

ݐ݁݀ ቐ቎ߢଶܣ̅ܩ ത݇ଶ − ଶ߱ܣ̅ߩ ௨ܣ̅ܩଶߢ݅− ത݇ ௟ܣ̅ܩଶߢ݅− ത݇݅ߢଶܣ̅ܩ௨ ത݇ ௨̅ܫܧ ത݇ଶ + ௨ܣ̅ܩଶߢ − ௨̅߱ଶܫߩ ௟ܣ̅ܩଶߢ0݅ ത݇ 0 ௟̅ܫܧ ത݇ଶ + ௟ܣ̅ܩଶߢ − ௟̅߱ଶ቏ቑܫߩ = 0. (25)

The roots of Eq. (25) denote three flexural wave modes, which are related to the un-cracked 
fundamental flexural mode, ܣ଴(଴)ௗ, and the ܣଵ mode of the upper and lower beam elements, ܣଵ(௨)ௗ 
and ܣଵ(௟)ௗ, respectively.  

The general displacement of in the cracked region can be derived as: ݑത௨ = ෤തଵ݁ି௜௞തݑ ೠ೐ ௫ + ෤തଶ݁ି௜௞തݑ ೠ೐ (௅തି௫),   ݑത௟ = ෤തଷ݁ି௜௞തݑ ೗೐௫ + ෤തସ݁ି௜௞തݑ ೗೐(௅തି௫), (26)ݓഥ = ෤തହ݁ି௜௞തݑ బ௫ + ෤ത଺݁ି௜௞തݑ బ(௅തି௫) + ෤ത଻݁ି௜௞തݑ భ௫ + ෤ത଼݁ି௜௞തݑ భ(௅തି௫) + ෤തଽ݁ି௜௞തݑ మ௫ + ෤തଵ଴݁ି௜௞തݑ మ(௅തି௫), (27)
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߶ത௨ = ෤തହ݁ି௜௞തݑ଴(௨)ܩ బ௫ − ෤ത଺݁ି௜௞തݑ଴(௨)ܩ బ(௅തି௫) + ෤ത଻݁ି௜௞തݑଵ(௨)ܩ భ௫ − ෤ത଼݁ି௜௞തݑଵ(௨)ܩ భ(௅തି௫)+ ෤തଽ݁ି௜௞തݑଶ(௨)ܩ మ௫ − ෤തଵ଴݁ି௜௞തݑଶ(௨)ܩ మ(௅തି௫), (28)߶ത௟ = ෤തହ݁ି௜௞തݑ଴(௟)ܩ బ௫ − ෤ത଺݁ି௜௞തݑ଴(௟)ܩ బ(௅തି௫) + ෤ത଻݁ି௜௞തݑଵ(௟)ܩ భ௫ − ෤ത଼݁ି௜௞തݑଵ(௟)ܩ భ(௅തି௫) + ෤തଽ݁ି௜௞തݑଶ(௟)ܩ మ௫− ෤തଵ଴݁ି௜௞തݑଶ(௟)ܩ మ(௅തି௫), (29)

where: 

௝(௡)ܩ = − ݅ ത݇௝ܫܧ௡̅ ത݇௝ଶ ⁄௡ܣ̅ܩଶߢ + 1 ,     ݊ = ,ݑ ݈,     ݆ = 0,1,2.  
Eqs. (26)-(29) can be labeled as: ݑത(ହ×ଵ) = തܴ(ହ×ଵ଴)Λഥ(ଵ଴×ଵ଴)ݑ෤ത(ଵ଴×ଵ) = തܶ(ଷ×ଵ଴)ݑ෤ത(ଵ଴×ଵ), (30)

where: ݑത(ହ×ଵ) = ሼݑത௨ ത௟ݑ ഥݓ ߶ത௨ ߶ത௟ሽ்,   (݊ = ,ݑ ෤ത(ଵ଴×ଵ)ݑ ,(݈ = ሼݑ෤തଵ ෤തଶݑ ෤തଷݑ ෤തସݑ ෤തହݑ ෤ത଺ݑ ෤ത଻ݑ ෤ത଼ݑ ෤തଽݑ ෤തଵ଴ሽ், Λഥ(ଵ଴×ଵ଴)ݑ   = diagሼሾ݁ି௜௞ത ೠ೐௫ ݁ି௜௞ത ೠ೐(௅തି௫) ݁ି௜௞ത ೗೐௫ ݁ି௜௞ത ೗೐(௅തି௫) ݁ି௜௞ത బ௫ ݁ି௜௞ത బ(௅തି௫) ݁ି௜௞ത భ௫ ݁ି௜௞ത భ(௅തି௫) ݁ି௜௞ത మ௫ ݁ି௜௞ത మ(௅തି௫)ሿሽ. 
തܴ(ହ×ଵ଴) = ێێێۏ

1ۍێ 1 0 0 0 0 0 0 0 00 0 1 1 0 0 0 0 0 00 0 0 0 1 1 1 1 1 10 0 0 0 ଴(௨)ܩ ଴(௨)ܩ− ଵ(௨)ܩ ଵ(௨)ܩ− ଶ(௨)ܩ ଶ(௨)0ܩ− 0 0 0 ଴(௟)ܩ ଴(௟)ܩ− ଵ(௟)ܩ ଵ(௟)ܩ− ଶ(௟)ܩ ଶ(௟)ܩ− ۑۑۑے
 .ېۑ

Similarly, as derivations from Eq. (9) to Eq. (14), the relations between the nodal forces and 
displacements of the upper and lower beam elements can be written as: ݂(̅ଵଶ×ଵ)௘ = ഥ(ଵଶ×ଵ଴)௘ܭ ത(ଵ଴×ଵ)௘ݑ , (31)

where: ݂̅ ௘ = ሼ݂௨̅଴௘ ݂௨̅௅௘ ݂௟̅଴௘ ݂௟̅௅௘ሽ்= ሼ ഥܰ௨଴௘ തܸ௨଴௘ ഥ௨଴௘ܯ ഥܰ௨௅௘ തܸ௨௅௘ ഥ௨௅௘ܯ ഥܰ௟଴௘ തܸ௟଴௘ ഥ௟଴௘ܯ ഥܰ௟௅௘ തܸ௟௅௘ ഥ௟௅௘ܯ ሽ். 
And: ݑത ௘ = ሼݑത଴௘ ത௅௘ሽ்ݑ = ሼݑത௨଴௘ ത௟଴௘ݑ ഥ଴௘ݓ ߶ത௨଴௘ ߶ത௟଴௘ ത௨௅௘ݑ ത௟௅௘ݑ ഥ௅௘ݓ ߶ത௨௅௘ ߶ത௟௅௘ ሽ். 
 represent the left and right end of the ’ܮ‘ denotes the length of crack, and subscripts ‘0’ and ܮ)

crack). 
At the two tips of crack, displacement continuity and force equilibrium conditions can be 

written as: 

൜ݑത଴௘ݑത௅௘ൠ = ቈܵ(̅ହ×ଷ) 0(ହ×ଷ)0(ହ×ଷ) ܵ(̅ହ×ଷ) ቉ ൜ݑതଵ௘ݑതଶ௘ൠ = ܵ௨(ଵ଴×଺) ൜ݑതଵ௘ݑതଶ௘ൠ,   
ቊ݂ଵ̅௘݂ଶ̅௘ቋ = ቈܵ̅ᇱ(ଷ×଺) 0(ଷ×଺)0(ଷ×଺) ܵ̅ᇱ(ଷ×଺)቉ ݂̅ ௘ = ௙ܵ(଺×ଵଶ)݂̅ ௘, (32)
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where: ሼݑതଵ௘ തଶ௘ሽ்ݑ = ሼݑതଵ௘ ഥଵ௘ݓ ߶തଵ௘ തଶ௘ݑ ഥଶ௘ݓ ߶തଶ௘ሽ். 
And ሼ݂ଵ̅௘ ݂ଶ̅௘ሽ் = ሼ ഥܰଵ௘ തܸଵ௘ ഥଵ௘ܯ ഥܰଶ௘ തܸଶ௘ ഥଶ௘ሽ்ܯ  represent the nodal displacements and 

forces of closed-crack beam element as in Fig. 5. ܵ(̅ହ×ଷ) and ܵ̅ᇱ(ଷ×଺) can be written as follows: 

ܵ(̅ହ×ଷ) = ێێۏ
1ۍێ 0 −ℎത௟1 0 ℎത௨0 1 00 0 10 0 1 ۑۑے

ᇱ(ଷ×଺)̅ܵ   ,ېۑ = ൥1 0 0 1 0 00 1 0 0 1 0ℎത௟ 0 1 −ℎത௨ 0 1൩. (33)

Substituting Eq. (31) to Eq. (32), the relation between the nodal forces and displacements, for 
a closed-crack beam element in Fig. 5, can be obtained as: 

ቊ݂ଵ̅௘݂ଶ̅௘ቋ = ௙ܵ(଺×ଵଶ)ܭഥ(ଵଶ×ଵ଴)௘ ܵ௨(ଵ଴×଺) ൜ݑതଵ௘ݑതଶ௘ൠ = ഥ௖௟௢௦௘ௗܭ ൜ݑതଵ௘ݑതଶ௘ൠ. (34)

4. Numerical results  

Considering a cantilever beam containing a horizontal crack, wave propagation is studied by 
spectral element method (SEM). The material of beam is aluminum, and the dimensions are  
500 mm (length) × 10 mm (width) × 2 mm (thickness) as in Fig. 6. The crack is at the  
middle-length of the beam. ܮ௖ and ܪ௖ represent the length and depth of the crack, respectively. A 
bending moment ܯ  is loaded at the left end of the beam, and the right end is fixed. The 
displacements of sensor points A and B are calculated to analyze wave reflection and transmission 
due to crack. In SEM, FFT sampling points is set as 65536 and frequency resolution is 24.414 Hz.  

 
Fig. 6. Schematics of the beam for numerical simulation 

4.1. Modal analysis 

Model analysis performed by SEM is compared with that by the finite element method (FEM) 
to validate the proposed model. Three conditions, i.e., intact beam, the beam containing open crack 
and closed crack, respectively, are considered. The length of the crack, ܮ௖, is 100 mm and the 
depth of the crack ܪ௖ is 0.75 mm. In the SEM, it is conveniently calculated to look for the resonant 
region of the displacement when the force is set to always white noise. However, in the FEM,  
4-node plane stain element (with dimension 0.5 mm×0.5 mm) is employed to model the beam, 
and open crack is modeled as duplicate nodes, while closed crack is modeled by setting the 
transverse displacements of duplicate nodes equaling to each other. Table 1 shows frequency 
comparison calculated by SEM and FEM in three conditions. Under open crack condition, there 
are two additional local bending mode as the transverse displacement of sub-beams above and 
below open crack is independent with each other. It can be seen that natural frequencies of each 
mode calculated by SEM and FEM reach a good consistency, which verifies the proposed model. 

4.2. Wave propagation in an intact beam 

When there is no crack in the beam, i.e. ܮ௖ = 0, the bending moment, a five-peaked and 

500

2

125 125Lc

Unit: mm

HcA BM
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Hanning-windowed sinusoidal toneburst, is loaded at the left end of beam to generate A0 wave. 
Fig. 7 is the displacement of point A under excitation with central frequency 200 kHz. The first 
wave is incident A0 wave, and the second wave is reflected A0 wave from the right end of the 
beam. The second wave packet in Fig. 7 denotes that A0 wave is dispersive when it propagates 
along the beam. The time and distance of flight between two packets in Fig. 7 are 278.4 μs and 
750 mm, respectively. Group velocity of A0 wave can be calculated as 2.694 km/s.  

As the central frequency of the bending moment varies from 50 kHz to 400 kHz with a step of 
50 kHz, similarly, group velocities can be calculated in comparison with analytical results as seen 
in Fig. 8. It can be observed that results calculated by SEM achieve a good agreement with 
analytical results, demonstrating the effectiveness of the proposed SEM model. 

Table 1. Comparison of natural frequencies by FEM and SEM in three conditions 

 FEM SEM 
Intact Open crack Closed crack Intact Open crack Closed crack 

1st bending (Hz) 6.581 6.553 6.553 6.556 6.533 6.533 
2nd bending (Hz) 41.239 41.181 41.192 41.222 41.151 41.151 
3rd bending (Hz) 115.460 106.223 106.240 115.418 106.287 106.287 
4th bending (Hz) 226.222 221.573 223.171 226.163 221.562 223.135 
5th bending (Hz) 373.891 315.484 315.935 373.792 315.761 316.095 

Local 1st bending of sub-beam 
above the crack (Hz)  417.952   422.930  

6th bending (Hz) 558.401 547.711 522.030 558.232 550.126 522.302 
7th bending (Hz) 779.705 660.741 665.982 779.412 660.990 655.782 
8th bending (Hz) 1037.745 915.468 904.859 1037.261 917.146 905.297 
9th bending (Hz) 1332.455 1081.893 1179.345 1331.707 1088.450 1178.762 

Local 2nd bending of sub-beam 
above the crack (Hz)  1286.341   1293.704  

 

 
Fig. 7. The transverse displacement in an intact beam 

 
Fig. 8. Group velocity of A0 wave 

4.3. Wave propagation under open and closed crack condition 

4.3.1. Wave interaction with the crack 

Wave propagation in the cracked beam is studied under fully open or fully closed crack 
condition. The length of the crack ܮ௖ is 100 mm, and the depth of the crack ܪ௖ is 0.75 mm. A  
five-peaked and Hanning-windowed sinusoidal toneburst with central frequency 200 kHz is 
selected the time history of the bending moment.  

When the crack is fully open, Fig. 9(a) shows the transverse displacement of the sensor point 
A. The first wave packet is an incident A0 wave. According to Fig. 8, the group velocity of A0 
wave at 200 kHz is 2.694 km/s. Thus, it is recognized that the second wave packet is A0 wave 
reflected from the left end of the crack, and relevant A0 waves reflected from the right end of the 
crack and the fixed end of the beam are noted in Fig. 9. Wave packets, between reflected waves 
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from the left and right ends of the crack, can be illustrated as follows: the incident A0 wave 
transmits into the damaged region and converts to S0 wave at the left end of the crack; this 
transmitted S0 wave is reflected at the right end of the crack and then transmitted into the left side 
of the crack as A0 wave. Wave packets, between reflected waves from the right end of the crack 
and fixed end of the beam, are related that the waves that reflected from the crack are reflected 
from the left end of the beam and form multiple reflection and conversion between the crack and 
left end of the beam. Amplitudes of reflected waves from the left and right ends of the crack is 
0.239 μm and 1.730 μm, which indicate that reflection from the right end of the crack is the 
dominant reflection compared with the left end of the crack. 

Fig. 9(b) gives the transverse displacement of sensor point A under closed crack condition. It 
is the same as the open crack that reflection from the left end of the crack is much less than that 
from the right end of the crack. Amplitudes of reflected waves from the left and right ends of the 
crack is 0.221 μm and 0.771 μm, which indicates that reflection at the crack under closed crack 
condition is smaller than that under open crack condition. Hence, reflection from the fixed end of 
the beam under closed crack condition, i.e. transmission from the crack, is larger than that under 
open crack condition. 

When the length of the crack becomes shorter as 5 mm, which is smaller than the wavelength 
of A0 wave with central frequency 200 kHz, Fig. 10 gives the displacements of sensor point A 
under open and closed crack conditions. It can be seen that waves reflected from the left end and 
the right end are emerged into one wave packet. 

 
a) 

 
b) 

Fig. 9. The transverse displacement at sensor point A:  
a) under open crack condition; b) under closed crack condition 

 
a)  

b) 
Fig. 10. The transverse displacement at sensor point A when the length of the crack is short:  

a) under open crack condition; b) under closed crack condition 

4.3.2. The effect of the crack depth  

The reflection and transmission coefficients can convey information about the crack depth. As 
in Fig. 6, the excitation frequency 200 kHz is used in the analysis, the length of the crack is  
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100 mm, and the crack depth ratio (compared with the thickness of the beam) varies from 0 % to 
50 % with a step of 5 %. The reflection and transmission coefficients, calculated from the 
displacement at sensor points A and B (Fig. 6), respectively, are defined as the ratio of the 
magnitude of reflected and transmitted waves from the right end of the crack to the magnitude of 
the incident wave at sensor point A. The reflection and transmission coefficients with crack depth 
ratio from 50 % to 100 % are symmetric as those from 0 to 50 %.  

Seen in Fig. 11(a), when the crack is fully open, the reflection coefficient starts from zero, first 
increases with the crack depth ratio from 0 to 45 % and then decreases with that from 45 % to 
50 %; whereas the transmission coefficient starts from 1 and changes with an opposite direction 
as the reflection coefficient. It can be seen in Fig. 11(b), when the crack is fully closed, that the 
reflection coefficient increases monotonically and the transmission coefficient decreases 
monotonically. This difference may be illustrated as, under the open crack condition, incident 
wave travels above and below crack at different group velocities and results in a time delay. Hence, 
when arrival waves at the right end of the crack are in phase, a maximum in magnitude for the 
reflection will occur. Otherwise, when they are out of phase, a minimum in magnitude will occur. 
However, under the closed crack condition, the displacements above and below the crack are all 
the same, and waves travels at the same velocity in Eqs. (26)-(29). 

 
a) 

 
b) 

Fig. 11. Reflection and transmission coefficients versus the crack depth:  
a) under open crack condition; b) under closed crack condition 

5. Experiment to identify the crack 

An experiment is designed to identify the length of the crack. As in Fig. 12, a through cutting 
crack, 160 mm length, is made at the middle of an aluminum beam (with dimensions 500 mm 
(length) × 20 mm (width) × 2 mm (thickness)). Two piezoelectric actuators and two piezoelectric 
sensors (each with dimensions 5 mm (radius) × 1 mm (thickness)), made of PbZrTiO3 (PZT), are 
mounted on the surface of the beam. From Section 4.3, wave reflection from the second end of 
the crack is much larger than that from the first end. Wave excited by PZT A is mainly reflected 
by the right end of the crack, thus, the signal received by PZT B may be used to calculate the 
location of the right end of the crack. Similarly, signals excited by PZT C and received by PZT D 
may locate the left end of the crack. 

The excitation signal is also selected as a five-peaked and Hanning-windowed sinusoidal 
toneburst. The central frequency of the excitation is 20 kHz, for there is no S0 wave but only A0 
wave in this frequency [14]. Fig. 13 shows signals received by PZT B at both uncracked and 
cracked conditions. By comparing two figures, it is obviously seen that there is a wave packet 
reflected from the crack. The first two wave packets in Fig. 13(a) represent incident A0 wave and 
reflection A0 wave from the right end of the beam, respectively. Flight time is extracted by wavelet 
decomposition. Group velocity of A0 wave can be calculated as 1540 m/s. By analyzing the first 
two wave packets in Fig. 13(b), the distance between PZT B and the right end of the crack can be 
known as 208 mm. Identified right end of the crack have an error 3 mm from the real end.  
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Similarly, when the signal is excited by PZT C and received by PZT D, the left end of the crack 
is located with a left offset of 4 mm from the left end of the crack. Thus, the length of the crack is 
identified as 167 mm, whose error may be due to the size of PZT and change of group velocity. 

 
Fig. 12. Schematics of experiment 

 
a) 

 
b) 

Fig. 13. Signal received by PZT B at: a) uncracked condition; b) cracked condition 

6. Conclusions 

This paper has the following contributions: 
1) Spectral element formulas in an open or closed-cracked beam are derived separately, which 

have been verified by the conventional FEM and are used to study wave propagation in the cracked 
beam and look for damage feature. 

2) Wave reflection when wave propagated into the crack is much smaller than that propagating 
out of the crack, which can be used to identify the end of the crack and an example has been given 
in the paper. 

3) Wave reflection and transmission at the crack have also been studied.  
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