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Abstract. In order to enhance the capability of feature extraction and fault classification of 
bearings, this study proposes a feature extraction approach based on dual-tree complex wavelet 
transform (DTCWT) and permutation entropy (PE), using the fuzzy c means clustering (FCM) to 
identify fault types. The vibration signal of bearings can be decomposed into several wavelet 
components with DTCWT which can describe the local characteristics of vibration signals 
accurately. And the PE of each wavelet component, which can describe the complexity of a time 
series, is calculated to be regarded as the fault features. Then forming the standard clustering 
centers by the FCM, we defined a standard using the Hamming approach degree to evaluate the 
classification results in the FCM. In order to verify the effectiveness of the proposed approach, 
compared with two other typical signal analysis methods: ensemble empirical mode 
decomposition (EEMD) and variational mode decomposition (VMD), through extracting fault 
features, it required to identify the fault types and severities under variable operating conditions. 
The experimental results demonstrate that the proposed approach has a better accuracy and 
performance to diagnose a bearing fault under different fault severities and variable operating 
conditions. The proposed approach is suitable for a fault diagnosis due to its good ability to the 
feature extraction and fault classification. 
Keywords: bearing fault diagnosis, features extraction, dual-tree complex wavelet transform, 
permutation entropy, optimized FCM. 

1. Introduction 

Bearings are the key components in the mechanical structure, and the condition monitoring 
and fault diagnosis are critical to ensure the normal operation of machinery and equipment. The 
process of bearing fault diagnosis mainly consists of the fault feature extraction and fault 
classification [1, 2]. In case of a bearing failure, the frequency band energy of vibration signals 
will change. If frequency band signal characteristics can be extracted, the bearing fault 
classification can be carried out. Therefore, the effective extraction of fault feature is the key for 
a fault diagnosis. 

The main problem of the feature extraction is how to process the different bearing vibration 
signals [3, 4]. Sometime-frequency analysis methods have been proposed to diagnose fault of 
rotating machinery in past few years, such as the empirical mode decomposition (EMD) [5, 6], 
local mean decomposition (LMD) [7], ensemble empirical mode decomposition (EEMD) [5, 8], 
and variational mode decomposition (VMD) [9]. The EMD is a self-adaptive method, for 
analyzing nonlinear and non-stationary signals to decompose the signals into a few intrinsic mode 
functions (IMFs). Each IMF is regarded as a mono-component [10]. Like with EMD, LMD 
decomposes the signals into a few product functions (PFs), each PF is a product of envelope and 
frequency modulated signals, from which the instantaneous frequency can be derived [11]. Yet 
the EMD has some drawbacks, including end effects, mode mixing and border effect problem. So, 
the EEMD has been proposed to eliminate the mode mixing problem of EMD [12]. The EMD, 
LMD and EEMD belong to recursive mode decomposition, by contrast, the VMD transforms the 
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signal decomposition into non-recursive, variational modal decomposition model, and has better 
noise robustness [9, 13]. Thus, these time-frequency analysis methods, which combine the auto 
regressive model (AR), singular value decomposition (SVD) [2, 14], entropy-based method  
[8, 15, 16] and support vector machine (SVM) [9, 17], are widely used in the bearing fault 
diagnosis. However, there are some different problems in these methods. As mentioned above, the 
EMD and LMD also have mode combination and border effect problems, and they are all affected 
by the sampling frequency. The EEMD decomposition process is affected by the parameters so 
that it still has illusive components [12, 17]. Similarly, the VMD also is affected by the parameter 
determination [18]. 

So far, the discrete wavelet transforms (DWT) and second-generation wavelet transform 
(SGWT) have gained enormous applications for signal processing and bearing fault diagnosis in 
the literatures [19-21]. The DWT has the advantages of low entropy, multi resolution, flexible 
selection of substrates. While the main disadvantage of DWT consists in that it only decomposes 
the lowest frequency sub-band of signals and lacks the shift invariance, which may weaken the 
identification of fault features [22]. The SGWT is a wavelet transform based on a lifting scheme, 
but it also lacks the shift invariance and has severe aliasing in the process of decomposition. In 
order to overcome the defects of the above wavelet, the dual-tree complex wavelet transform 
(DTCWT) was initially proposed by Kingsbury [23], and Selesnick [24] who turned it up to the 
dyadic case. It was demonstrated that the performance of DTCWT was better than that of DWT 
and SGWT. The DTCWT retains the excellent properties of complex wavelet transform, and uses 
the dual-tree filter form to ensure the perfect signal reconstruction. Therefore, the dual tree 
complex wavelet transform is a kind of wavelet transform. It has good properties of approximate 
shift invariance, good directional selectivity, limited data redundancies, perfect reconstruction and 
high computational efficiency [24]. Because the DTCWT enjoys many attractive properties such 
as nearly shift-invariance and reduced aliasing which may be suitable to both the surveillance and 
diagnosis of rotating machine. And it has been used in the image processing [25], signal noise 
reduction processing [26] and engine fault diagnosis [27] etc. 

In this literature, a new technique is proposed based on the DTCWT and permutation entropy 
(PE) to extract fault features in bearing vibration signals. The PE is an entropy-based method to 
analyze the signals complexity [28]. The permutation entropy is used in the statistical measuring 
method. It describes the local order structure and complexity of a time series via phase space 
reconstruction, and gets a great importance to the nonlinear behavior of the time series. It has been 
applied in many fields with the advantages of simplicity, robustness and invariance to nonlinear 
monotonous transformations [16, 29]. The wavelet components gained from the DTCWT can 
accurately describe the local characteristics of vibration signals, and the PEs of wavelet 
components can reflect more useful fault information. Therefore, in this study, the PE of a wavelet 
component is calculated to be regarded as the signal feature, and it represents the features of 
different signal types and is used to separates different faults. Meanwhile, the standard fuzzy C 
means clustering (FCM) is used to identify fault types, and the hamming approach degree is 
introduced to FCM to evaluate the result of clustering. the FCM is one of the most widely used 
algorithms in fuzzy clustering, which divides the samples of high similarity into the same category 
via iteration and optimization of the objective function [30]. And it also has been widely applied 
in the fault detection and diagnosis [31, 32]. 

The rest of this paper is organized as follows. The DTCWT, permutation entropy, optimized 
FCM are briefly reviewed in Section 2. Section 3 describes the proposed fault diagnosis method. 
Then in Section 4, the proposed approach is compared with the EEMD and VMD via extracting 
multiple fault signatures in the vibration signal and identifying the fault types and severities of 
bearings, using bearing vibration signals for validation. Finally, the conclusion is presented. 
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2. Related works 

2.1. Dual-tree complex wavelet transform(DTCWT) 

The DTCWT is a relatively recent enhancement to the DWT, which has important additional 
properties including nearly shift-invariant and directionally selective in two and higher dimensions 
[24]. The DTCWT uses two parallel DWTs (real tree and imaginary tree) with different low-pass 
and high-pass filters in each scale for signal decomposition and reconstruction. The decomposition 
and reconstruction of DTCWT are shown in Fig. 1. 

 
Fig. 1. DTCWT decomposition and reconstruction 

These two DWTs use two different sets of filters, and they satisfy the perfect decomposition 
and reconstruction. Let ߰(ݐ) and ߰(ݐ) represent the used two real-valued wavelets of DTCWT, 
and ߮(ݐ) and ߮(ݐ) are the corresponding scaling functions. A complex-valued wavelet ߰(ݐ) 
can be denoted as [26]: ߰(ݐ) = ߰(ݐ) + ݅߰(ݐ). (1)

Then the DTCWT consists of two parallel wavelet transforms, therefore, according to the 
wavelet theory, the wavelet coefficients ݀ோ(݇) and the scaling coefficients ܿோ(݇) of the above 
upper tree can be calculated by inner products as follows: 

݀ோ(݇) = 2 ଶ⁄ න ାஶ(ݐ)ݔ
ିஶ ߰(2ݐ − ݆    ,ݐ݀(݇ = 1,2,⋅⋅⋅, (2) ,ܬ

ܿோ(݇) = 2 ଶ⁄ න ାஶ(ݐ)ݔ
ିஶ ߮(2ݐ − (3) ,ݐ݀(݇

where ݆ is the scale factor and ܬ is the maximum decomposition scale. Similarly, the wavelet 
coefficients ݀ூ(݇) and scaling coefficients ܿூ(݇) of the above lower tree can be computed via 
Eqs. (4) and (5): 

݀ூ(݇) = 2 ଶ⁄ න ାஶ(ݐ)ݔ
ିஶ ߮(2ݐ − ݆    ,ݐ݀(݇ = 1,2,⋅⋅⋅, (4) ,ܬ

ܿூ(݇) = 2 ଶ⁄ න ାஶ(ݐ)ݔ
ିஶ ߮(2ݐ − (5) .ݐ݀(݇

Then, the wavelet coefficients ݀(݇) and the scaling coefficients ܿ(݇) of the DTCWT can be 
obtained by combining the dual tree output as follows: 
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݀(݇) =    ݀ℜ(݇) + ݅ ݀ℑ(݇),    ݆ = 1,2,⋅⋅⋅, (݇)ܿ(6) ,ܬ =    ܿℜ(݇) + ݅ ܿℑ(݇). (7)

In the decomposition process, the input signal through the low-pass and high-pass filters, 
respectively. Since the signal frequency is divided into high-pass and low-pass, the bandwidth of 
the filtered output signal is only a half of the original signal. According to the sampling theorem 
of bandlimited signals, it is possible to reduce the sample rate by half without losing any 
information. Therefore, using binary sampling in the decomposition is reasonable, and the number 
of the obtained wavelet coefficients reduced by half with the depth of decomposition. 

So, the complex wavelet coefficients and last-level scaling function coefficient are 
reconstructed to correspondingly obtain the detail signals at all levels and the approximation signal 
at the last level by the following equations: 

݀(ݐ) =    2(ିଵ) ଶൗ  ݀ோ(݇) ߰(2ݐ − ݊) +  ݀ூ(݇) ߰(2ݐ − ݉)൩ ,    ݆ = 1,⋅⋅⋅, (8) ,ܬ

ܿ(ݐ) =    2(ିଵ) ଶൗ  ܿோ(݇) ߮(2ݐ − ݉) +  ܿூ(݇) ߮(2ݐ − ݊)൩,   (9)

where ݉ and ݊ are the lengths of the adopter filters.  
Finally, the reconstructed signal (ݐ)′ݔ  is equal to the sum of all detail signals and 

approximation signal: 

(ݐ)ᇱݔ = ܿ(ݐ) +  ݀
ୀଵ (10) .(ݐ)

In the literature [24], it was proposed to design methods for dual-tree filters based on the  
half-sample delay condition. In this paper, (13, 19) – tap near symmetry biorthogonal filters are 
used at the first level, and the 14-tap linear phase filters produced by the Q-shift solution are used 
at the level except the first one. For more detailed information about the design of dual-tree filters 
in this paper, please refer to the literature [33]. 

2.2. Basic principle of permutation entropy 

Permutation entropy (PE) is used to analyze the data complexity [28]. The permutation entropy 
is a statistical measuring method that has been effectively applied in many fields. The basic 
principle of PE is described as follows. 

For a time series {ݔ(݅), ݅ = 1,2,⋅⋅⋅ , ܰ} , a ݀ -dimensional delay embedding matrix is  
expressed as: ܺ(1) = 1)ݔ   ,(1)ݔ} + ߬),⋅⋅⋅, 1)ݔ + (݀ − 1)߬)},ܺ(2) = ,(2)ݔ} 2)ݔ + ߬),⋅⋅⋅, 2)ݔ + (݀ − 1)߬)},ܺ(݅) = ݅)ݔ   ,(݅)ݔ} + ߬),⋅⋅⋅, ݅)ݔ + (݀ − 1)߬)}, ⋮                                                              ܺ(ܰ − (݀ − 1)߬) = ܰ)ݔ} − (݀ − ܰ)ݔ   (߬(1 − (݀ − 2)߬) ⋅⋅⋅ (11) ,{(ܰ)ݔ

where ݀ denotes the number of the embedding dimension, ߬ is the time delay. For ݀ = 2, there 
are two possible ordinal patterns of ܺ(݅),  namely ߨଵ = (݅)ݔ < ݅)ݔ + ߬)  and  ߨଶ = ݅)ݔ + ߬) <  :The ݀ number of real values ܺ(݅) can be arranged in an increasing order .(݅)ݔ
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݅)ݔ + (݆ଵ − 1)߬) ≤ ݅)ݔ + (݆ଶ − 1)߬) ≤ ݅)ݔ + (݆ௗ − 1)߬), (12)

where ݆ represents the index in the column of embedding vector’s element and 1 ≤ ݆ ≤ ݀. In 
general, there are just ݀! possible order patterns. 

If there are two or more elements having the same value, e.g.  ݔ(݅ + (݆ଵ − 1)߬) = ݅)ݔ + (݆ଶ − 1)߬) , we can sort the original positions for ݆ଵ ≤ ݆ଶ  and  ݔ(݅ + (݆ଵ − 1)߬) ≤ ݅)ݔ + (݆ଶ − 1)߬)  can be recorded. Any ܺ(݅)  is uniquely mapped onto  ߨ = (݆ଵ, ݆ଶ,⋅⋅⋅, ݆ௗ) , which is one of the ݀! permutations of ݀ distinct symbols. When each such 
permutation is considered as a symbol, then the reconstructed trajectory in the m-dimensional 
space is represented by a symbol sequence ܵௗ . We can say that ܺ(݅) has a permutation ߨ, if and 
only if ߨ is unique in ܵௗ and satisfies Eq. (11). 

For each permutation ߨ, the relative frequency can be calculated as follows: 

(ߨ) = 1|ߨ  ݁ݕݐ  ݏℎܽ  (݅)ܺ}ݎܾ݁݉ݑܰ ≤ ݅ ≤ ܰ − (݀ − 1)߬}ܰ − (݀ − 1)߬ . (13)

According to the Shannon’s entropy, the permutation entropy ܪ(݀)
 
of order ݀ for the time 

series is defined as: ܪ = −  (ߨ) ln൫(ߨ)൯గ . (14)

2.3. Optimized fuzzy  means clustering  

The FCM is the most classical clustering algorithm based on the objective function. Its central 
message is that each data point is associated with a cluster through a membership degree. And this 
technique divides a collection of data points into fuzzy groups and finds a cluster center in each 
group such that a cost function of a dissimilarity measure is minimized [31]. 

For a data sample ܺ = ,ଵݔ} , ⋅⋅⋅,ଶݔ ܷ ே}, giving the fuzzy membership matrixݔ =  ×ே[ݑ]
and 

the clustering center ܥ = [ܿଵ, ܿଶ,⋅⋅⋅ , ܿ]் , the most popular clustering method for identifying 
optimal fuzzy ܿ -partitions in ܺ  is associated with the generalized least-squared errors  
functional [31]: 

۔ۖەۖ
,ܷ)ܬ}minۓ {(்ܥ =   ݀ଶݑ ,

ୀଵ
ே

ୀଵݏ. .ݐ  ݑ = 1,   ∀݆ = 1,⋅⋅⋅, ݊
ୀଵ ,݀ଶ = ฮݔ − ܿฮଶ = ݔ) − ܿ)்ܣ൫ݔ − ܿ൯,

 (15)

where ݉ ∈ [1, +∞) is weighting exponent, ܰ and ܿ represent the number of the data samples and 
clustering centers, respectively. ܷ  is fuzzy ܿ-partitions in ܺ . ܿ  is the center of cluster ݅ . The 
squared distance ݀ଶ  between ݔ  and ܿ  is computed using metric matrix ܣ. ܣ   is  
positive-definite (݊ × ݊) weight matrix. ∑ ∑ 1=1ܰ݅=2݇ܿ݅݅݀݉(݇݅ݑ)  represents the overall weighted sum 
of generalized ܣ-errors due to replacing ܺ by ܥ.  

Then, the extremum problem with constraint condition converts to the problem of 
unconstrained condition by introducing the operator ߣ = ,⋅⋅⋅,ଵߣ]  :[ߣ
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,ܷ)ܬ ,்ܥ (ߣ = ,ܷ)ܬ ܿଵ,⋅⋅⋅, ܿ) +  ߣ ൭ ݑ − 1
ୀଵ ൱ =   ேݑ

ୀଵ


ୀଵ ݀ଶ +  ߣ ൭ ݑ − 1
ୀଵ ൱

ୀଵ .ே
ୀଵ                                                 (16) 

In the FCM algorithm, the fuzzy partitioning is obtained by an iterative optimization of the 
above function (16). The membership functions and cluster centers are updated by the following: 

ܿ = ൫∑ ேୀଵݔݑ ൯∑ ேୀଵݑ ,    1 ≤ ݅ ≤ ݑ(17) ,ܿ = 1∑ ൬݀݀൰ଶ/(ିଵ)ୀଵ ,    1 ≤ ݆ ≤ ܰ,    1 ≤ ݇ ≤ ܿ. 
(18)

Conditions expressed in Eqs. (17) and (18) are necessary, but not sufficient. They provide 
means for optimizing ܬ via simple Picard iteration, by looping back and forth from Eq. (17) to (18) 
until the iterate sequence shows but small changes in successive entries of ܿ or ݑ. 

The iteration can be stopped when the following iteration termination condition is satisfied: max൛หݑାଵ − หൟݑ < (19) ,ߝ

where ݇ is the iteration number and ߝ is 0.00001 which satisfies a termination criterion.  
The FCM algorithm consists of a series of iterations using Eqs. (17) and (18), which determine 

the cluster centers and membership matrix as follows: 
Step 1). Definition of the number of cluster centers ܿ. The weighting exponent ݉ = 2. Choose 

an initial fuzzy membership matrix ܷ, and the number of iterations ݇ is 0. 
Step 2). Calculation of the clustering center ܥ of all samples according to Eq. (17). 
Step 3). Update of the fuzzy membership matrix ܷ by a new computed ݑ using Eq. (18). 
Step 4). Objective function calculation. If the difference between adjacent values of the 

objective function is less than the iteration termination criterion ߝ then the iteration terminates. 
Otherwise, return to step 2. 

In order to determine the classification accuracy of FCM, we propose an optimized FCM.  
In this algorithm, we define a principle of hamming approach degree. Given the dataset ܺ = ,ଵݔ} , ⋅⋅⋅,ଶݔ ݔ ,{ேݔ ⊂ ܴ, The ܺ contain samples of ܿ states, which has ܿ clustering centers. ܥ = [ܿଵ, ܿଶ,⋅⋅⋅ , ܿ]்,  ܿ ⊂ ܴ.  For a test dataset ܶ = ,ଵݐ} , ⋅⋅⋅,ଶݐ ,{ேݐ ݐ  ⊂ ܴ,  define  ܰ = [ ଵܰ, ܰ ,⋅⋅⋅, ܰ] to be a hamming approach degree. In order to determine whether the data 

sample ݐ belongs to the data sample category at the state ݅ for calculating hamming approach 
degree ܰ between the test sample ݐ and the clustering center ܿ under the state ݅: 

ܰ = 1 − 1݉ |ܿ − |ݐ
ୀଵ ,    ݅ = 1,⋅⋅⋅, ܿ. (20)

For data sample ݐ, find the state that has the maximum hamming approach degree, and this 
data sample ݐ can be determined as it belongs to this state. In this paper, when the difference of 
the maximum hamming approach degree in 2 states is less than 0.01, that it cannot be identified 
or can be wrong. 

3. Bearing fault diagnosis based on DTCWT-PE and optimized FCM 

A method based on DTCWT, PE and optimized FCM is proposed for bearing fault diagnosis 
in this section. The procedure of this method is illustrated in Fig. 2 and summarized as follows: 



2825. NOVEL BEARING FAULT DIAGNOSIS MODEL INTEGRATED WITH DUAL-TREE COMPLEX WAVELET TRANSFORM, PERMUTATION ENTROPY AND 
OPTIMIZED FCM. PING MA, HONGLI ZHANG, WENHUI FAN, CONG WANG 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAR 2018, VOL. 20, ISSUE 2. ISSN 1392-8716 897 

Step 1) Perform the DTCWT for a vibration signal. In this step, each vibration signal is divided 
into 30 segments, and each segment contains 1024 points. According to the principle of DTCWT, 
each segment is decomposed into a few sub-band wavelet components. In this paper, the methods 
of EEMD and VMD are used for a comparison. 

Step 2) For sub-band wavelet components of each segment, calculate the PE of three former 
wavelet sub-band components that contain more information, and it can be made up a 3×30 
dimensional fault feature matrix. In this paper, DTCWT-PEs, EEMD-PEs, VMD-PEs are all 
calculated to make a comparison. 

Step 3) Use the optimized FCM method to identify the type of fault. For vibration signals of 
different faults, it considers some part fault feature matrix obtained by step 2 as a data sample, 
using the FCM method, we calculate the clustering center of each data sample. And we regard the 
rest of fault feature matrix as a test data sample, calculating the hamming approach degree between 
cluster center of each fault to the test data. The fault is identified as a fault type when the test data 
and cluster center of this fault have the maximal Hamming approach degree. 

 
Fig. 2. Sketch of bearing fault diagnosis method 

4. Experimental verification 

In this study, the bearing data are obtained from the Bearing Data Center of the Case Western 
Reserve University [34], to verify the effectiveness of the proposed method. And the data are 
obtained from a fault injection test of 6205-SKF deeply grooved ball bearings. The test rig consists 
of a 2-horse power motor, a torque transducer, a dynamometer, and control electronics (not  
shown), as shown in Fig. 3(a). Vibration data is collected using accelerometers, which are attached 
to the housing with magnetic bases. Accelerometers were placed at the 12 o’clock position at both 
the drive end and fan end of the motor housing. The test bearing supports the motor shaft and 
motor loads of 0 to 3 horsepower (hp) (corresponding to motor speed of 1797, 1772, 1750 and  
1720 rpm). Single point faults were introduced to the inner race, rolling element and outer race of 
the test bearing using electro-discharge machining with fault diameters of 0.1778 millimeters, 
0.3556 millimeters and 0.5334 millimeters. The sampling frequency is 12 kHz for drive end 
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bearing experiments. Let’s take 1772 rpm as an example, the time domain waveforms of vibration 
signals under four working states are shown in Fig. 3(b). And Fig. 3(c) gives the vibration signals 
of rolling element fault with different fault diameters. Because of the non-stationary and nonlinear 
characteristics of the vibration signals, the DTCWT method is used to decompose them into a set 
of wavelet components. 

 
a) 

 
b) 

 
c) 

Fig. 3. a) Bearing test rig, b) vibration signals under four operating states,  
c) vibration signals of rolling element fault with different fault diameters 

4.1. Feature extraction based on DTCWT and PE 

In this section, each group of the vibration data is divided into several segments, and each 
segment contains 1024 points. Decompose each segment into a few wavelet components using the 
DTCWT. Then, calculate the PE of each signal component and regard it as the fault feature  
vectors.  

In order to assess the advantages of the proposed approach, it is compared with several widely 
used feature extraction methods. In this paper, we choose DTCWT, EEMD and VMD to 
decompose signals into several components, and the PE groups can be calculated separately. The 
EEMD and VMD decompose signals into a few intrinsic mode functions (IMFs). Each IMF is 
regarded as a component. As the principles of DTCWT, EEMD and VMD are different, and the 
number of signal components is different for the same data, the number of the PEs is different 
similarly. But we know that there is the most dominant fault information from former  
mono-components, thus three former signal components can be considered and calculated. So, 
three PEs of each segment of vibration data can be regarded as the fault feature vectors. 

Groups of feature vectors can be gained from each segment of vibration data. In this work, 
each vibration data is divided into 30 groups, and each group contains 1024 points. The detail of 
test dataset is shown in Table 1. 
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Table 1. Detail of test dataset 
 Health state Fault width Motor load (operating condition) 

Millimeters 0 hp 1 hp 2 hp 3 hp 

1 

Normal – 90 grs – – – 
Inner-race fault 0.1778 30 grs 30 grs 30 grs 30 grs 

Rolling element fault 0.1778 30 grs 30 grs 30 grs 30 grs 
outer-race fault 0.1778 30 grs 30 grs 30 grs 30 grs 

2 

Normal – 90 grs – – – 
Inner-race fault 0.3556 30 grs 30 grs 30 grs 30 grs 

Rolling element fault 0.3556 30 grs 30 grs 30 grs 30 grs 
outer-race fault 0.3556 30 grs 30 grs 30 grs 30 grs 

3 

Normal - 90 grs – – – 
Inner-race fault 0.5334 30 grs 30 grs 30 grs 30 grs 

Rolling element fault 0.5334 30 grs 30 grs 30 grs 30 grs 
outer-race fault 0.5334 30 grs 30 grs 30 grs 30 grs 

4 

Normal – 30 grs    
Inner-race fault 0.1778, 0.3556, 0.5334 

0.1778, 0.3556, 0.5334 
0.1778, 0.3556, 0.5334 

30, 30, 30 grs  
Rolling element fault 30, 30, 30 grs  

Outer-race fault 30, 30, 30 grs  
grs: groups, hp: horsepower 

4.1.1. Fault features extraction under variable operating conditions 

The fault of bearings consists of inner-race fault, rolling element fault, and outer-race fault, 
the motor loads changes can be made under the variable operating conditions of bearings. As the 
motor loads influence the vibration intensity, then they influence the extracted PEs. It may lead to 
a mixture of features of different fault types. So, this is necessary to confirm the performance of 
diagnosis under variable operating conditions. 

In this part, we consider the fault features extraction of different fault types under variable 
operating conditions (motor loads of 0 to 3 horsepower). Datasets 1-3 from table 1 are prepared 
for different fault severities under different operating conditions, and each dataset contains 13 
subsets. For each segment of original signal, groups of three-dimensional fault features under 
different operating conditions are obtained by DTCWT-PEs, EEMD-PEs and VMD-PEs. Then 
scatter plots of DTCWT-PEs, EEMD-PEs and VMD-PEs for different fault severities under 
variable operating conditions are shown in Fig. 4-6. 

Fig. 4 shows the scatter plots of the fault feature extracted from dataset 1 using DTCWT-PEs, 
EEMD-PEs and VMD-PEs. Among the Fig. 4(a) and (b), the scatter plots of EEMD-PEs and 
VMD-PEs have the mixing phenomena. Features of three fault types at different operating 
conditions do not cluster very well, and there is a large overlap between three fault types clustering 
in EEMD-PEs. From the scatter plots of DTCWT-PEs in Fig. 4(c), we can see that features of 
different fault types at four operating conditions cluster well and are far away from the health state. 
So, three fault types and normal states can be separated effectively.  

The scatter plots of feature vectors are obtained from dataset 2 using DTCWT-PEs, 
EEMD-PEs and VMD-PEs, as shown in Fig. 5. In Fig. 5(b), where the features between rolling 
element fault and inner-race fault obtained by VMD-PEs occur with the mixing phenomena. In 
Fig. 5(a) and (c), the scatter plots of the feature vectors obtained from EEMD-PEs and 
DTCWT-PEs are gathered well at variable operating conditions, and the separation between the 
fault types is clear.  

Fig. 6 presents the scatter plots of feature vectors gained from dataset 3 with fault diameters 
equal to 0.3556 millimeters by three techniques. From Fig. 6(a), it can be seen that the fault 
features between rolling element fault and outer-race fault using EEMD-PEs have an overlap. And 
there are some mixing phenomena of feature vectors between inner-race fault and outer-race fault 
of VMD-PEs in Fig. 6(b). From Fig. 6(c), we can see that the features extracted by DTCWT-PEs 
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are obviously separable.  
According to the analysis of Fig. 4-6, comparing the fault features extraction results using 

EEMD-PEs and VMD-PEs, we can see that the fault features extraction results of DTCWT-PEs 
have a great advantage. The feature vectors of different fault types at four operating conditions 
cluster well. At the stage of three different fault severities, different fault types and normal states 
are effectively separated. It indicates that the proposed fault feature extraction method of  
DTCWT-PEs has better performance at variable operating conditions. 

 
a) EEMD-PEs 

 
b) VMD-PEs 

 
c) DTCWT-PEs 

 
d) 

Fig. 4. Scatter plot of: a) EEMD-PEs, b) VMD-PEs and, c) DTCWT-PEs  
for fault feature extraction results of dataset 1 under variable operating conditions 

 
a) EEMD-PEs 

 
b) VMD-PEs 

 
c) DTCWT-PEs 

 
d) 

Fig. 5. Scatter plot of: a) EEMD-PEs, b) VMD-Pes and, c) DTCWT-Pes  
for fault feature extraction results of dataset 2 under variable operating conditions 
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a) EEMD-PEs 

 
b) VMD-PEs 

 
c) DTCWT-PEs 

 
d) 

Fig. 6. Scatter plot of: a) EEMD-PEs, b) VMD-PEs and, c) DTCWT-Pes  
for fault feature extraction results of dataset 3 under variable operating conditions 

4.1.2. Fault feature extraction for different fault severities 

In order to demonstrate the feature extraction performance of DTCWT-PEs in identifying 
different fault severities, vibration data is analyzed at different fault severities. The detail of the 
extracted feature dataset with different fault severities is shown in Table 1 (dataset 4). The 
analyzed vibration data containing the normal state and three-faults state with fault diameters of 
0.1778 millimeters, 0.3556 millimeters and 0.5334 millimeters, and we select the vibration data 
at the motor loads of 1 horsepower as an example. The features of normal state, inner-race fault 
state, rolling element fault state and outer-race fault state are extracted respectively by  
DTCWT-PEs, EEMD-PEs and VMD-PEs. The scatter plots of the fault features at different fault 
severities are shown respectively in Fig. 7-9. 

Fig. 7 shows the scatter plots of the fault features extracted from the rolling element fault with 
different fault severities and normal state using DTCWT-PEs, EEMD-PEs and VMD-PEs where 
the scatter plots of the feature vectors obtained from EEMD-PEs and DTCWT-PEs are gathered 
well and are far away from each other. In particular, the features vectors of Fig. 7(c) are more 
compact, and the separation of the different states is very clear. By contrast, in Fig. 7(b), the scatter 
plots of VMD-PEs have some mixing between the fault severities with 0.1778 millimeters and 
0.5334 millimeters. 

The scatter plots of feature vectors are obtained from the inner-race fault with different fault 
severities and normal state, as shown in Fig. 8. In Fig. 8(a) and (b), where the features obtained 
by EEMD-PEs and VMD-PEs of inner-race fault between the fault severities with 
0.1778 millimeters and 0.5334 millimeters, the mixing phenomena occur. From the scatter plots 
of DTCWT-PEs in Fig. 8(c), we can see that the features of different fault severities cluster well 
and are far away from the health state, three fault severities and normal states can be separated 
effectively. 

Fig. 9 shows the scatter plots of feature vectors gained from the outer-race fault with different 
fault severities and normal state by three techniques. From Fig. 9(a) and (b), it can be seen that the 
features of four states do not cluster very well, the features extracted by EEMD-PEs and  
VMD-PEs are mixed for different fault severities, especially in Fig. 9(b). The scatter plots of 
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DTCWT-PEs are shown in Fig. 9(c). We can see that the feature vectors cluster well, and there is 
no mixing phenomena happened.  

From the above analysis, we can determine that the feature are extracted from different fault 
severities by the EEMD-PEs and VMD-PEs occurred with mixing phenomena. While the features 
extracted from the DTCWT-PEs also have the capacity to be distinguished as different fault 
severities of three fault types, the features of different fault severities cluster well and are far away 
from each other. Therefore, the features extraction performance of DTCWT-PEs is better than that 
of EEMD-PEs and VMD-PEs for different fault severities. 

 
a) EEMD-PEs 

 
b) VMD-PEs 

 
c) DTCWT-PEs 

 
d) 

Fig. 7. Scatter plot of: a) EEMD-PEs, b) VMD-PEs and, c) DTCWT-PEs  
for fault feature extraction results with rolling element fault of dataset 4 

 
a) EEMD-PEs 

 
b) VMD-PEs 

 
c) DTCWT-PEs 

 
d) 

Fig. 8. Scatter plot of: a) EEMD-PEs, b) VMD-Pes and, c) DTCWT-PEs  
for fault feature extraction results with inner-race fault of dataset 4 
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a) EEMD-PEs 

 
b) VMD-PEs 

 
c) DTCWT-PEs 

 
d) 

Fig. 9. Scatter plot of: a) EEMD-PEs, b) VMD-PEs and, c) DTCWT-Pes  
for fault feature extraction with outer-race fault results of dataset 4 

4.2. Fault diagnosis by optimized FCM 

In order to verify the performance of DTCWT-PEs in the fault identification, the optimized 
FCM is introduced to calculate the classification accuracy. In this step, we consider the diagnosis 
of all kinds of data under the same loads. Meanwhile, we use the fault data under known load 
conditions to identify the fault types of other load conditions. The detailed information of the data 
sample is shown in Table 2.  

Table 2. Detail of dataset 
 Health state Fault width Motor load (working condition) 

Millimeters 0 hp 1 hp 2 hp 3 hp 

1 

Normal – 40 grs – – – 
Inner-race fault 0.1778 40 grs 40 grs 40 grs 40 grs 

Rolling element fault 0.1778 40 grs 40 grs 40 grs 40 grs 
Outer-race fault 0.1778 40 grs 40 grs 40 grs 40 grs 

grs: groups, hp: horsepower 

4.2.1. Fault diagnosis under same load  

Under the motor load of 1 hp, 40 groups of data sample are extracted in turn from the normal, 
inner-race fault, outer-race fault and rolling element fault. Among them, the former 20 groups of 
four states are regarded as the known samples, using the FCM to get the standard cluster center 
separately, the last 20 groups of data are regarded as test samples, through the hamming approach 
degree calculation used to identify the fault types. The experimental results show that the fault 
recognition rates of extracted features using three techniques are 100 %. In order to further prove 
the effectiveness of the proposed method, the hamming approach degree between test samples and 
four known different states is calculated.  

Fig. 10 shows the columnar distribution of the hamming approach degree between test samples 
and four different known states. From Fig. 10(a) and (b), we can see that the hamming approach 
degrees between test samples and corresponding state based on the EEMD-PEs and VMD-PEs are 
smaller than that ones based on the DTCWT-PEs. in addition, it can be seen in Fig. 10(b) that the 
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maximum hamming approach degree is obviously close to the second largest hamming approach 
degree. In Fig. 10(c), when the type of test sample is the rolling element fault, inner-race fault, 
outer-race fault and normal, the maximum hamming approach degree between test samples and 
corresponding state is close to 1, that is obviously higher than the second largest hamming 
approach degree. The accurate recognition and clustering abilities of DTCWT-PEs are 
demonstrated. Therefore, the method of DTCWT-PEs can more accurately extract the 
characteristics of each state, the clustering effect is better, and it is easier to classify the faults 
automatically. 

 
a) EEMD-PEs 

 
b) VMD-PEs 

 
c) DTCWT-PEs 

 
d) 

Fig. 10. Distribution of average nearness 

4.2.2. Fault diagnosis under variable load 

Due to that the equipment safety is relatively high in engineering applications, the small 
probability of failures leads to the shortage of fault samples. The fault samples can only be 
collected under a certain condition sometimes. Therefore, it is significant to identify the fault types 
under different operating conditions by using the existing fault data under this specific condition. 
In this paper, the fault diagnosis of other three load conditions is carried out with the help of the 
clustering center of existing and known fault data under load 0. Test samples are taken from the 
load 1, load 2 and load 3, and each of them has 40 groups, and uses the hamming approach degree 
between test samples and existing known fault data to identify the fault type of a test sample. The 
classification results show that the proposed approach can achieve a good classification effect 
under all loads, and the fault recognition rate is still 100 %, e.g. the fault diagnosis results of test 
samples under load 2 by using the clustering center of existing known fault data under load 0 are 
listed, as shown in Table 3. Due to the fault signal changed under different loads, in EEMD-PEs, 
there are 2 outer-race fault data which are mistakenly diagnosed as an inner-race fault, and 3 
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inner-race fault data are diagnosed as a rolling element fault in the VMD-PEs. And we can see 
that the DTCWT usage can be effectively identified as the four-states type under load 1 with the 
help of the clustering center of existing fault data under load 0.  

Table 3. Fault diagnosis for load 2 by EEMD-PEs, VMD-PEs and DTCWT-PEs 
  Normal Inner-race fault Outer-race fault Rolling element fault 

EEMD-PEs 

Normal 40 0 0 0 
Inner-race fault 0 40 0 0 
Outer-race fault 0 2 38 0 

Rolling element fault 0 0 0 40 

VMD-PEs 

Normal 40 0 0 0 
Inner-race fault 0 37 0 3 
Outer-race fault 0 0 40 0 

Rolling element fault 0 0 0 40 

DTCWT-PEs 

Normal 40 0 0 0 
Inner-race fault 0 40 0 0 
Outer-race fault 0 0 40 0 

Rolling element fault 0 0 0 40 

In this section, for a vibration signal under different loads, the PEs of three signal components 
decomposed from DTCWT-PEs are linked together, that forms the characteristic line of the test 
sample. Then the change trend of the characteristic line is analyzed under different loads relative 
to the characteristic line of the original cluster center obtained under the load of 0 hp, as shown in 
Fig. 11. 

 
a) 0 hp load 

 
b) 1 hp load 

 
c) 2 hp load 

 
d) 3 hp load 

Fig. 11. Run chart of original cluster centers and characteristics line of test samples 

It can be seen that, under load 0, the characteristic lines of four states closely follow the black 
characteristic lines of a standard clustering center, thus the accuracy of clustering center extraction 
is proved. Under load 2, the characteristic line of rolling element fault is deviated from the 
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clustering center firstly, and the characteristic line of normal state has some deviations. Under  
1 hp load and 3 hp load, the characteristic lines of 4 states have a varying degree of deviation. 
Among them, the degree of characteristic lines of outer-race fault deviated from the clustering 
center is the biggest, and the normal state is the second one. Overall, when the motor load changes, 
the characteristic lines of a test sample under different operating conditions are all around the 
characteristic lines of clustering center under 0 hp load, which makes the fault recognition rate of 
rolling bearings be maintained at 100 %. 

5. Conclusions 

In this work, an approach for bearing fault identification is proposed based on the DTCWT, 
PE and optimized FCM. The basic idea is that the vibration signal is decomposed into several 
wavelet components by the DTCWT, calculating the PE of former three wavelet components. This 
approach regards them as the fault feature vectors, and then the algorithm of optimized FCM is 
introduced into the identified fault type. The experimental results verified that a more accurate 
classification had been obtained using DTCWT-PEs compared with EEMD-PEs and VMD-PEs. 
It was demonstrated that the proposed method had better ability to identify different faults types 
and different fault severities under different operating conditions. 

It is shown that the proposed approach can accurately identify different fault severities, and 
has a good performance to resist variable operating conditions. Practically, the proposed feature 
extraction approach based on the DTCWT and PE in this paper is suitable for diagnosing a bearing 
fault due to that it has a strong performance of clustering and recognition. But the efficiency of 
this approach may be affected when the operating condition has some big changes. Therefore, a 
further research will mainly focus on improving the fault diagnosis capability under variable 
operating conditions.  
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