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Abstract. In order to reduce the time and space complexity of operational modal analysis (OMA) 
for slow linear time-varying (SLTV) structures based on moving window principal component 
analysis (MWPCA), this paper proposes a new moving window self-iteration principal component 
extraction (MWSIPCE) method. Different from getting principal components by singular value 
decomposition (SVD) or eigenvalue decomposition (EVD) in MWPCA algorithm, MWSIPCE 
just extracts the first-several-orders principal components by self-iteration. Comparing with 
MWPCA, MWSIPCE has lower time and space complexity. What’s more, this paper explains the 
reason of modal exchange in some data windows in detail, and gives an illustration to how to set 
window length ܮ. The OMA results on non-stationary vibration response simulation signal of 
time-varying cantilever beam under white noise excitation show that this method can well identify 
the time-varying transient modal parameters (natural frequencies and modal shapes) for SLTV 
structures and has less time and space consume, the algorithm is also more precise than MWPCA.  
Keywords: operational modal analysis, slow linear time-varying structures, moving window 
self-iteration principal component extraction, time-varying transient modal parameter. 

1. Introduction 

Modal parameters (Natural frequencies, mode shapes) are essential for dynamics structural 
damage recognition, health monitoring [1] and independent modal space control [2]. From 1980s, 
operational modal analysis (OMA) deals with the estimation of modal parameters from vibration 
data obtained in operational rather than laboratory conditions [3]. OMA differs from experimental 
modal analysis (EMA) in that it seeks to determine a structure’s dynamic characteristics from 
response-only measurements, without precise knowledge of excitation forces. PCA is one of the 
most classic in multivariate analysis and data mining. The idea was first proposed by the Pearson 
in 1901, and it was used for the field of biology [4]. Principal components are linear combinations 
of the original data which help to visualize similarities in an ensemble of signals. Because all 
principal components are orthogonal and ordered according to the variance contribution of sample, 
the largest two or three principal components provide an excellent representation of variability 
within a set of data [5]. Traditional calculation method of PCA is using matrix decomposing, 
which includes SVD and EVD [6]. However, these ways calculate all principal components in one 
time, that makes the algorithm always has high time-space complexity. In 1969, NIPALS 
algorithm [7] is firstly proposed, different from traditional method, the algorithm iteratively 
calculates principal components. In order to reduce the time-space complexity of traditional PCA, 
this paper proposes a new self-iteration principal components extraction (SIPCE) algorithm which 
based on NIPALS algorithm. 

With the development of science and technology, high speed, large, complicated and 
intelligent engineering structures in civil engineering field are applied more frequently. In working 
condition, these engineering structures usually need to experience a variety of harsh environments, 
which will lead to many engineering structures parameters (mass, stiffness and damping) changing 
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over time inevitably. In practical engineering structures, the systems are often time-varying and 
the modal parameters are also changing with time, such as rockets in fight with mass lost [8], the 
trains crossing bridges [9], etc. YANG summarized the basic theory involved in modal parameter 
estimation of time-varying structures, including the introduction and discussion about the dynamic 
theory of linear time-varying systems that presented the dynamic model and the definition and 
properties of poles of linear time-varying systems. In addition, he established the criteria for slow 
time-varying systems in the time-domain and frequency-domain, providing the basis and 
assumptions for modal parameter estimation of time-varying structures respectively. Ramnath  
[10] pointed out the system whose variation in coefficient is much less than that in solution is 
called slow time-varying system. 

In 1947, structure natural frequency and damping identification method were put forward by 
Kennedy and Pancu. After 70 years of development and progress, modal parameter identification 
has experienced from the linear time invariant (LTI) structures to slow linear time-varying (SLTV) 
structures. At present, OMA method learned from the latest research achievements in the field of 
control theory, system engineering and signal process [11], etc. Classical OMA method cannot 
apply to SLTV structures because of the non-stationary response data. The OMA methods of 
SLTV structures are based mainly on the assumption of short time invariant and “frozen” thought, 
which promoted modal analysis theory of LTI structures to SLTV structures, and identified the 
time-varying modal parameters. Another approach is using online or recursive technology to track 
the time-varying modal parameters [12]. Based on these theories, some popular methods were 
proposed, including time-frequency analysis based on wavelet transform (WT) [13, 14],  
Hilbert-Huang transform (HHT) [15], subspace methods [16], Auto Regressive Moving Average 
(ARMA) models [17], etc. However, these methods can only identify time-varying transient 
modal frequency of SLTV structures. 

Guan et al. presented the method which combined principal component analysis (PCA) with 
moving window (MW) for operational modal parameters identification of SLTV structures [18]. 
That method is based on eigenvalue decomposition of PCA, so the complexity of time and space 
is very high. This study proposed a time-varying OMA method based on moving window self-
iteration principal component analysis (MWSIPCE). MWSIPCE can well identify the 
time-varying transient modal parameters of SLTV structures and its time and space complexity is 
lower than MWPCA. Besides that, the reason of modal exchange in some data windows is 
explained, that has great engineering significance for fault monitoring. 

2. OMA of LTI structures based on SIPCE 

2.1. Mathematical model of PCA  

The data set of ݉  observation signals(ݐ)܆ = ,(ݐ)Ԧଵݔ] ,(ݐ)Ԧଶݔ ⋯ . ்[(ݐ)Ԧݔ  is composed by ݊ 
unrelated unknown latent variables (ݐ)܇ = ,(ݐ)Ԧଵݕ] ,(ݐ)Ԧଶݕ ⋯ , ்[(ݐ)Ԧݕ  through a linear 
transformation matrix ܅ = ,ሬሬԦଵݓ] ,ሬሬԦଶݓ ⋯ , [ሬሬԦݓ ∈ ℝ×, which is shown in Fq. (1) [19]: (ݐ)܆ = (1) .(ݐ)܇܅

Matrix ܅ ∈ ܴ× meets condition: ܅்܅ = ۷×. (2)

Fig. 1 is the diagram of PCA model. The goal of PCA is to find linear transformation matrix ܅ ∈ ܴ×  and ݊  uncorrelated latent variables (ݐ)܇  only from observed signal (ݐ)܆ . The ݊ 
uncorrelated latent variables (ݐ)܇ are called principal components of ݉ observation signal (ݐ)܆. 

Fig. 1 is the diagram of PCA model. The goal of PCA is to find linear transformation matrix ܅ ∈ ܴ×  and ݊  uncorrelated latent variables (ݐ)܇  only from observed signal (ݐ)܆ . The ݊ 
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uncorrelated latent variables (ݐ)܇ are called principal components of ݉ observation signal (ݐ)܆. 

 
Fig. 1. Description of PCA problem 

2.2. OMA of LTI structure based on PCA model 

According to the theory of structural dynamics, for LTI structures with ݉-degree-of -freedom, 
the equations of vibration motion in the physical coordinate is [18]: ܆ۻሷ (ݐ) + ሶ܆۱ (ݐ) + (ݐ)܆۹ = (3) .(ݐ)۴

In the Eq. (3): matrix ۻ ∈ ܴ× is the mass matrix of the LTI structures, matrix ۱ ∈ ܴ× 
is the damping matrix of the LTI structure, matrix ۹ ∈ ܴ× is the stiffness matrix of the LTI 
structures, ݐ is the time. Matrix ۴(ݐ) is the time domain random dynamic motivation of the LTI 
structures, and matrix (ݐ)܆  is the time domain dynamic displacement response of the LTI 
structures, ܆ሶ ሷ܆ is the time domain dynamic speed response of the LTI structures. And (ݐ)  is the (ݐ)
time domain dynamic acceleration speed response of the LTI structures. 

Viscous damping matrix ۱ can’t be orthogonally diagonalized by modal shape, so it can’t be 
decoupled directly. However, in special cases, matrix ۱ could be orthogonally diagonalized. For 
example, the viscous damping which is proposed by Rayleigh: ۱ = ۻߙ + (4) .۹ߚ

In Eq. (4), ߚ ,ߙ denotes as the outside and inside damping constants of the system, for weak 
damping vibration system, the above model is effective.  

For real modal analysis, in the modal coordinate, the random vibration response signals of 
mechanical structures with weak damping can be decomposed into the inner product of modal 
shapes and modal responses: 

(ݐ)܆ = (ݐ)ۿ =  ሬ߮ԦݍԦ
ୀଵ (5) ,(ݐ)

where (ݐ)܆ is the output displacement,  ∈ ܴ× is the reversible modal shape matrix which 
composed by ݉ independent mode shapes ሬ߮Ԧ ∈ ܴ×ଵ, besides that,  is basis-vector matrix in 
modal coordinate space and (ݐ)ۿ = ,(ݐ)Ԧଵݍ] ,(ݐ)Ԧଶݍ ⋯ , ,(ݐ)Ԧݍ ⋯ , ்[(ݐ)Ԧݍ ∈ ்×܀  is the modal 
coordinate matrix which composed by modal response ݍԦ(ݐ) of each mode. 

Plugging Eq. (5) into Eq. (3), which transports physical coordinate into modal coordinate: ்ۻۿሷ (ݐ) + ்۱ۿሶ (ݐ) + ்۹Φ(ݐ)ۿ = ்۴(ݐ). (6)
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Simplifying Eq. (6): ۻۿሷ (ݐ) + ۱ۿሶ (ݐ) + ۹(ݐ)ۿ = ்۴(ݐ). (7)

Then, Eq. (7) is the modal model, where ۻ  is modal mass matrix, ۱  is modal damping 
matrix, ۹ is modal stiffness matrix:  ۻ = ்ۻ, (8)ۻ = diag[݉ଵ, ݉ଶ, ⋯ , ݉ ⋯ , ݉], (9)۱ = ்۱, (10)۱ = diag[ܿଵ, ܿଶ, ⋯ , ܿ ⋯ , ܿ], (11)۹ = ்۹, (12)۹ = diag[݇ଵ, ݇ଶ, ⋯ , ݇ ⋯ , ݇]. (13)

Based on the vibration theory in Eqs. (5)-(13), when the structure’s natural frequencies ݂ of 
each mode are not equal, the modes vectors are orthogonal: ሬሬሬԦ்ۻሬሬሬԦᇲ = 0,     ݅ ≠ ݅ᇱ, ሬሬሬԦ்۹ሬሬሬԦᇲ = 0 ,    ݅ ≠ ݅ᇱ. (14)

And modal response vectors ݍԦ(ݐ) are independent from each other. Then (ݐ)ۿ satisfies: 

(ݐ)்ۿ(ݐ)ۿ = ×ᇱᇱ = ێێۏ
Ԧଵ்ݍ(ݐ)Ԧଵݍۍێ (ݐ) ⋯ 0 ⋯ 0⋮ ⋱ ⋮ ⋱ ⋮0 ⋯ Ԧ்ݍ(ݐ)Ԧݍ (ݐ) ⋯ 0⋮ ⋱ ⋮ ⋱ ⋮0 ⋯ 0 ⋯ ۑۑے(ݐ)Ԧ்ݍ(ݐ)Ԧݍ

(15) ېۑ

where ×ᇱᇱ  is a real positive diagonal matrix. 
Natural frequency ݂  and damping ratio ߦ  can be identified by FFT or single degree of 

freedom (SDOF) fitting techniques from mode coordinate response vector ݍԦ(ݐ). Fig. 2 is the 
Schematic diagram of OMA based on PCA modal. 

In view of Eq. (1) and Eq. (5), for random vibrations of weakly damped systems, there is a 
one-to-one mapping between the orthogonal mode matrix   and the linear transformational 
matrix ܅ in Eq. (2). Besides that, there is a one-to-one mapping between modal response matrix (ݐ)ۿ in and the PCs (ݐ)܇. Therefore, the existence, uniqueness and deterministic of OMA based 
on PCA algorithm can be proved by PCA decomposition. 

2.3. Self-iteration and principal component extraction algorithm 

SIPCE algorithm is based on NIPALS algorithm. Firstly, choosing a column from the 
observation signal matrix (ݐ)܆ ∈ ܴ×் ݐ = 1,2, ⋯ , ܶ . Then calculating the first principal 
component vectors ݕԦଵ(ݐ) ∈ ܴଵ×்  and the first transformation matrix vector ݓሬሬԦଵ ∈ ܴ×ଵ  
iteratively.  

As Eq. (16) shows, updating error matrix to calculate the second principal component vectors ݕԦଶ(ݐ) ∈ ܴଵ×் and the second transformation matrix vector ݓሬሬԦଶ ∈ ܴ×ଵ and so on: ۳ଵ(ݐ) ← (ݐ)܆ − ሬሬԦଵݓ ⋅ (ݐ)۳ଶ,(ݐ)Ԧଵݕ ← ۳ଵ(ݐ) − ሬሬԦଶݓ ⋅ (ݐ)۳ିଵ⋮,(ݐ)Ԧଶݕ ← ۳ିଶ(ݐ) − ሬሬԦିଶݓ ⋅ (16) .(ݐ)Ԧିଶݕ
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Fig. 2. Schematic diagram of OMA based on PCA modal 

(1) Choosing the arbitrary column data vector, and assume that the chosen column is the ݈th 
column. So, vector ݔԦ(ݐ) ∈ ܴଵ×்  is got from signal matrix (ݐ)܆ ∈ ܴ×் . ݅  denotes the ݅ th 
principal moment, and ݆ is the ݆th loop which calculates the ݅th principal moment, ݅ = 1, ݆ = 1, 
and ݕԦ()(ݐ) ←  .୫ୟ୶ܬ Set the maximal number of iterations is ;(ݐ)Ԧݔ

(2) Calculate ݓሬሬԦ() ∈ ܴ×ଵ: ݓሬሬԦ() ←  ;((ݐ)்Ԧ()ݕ(ݐ)Ԧ()ݕ)/((ݐ)்Ԧ()ݕ(ݐ)܆)
(3) Normalize the vector ݓሬሬԦ(): ݓሬሬԦ() ← ሬሬԦ()ݓ ฮݓሬሬԦ()ฮൗ ; 

(4) Update ݕԦ(ାଵ)(ݐ): ݕԦ(ାଵ)(ݐ) ←  ;(ሬሬԦ()ݓ்ሬሬԦ()ݓ)/(ݐ)܆்ሬሬԦ()ݓ
(5) Compare the ݕԦ(ାଵ) in the step (4) with the ݕԦ()  in the step (2). Define variable  ߚ = ฮݕԦ(ାଵ) − Ԧ()ฮݕ ฮݕԦ()ฮൗ , and ߙ denotes accuracy requirement. If ߚ ≤  their difference is ,ߙ

in the prescribed scope (the algorithm is convergent). Then return to the step (6), or ݆ ← ݆ + 1 and 
return to the step (2). 

(6) Calculate the error matrix: ۳(ݐ) ← (ݐ)܆ − ሬሬԦିଵݓ ⋅ (࢚)܆(17) ,(ݐ)Ԧିଵݕ ← ۳(࢚). (18)

(7) Calculate ߣ: ߣ ← ቛଵ் ሬሬԦቛݓ(ݐ)்܆(ݐ)܆  .‖ሬሬԦݓ‖/
(8) Define variable ߝ = ߣ ∑ ⁄௦௦ୀଵߣ ߝ is truncation error, if ߟ , > ݅ ,ߟ ← ݅ + 1 and return to 

the step (1), calculate ݕԦଶ(ݐ), ,(ݐ)Ԧଷݕ ⋯ , ,ଶߣ and (ݐ)Ԧݕ ,ଷߣ ⋯ ,  .ߣ
The step (8) is to calculate the oversized contribution rates which correspond to the principal 

components. So, ߣ is the approximate contribution rate, which corresponds to the ݅th principal 
component. Variable ߝ  denotes cumulative variance proportion of the current principal 
component of calculated principal components. 

Setting truncation error as ߟ . If ߝ < ߟ , the current principal component is not important 
enough, the algorithm stops iteration, and the process of principal components extraction is end. 

linear compound matrix W (t)principal components Y

corresponding corresponding

(t)mode response Qmode shapes Ψ

nature frequency f
damping ratio 

(t)Measuring the response signal from the structureX

(t)PCA decomposition of X
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In the steps of the SIPCE algorithm, ݕԦ(ݐ) is the ݅th principal component of the residual error 
matrix. The comparison of the ݕԦ(ݐ) in the step (5) is to judge whether ݕԦ(ݐ) meets the demand. If 
it does, the algorithm updates the error matrix and get the first principal component of the new 
error matrix (ݕԦଶ(ݐ), ,(ݐ)Ԧଷݕ ⋯ , ,(ݐ)Ԧݕ ⋯ ,  Eq. (17) and Eq. (18) show that the contribution .((ݐ)Ԧݕ
of ݕԦ(ݐ) is larger than ݕԦାଵ(ݐ). In conclusion, ݕԦଵ(ݐ) is the first principal component of observation 
signal matrix, and ݕԦଶ(ݐ) is the second principal component and so on. 

2.4. Approach of self-iteration and principal component extraction algorithm to OMA 

Fig. 3 shows the flow of OMA based on SIPCE. Variable ߣ (݅ = 1, 2, … , ݉) represents the 
contribution of its corresponding principal components. ߝ denotes the importance measure of next 
principal components, and ߟ is a setting threshold value that we could use to control the iterations. 
Therefore, it realizes the principal components extraction. 

2.5. The comparison between SIPCE and PCA  

The traditional batch PCA gets linear transformation matrix and principal components by 
singular value decomposition (SVD) or eigenvalue decomposition (EVD) [20]. However, there 
are singular value and ill-posed problems in SVD and EVD [21, 22]. Because of these defects, the 
traditional batch PCA algorithm may not be able to accurately identify the modal vibration mode 
and natural frequency of the structures. SIPCE algorithm directly gets principal components by 
recursion, and the accuracy of self-iteration and principal component extraction results only 
depends on the threshold value. Therefore, self-iteration and principal component extraction based 
on OMA could avoid singular value decomposition of matrix and the ill-posed problems of 
eigenvalue decomposition effectively. 

SIPCE calculates principal components one by one, and its goal is to identify several order 
models by user requirements. However, traditional batch principal component analysis gets all 
principal components by matrix decomposition. That not only increases the computation time, but 
also spends lots of memory to store large matrices. 

3. OMA of SLTV structures based on MWSIPCE 

3.1. OMA of SLTV structures based on “Time-freezing” theory 

Based on the assumption of “time-invariant” in a minor interval, the countless SLTV structures 
sets ܵᇱ could be gotten by mass, stiffness and damping matrix of each instantaneous moment  ߬ ∈ ,ݐ] ௗ] in “freezing” time-varying. The set ܵᇱ is expressed by Eq. (19): ܵᇱݐ ≜ ൛ܵᇱ(߬): ሷ܆(߬)ۻ (ݐ) + ሶ܆(߬)۱ (ݐ) + (ݐ)܆(߬)۹ = ߬    ,(ݐ)۴ ∈ ,ݐൣ ߬,ௗ൧ൟݐ = 12 ݐ) + ݇      ,(ାଵݐ = 1, ⋯ , ܰ − ଵݐ    ,1 = ݐ     ,ݐ = .ௗݐ  (19)

Equation ܵᇱ is the LTI structures at ߬ moment, and the set of ܵᇱ is “time-freezing” represent of 
SLTV structure ܵ. Because the SLTV structures and LTI structures have the same mass, stiffness 
and damping matrixes at every moment, the varying characteristics of them are equipotent  
[23, 24]. 

For small damping structures, the collected data of the structure response can be divided into 
several parts. And in the ߬ th part (data window), the modal coordinates can decompose the 
response of the linear structure: ܆(߬, (ݐ = (߬)ۿ(߬, (ݐ =  ሬ߮Ԧ(߬)ݍԦ(߬, ୀଵ(ݐ ,    ߬ = 12 ݐ) + ାଵ). (20)ݐ
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Fig. 3. The flowchart of OMA based on self-iteration principal component extraction algorithm 

The variables (߬) and ۿ(߬,  are modal shape matrix and modal response vector of the ߬th (ݐ
data window. We normalize main orthogonal modal shape vector ሬ߮Ԧ(߬) to meet each modal 
response that is independent when each structure natural frequency ݍԦ(߬,  are unequal. Then the (ݐ
natural frequency can be identified from modal respond as well as OMA of LTI structure are based 
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on PCA: ሬ߮Ԧ் (߬) ሬ߮Ԧᇲ(߬) = 0,   ݅ ≠ ݅ᇱ,   ߬ = 12 ܜ) + ,߬)ۿ൫ܧାଵ), (21)ܜ ,߬)்ۿ(ݐ ൯(ݐ = Λ×ᇱᇱ  
       = ێێۏ

,߬)Ԧଵݍۍێ Ԧଵ்ݍ(ݐ (߬, (ݐ ⋯ 0 ⋯ 0⋮ ⋱ ⋮ ⋱ ⋮0 ⋯ ,߬)Ԧݍ Ԧ்ݍ(ݐ (߬, (ݐ ⋯ 0⋮ ⋱ ⋮ ⋱ ⋮0 ⋯ 0 ⋯ ,߬)Ԧݍ ,߬)Ԧ்ݍ(ݐ ۑۑے(ݐ
(22) .ېۑ

3.2. OMA of SLTV structure based on MWSIPCE 

3.2.1. The model of MWSIPCE 

In order to identify time-varying transient modal parameters, we divide a time quantum into 
many minimum transient and then identify the modal parameters of every transient by the SIPCE. 
The process of segmentation can be mathematically modeled as Fig. 4 shows, and rectangular 
window is selected to add new data and discard part of old data. Variate ݅ is to express the ݅th data 
window ݇ = 1, ⋯ , ܰ − ܮ + 1. 

 
Fig. 4. The rectangular data window with moving window length ܮ 

Setting the raw data matrix (ݐ)܆ ∈ ܴ×ே  with ݉  variables and ܰ  samples when the 
rectangular data window with memory length ܮ is introduced, and then the raw data matrix will 
be changed into ܆() ∈ ܴ× . With ܮ sampling length, ܆()  is used to estimate the statistical 
average modal value of middle time. When the transient time is changed, the rectangular window 
moves. In addition, the data window matrix will be updated as Fig. 4 shows. Therefore, the 
transient mathematical model of time-varying structure is built, and then combines every transient 
to identify SLTV structure modal parameter. 

Based on the assumption of short time invariant and “frozen” thought, at every transient time, 
the structure is regarded as a LTI structure. Then, identifying the modal parameters in every 
rectangular data window by SIPCE. The OMA of SLTV structures is turned into the OMA based 
on SIPCE for LTI structures. In the end, we combine the modal of every transient by curve-fitting 
technique, then measure and monitor the modal parameters of SLTV structures real-timely. 

Fig. 5 shows the flow of MWSIPCE. For the raw matrix (ݐ)܆, the algorithm gets the transient 
data window ܆(), and then calculate the principal components and the corresponding change 
vector. Updating the data window until all transient modal parameters are calculated. 
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Fig. 5. The flowchart of OMA based on MWSIPCE for SLTV 

3.2.2. The selection of window length ࡸ 

As an important parameter for MWSIPCE based Operational Modal Identification under a 
slow SLTV Structure, the window length ܮ should not be too large or too small. If the window 
length ܮ is too long, the non-stationary random response signals of the slow SLTV structure 
cannot approximately be seen as the stationary random response of LTI structure. The ݅th order 
statistical average mode nature frequency ݂()(݅) and statistical average modal shapes ሬሬሬԦ()(݅) 
during ܮ  periods are not regarded as an approximate evaluations of transient mode nature 
frequency  ݂ (ା(ିଵ)/ଶ)(݅), and transient mode shapes ሬሬሬԦ(ା(ିଵ)/ଶ)(݅) at time(݇ + ܮ) − 1)/2). If 
the window length is too short, identification error will be larger owing to inadequate sample and 
large frequency resolution. Moreover, the precision of identified natural frequencies got by FFT 
depends on frequency resolution Δ݂. It is more precise when the length ܮ of FFT is larger. And Δ݂  is inversely proportional to sampling frequency ݂ . Frequency resolution Δ݂  of FFT is  
defined [25]: Δ݂ = (23) .ܮ/݂

The factors effect the choice of window length ܮ is showed below: 
1) The changing speed of SLTV structure and non-stationary degree of vibration response 

signal. If the SLTV structure is fast changed, there is a high non-stationary degree and we should 
reduce the window length ܮ. Define average frequency variation of the ݅th mode in a data window 
as Δ ݂ (݅): 
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Δ ݂(݅) ≜ ܮ݂ × ݂ௗ(݅) − ݂(݅)ݐௗ − ݐ , (24)

where variables ݂ௗ(݅) , ݂(݅) ௗݐ , ݐ ,  are end-frequency of the ݅ th mode, begin 
frequency of the ݅th mode, end-time, begin-time of the whole data. 

2) Sample frequency ݂ of vibration response signal and frequency resolution Δ݂. Window 
length ܮ is proportional to sample frequency ݂ and frequency resolution Δ݂. 

3) The power of storage and computing for embedded structure. The memory and computation 
of MWPCA and MWSIPCE mode are proportional to moving window length [26] ܮ. Furthermore, 
computation of FFT is depending on window length ܮ. 

3.3. The comparison between MWSIPCE and MWPCA 

In order to ensure the precision of time-varying transient modal parameter identification based 
on assumption of short time invariant, the response time should be divided into minimum period, 
so that we could produce many response data. 

According to user requirements, comparing with MWPCA algorithm calculates all 
components in each rectangular data window, MWSIPCE algorithm just extracts several principal 
components in each rectangular data window and does not need to calculate other components. 
Therefor MWSIPCE algorithm mostly reduces time complexity. Besides that, MWSIPCE 
iteratively gets principal parameters, so, it doesn’t need to store many large matrixes and avoids 
the ill-posed or singular value problems. 

For raw data (ݐ)܆ ∈ ܴ×ே, different algorithms are compared in various aspects. The size of 
space complexity depends on whether the program stores past matrixes. And the results are 
expressed in Table 1. 

MWSIPCE algorithm is more precise than MWPCA algorithm. Moreover, it enhances the 
efficiency of operating modal parameter identification.  

Table 1. The comparison of algorithm performance  
Algorithm Time complexity The least space complexity Algorithm robustness 

MWPCA based on 
EVD 

(ଶ݉) × ܰ 
High ܴ× × 2 + ܴ× + ܴ× Ill-posed problems 

MWPCA based on 
SVD 

(ଶ݉) × ܰ 
High ܴ× × 2 + ܴ× × 2 Singular value problem 

MWSIPCE (ܬݎ௫) × ܰ 
Low ܴ× Avoids the ill-posed and  

singular value problems 

3.4. The reason of modal exchange in MWSIPCE 

Based on MWSIPCE algorithm, the frequencies of SLTV structure are ordered by the 
contribution rather than the frequency value. At one transient, the contributions of each identified 
modal can be represented as ߣଵ, ,ଶߣ … , ଵߣ :, and they meet the following relationshipߣ > ଶߣ > ,ଷߣ … , >  .ߣ

For SLTV structure, engineering structure parameters (mass, stiffness and damping) change 
over time, so the modal contribution rate of each order is time-varying. Therefore, there is a special 
phenomenon called modal exchange. Therefore, contribution order is not equal to the frequency 
order, the correspondence of two ranking order maybe change over time. For example, at transient 
time ݐଵ , there is a one-to-one match between the first-four-order identified modal and the 
first-four-order real modal, but at transient time ݐଶ , the third order identified modal is 
corresponded to the forth-order real modal and the forth-order identified modal is corresponded 
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to the third-order real modal. 
For SLTV structure, MWSIPCE algorithm can find modal exchange based on changing 

frequency, and monitor running state of SLTV structure. CPV ߟ denotes project require, at ݐ 
moments, ߟ is the variance contribution of the first 3 order PCs. With the new data is added, the 
contribution of the third modal is decreasing and the forth order’s contribution is increasing. 
Maybe at a moment ݐ, when the CPV ߟ meets project requirement, the modals involved in CPV 
are the first order, the second modal and the forth modal. 

3.5. Limitations and applications of time-varying OMA based on moving-window 
MWSIPCE 

Time-varying operational modal analysis with MWSIPCE method has the following 
limitations and application scores: 

1) Each order of modal shapes gotten by PCA is normalized orthogonal, which loses amplitude 
information. This is a characteristic of PCA or ICA based OMA and a characteristic of MWSIPCE 
based time-varying OMA. 

2) It can just apply to slow linear time-varying structures. Only for slow linear time-varying 
structures, the theory of “time-freezing” is established, and the non-stationary random response 
signals of the slow LTV structures can approximately be seen as the stationary random response 
time series of LTI structures in short time interval. 

3) The length of moving window ܮ is selected with prior knowledge of time-varying speed of 
LTV structure and fixed. However, the length of moving window ܮ. should be fully self-adaptive 
selected and changed only by nonstationary vibration response signals when there is no prior 
knowledge of time-varying speed then.  

4) PCA method for operational modal analysis can identify mode shapes, modal frequencies 
and mode damping ratios for LTI structure only from stationary vibration response signals. 
MWSIPCE method for operational modal analysis can also identify time-varying transient mode 
shapes, modal frequencies and mode damping ratios only from non-stationary vibration response 
signals. However, theoretical analysis and numerical simulation indicate that mass decreasing or 
moving will generates an additional damping [27, 28] for LTV structure. So, the time-varying 
transient mode damping ratio identified by LMRPCA method cannot be compared with mode 
damping ratio calculate by FEM directly. 

5) The modes which calculated by SIPCE are ordered by the contribution of vibration response 
rather than frequency. For time-varying structure, the contribution of each mode is varying. 
MWSIPCE is based on SIPCE, there might be modal exchange in the calculation. 

4. Simulation verification of time-varying transient operational modal identification 

In order to validate the accuracy and efficiency of MWSIPCE method, we set up a dynamic 
model of a time-varying cantilever beam, and analysis the influence of mass change for 
time-varying structure. A simulation with cantilever beam is designed, which is a time-varying 
structure whose mass is changing over time. For experimental verification, additional damping 
caused by moving mass and the limitation of experimental condition make it quite difficult [29], 
so simulation verification is a frequently used method. In the generation of simulation data, we 
gave full consideration to boundary conditions, and the Gaussian noise is added into the data to 
simulate real scene. The algorithm can be well validated by the simulation of time-varying 
cantilever beam [25]. 

4.1. Evaluation criteria 

Theoretical values and FEA values are set as standard, which are calculated under the condition 
of undamped real modal shape and undamped real modal nature frequency, and MWPCA 
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algorithm is based on EVD method. 
In order to quantitatively compare the modal vibration mode, modal assurance criterion  

(MAC) is investigated [30], which is an important standard when considering the effectiveness of 
modal shape identification [31]. Eq. (25) is the detailed equation of calculated MAC value:  

ఝሬሬԦథሬሬሬԦܥܣܯ = ( ሬ߮Ԧ் ߶ሬԦ)( ሬ߮Ԧ் ሬ߮Ԧ)(߶ሬԦ் ߶ሬԦ), (25)

where ሬ߮Ԧ  is the identified shape, ߶ሬԦ  represents the real shape, and ( ሬ߮Ԧ் ߶ሬԦ) represents the inner 
product of the two vectors. MAC values oscillate between 0 (no coincidence) and 1 (complete 
coincidence), The more MAC value is close to 1, the more accurate estimated shape is. However, 
MAC just can reveal the information of direction and shape, the size of amplitude-mode is not 
contained.  

4.2. Parameters of time-varying cantilever beam 

The dimension of cantilever beam model is 1 m×0.02 m×0.002 m (length×height×width) while 
cross sectional area ܣ = ܹ × ܪ =  4×10-4 m2, density ߩ =  7860 kg/m3, moment of inertial  ܫ = ଷ/12ܪܹ , and ܧ =  3×1011 N/m2 is Young’s modulus. Time-varying mass property is 
simulated by changing the density of beam, given as Eq. (26): ߩ = ൜ߩ,                                              0 ≤ ݐ ≤ [1ߩ,ݏ0.5 − ݐ)0.08 − 0.5)], ݏ0.5 < ݐ ≤ (26) .ݏ4

The simulation time is set as 4 s, and the first ten order time-varying natural frequency values 
at the start and finish time are compared in Table 2. 

Table 2. The change curve of natural frequencies (0-4 s) 

t/s Order 
1 2 3 4 5 6 7 8 9 10 

0 s 16.9997 104.6552 293.038 574.2391 949.2649 1418.0561 1980.635 2637.0355 3384.3056 4231.5200 

4 s ↓ 
19.6807 123.3374 345.3485 

↓ 
676.7473 1118.71 1671.1952 2334.2016 3107.7761 

↓ 
3991.9779 4986.8942 

In Finite element method (FEM), the continuum cantilever beam is generally dispersed with 
finite multi-degree-of-freedom structures and the mass, stiffness and damping matrices can be 
expressed as follows: 

(ݐ)ۻ = ۻܣߩ = 420ܣܮߩ ൦ 156 ܮ22 54 ܮ22ܮ13− ଶܮ4 ଶܮ13 ଶ54ܮ3− ܮ13 156 ܮ13−ܮ22− ଶܮ3− ଶܮ4 ܮ22− ൪, (27)

(ݐ)ܭ = ܭ(ݐ)ܫܧ = ଷܮ(ݐ)ܫܧ ൦ 12 ܮ6 −12 ܮ6ܮ6 ଶܮ4 ܮ6− ܮଶ−12ܮ2 ܮ6− 12 ܮ6ܮ6− ܮଶ −6ܮ2 ଶܮ4 ൪, (28)

۱(ݐ) = (ݐ)ۻெߚ + (29) ,(ݐ)۹ߚ

where ۻ(ݐ), ۹(ݐ) and ۱(ݐ) are time-varying element mass, stiffness and damping matrices 
respectively. ۱(ݐ) denotes proportional damping matrix, and ܮ is the length of each element. And ߚெ, ߚ   are the proportional coefficients with responding to mass and stiffness matrices, 
respectively. 

In FEM, the continuums beam is divided into 40 elements, each finite element is an output. 



2614. MOVING WINDOW SELF-ITERATION PCE BASED OMA FOR SLOW LINEAR TIME-VARYING STRUCTURES.  
TIANSHU ZHANG, CHENG WANG, JIANYING WANG, YEWANG CHEN, YIWEN ZHANG 

4452 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. SEP 2017, VOL. 19, ISSUE 6. ISSN 1392-8716  

Only one translational freedom and one rotational freedom are considered for each node without 
axial freedom, which is depicted in Fig. 6. 

The forced response signals are acquired by Newmark – ߚ. The proportional coefficients are 
set as ߚெ = 4×10-4, and ߚ = 1×10-7. The initial velocities and displacement are zero while the 
white noise is imposed as excitation. From Table 2, it is found that the frequencies are increasing 
over time. As frequency is 4986.8942 Hz at the finish time, the sampling frequency is set as  
10000 Hz based on sampling theorem. The simulation time is set as 4 s while integration step is  
1/10000 s for Newmark-ߚ, and the number of sample points ܰ = 40000. 

Level of 2.0 % Gauss measurement noise is added into response signals in time domain. The 
calculation formula of noise is as follows: ܆(ݐ) = (1 + ݎ ⋅ (30) .(ݐ)܆(݁

In Eq. (30), ݁ denotes a normal random vector, its mean value is zero and standard deviation 
is one. ݎ is the noise level. The measurement noise level above is 2.0 %. 

 
Fig. 6. FEM Model of cantilever beam 

4.3. Parameters of time-varying OMA based on MWSIPCE 

1) Limited memory length ܮ is set as 4096 data points [25]. 
2) Set precision threshold ߙ = 0.000001. 
3) Set maximum number of iteration ܬ୫ୟ୶ = 100. 
4) Set truncation error ߟ = 0.05.  
5) Computer configuration 
Operating system: 64-bit Windows 10. 
Manufacturer: HP.  
System Type: HP Z240 SFF Workstation. 
Processor: Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz (4 CPUs). 
Memory: 8192MB RAM. 
Programing language and environment: MATLAB 2014a. 

4.4. Time-varying transient modal parameters identification results 

In the FFT figure, the FFT peak frequency (horizontal axis) is corresponding to the nature 
frequency. Fig. 7(a-d) shows the first three order nature frequencies that identified by MWSIPCE 
at random moments (0.9954 second, 1.4954 second, 2.4954 second, 3.4954 second).  

Fig. 8(a-d) shows the first three order shapes that identified by MWSIPCE at random  
moments, and the modal shapes are normalized (The moments are same as Fig. 7).  

Connecting the nature frequency at every moment Comparison results of the first three orders 
frequency between theoretical calculation and MWSIPCE are shown in Fig. 9. The frequency 
identification changes from 0.5 second to 3.7048 second. 

Fig. 10 is the records of the MAC values at every moment, and we have corrected the 
correspondence when there is modal exchange in the third order. The frequency identification 
changes from 0.7048 s to 3.7048 s, and we just identify the absolute time-varying transients to 
ensure recognition accuracy. The calculated equation is showed in section 4.1. 

1 2 3 38 39 40 

F

Length

High

Wide



2614. MOVING WINDOW SELF-ITERATION PCE BASED OMA FOR SLOW LINEAR TIME-VARYING STRUCTURES.  
TIANSHU ZHANG, CHENG WANG, JIANYING WANG, YEWANG CHEN, YIWEN ZHANG 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. SEP 2017, VOL. 19, ISSUE 6. ISSN 1392-8716 4453 

For MWSIPCE algorithm, its accuracy depends on threshold ߙ. Table 3 is the precise MAC 
comparison of the third order between MWPCA and MWSIPCE at some moments. Table 4 is the 
self-MAC of some moments to check the modal vector orthogonality. 

Table 5 is the comparisons of time-space consumptions. MWSIPCE extracts the first 4 order 
modes, which meet the requirement. 

 
a) 0.9954 second 

 
b) 1.4954 second 

 
c) 2.4954 second 

 
d) 3.4954 second 

Fig. 7. FFT of the first three orders principal components at random moments 

Table 3. Comparison of MAC the third order between MWPCA and MWSIPCE at some moments 
Moments (s) MWPCA MWSIPCE 

1.3153 0.7580 0.8607 
1.3336 0.6878 0.8125 
1.3763 0.5679 0.7068 
1.4612 0.6740 0.8212 
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a) 0.9954 second 

 
b) 1.4954 second 

 
c) 2.4954 second 

 
d) 3.4954 second 

Fig. 8. Modal shape comparison between MWSIPCE and theoretical value 
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a) The first order 

 
b) The second order c) The third order 

Fig. 9. The frequency comparison of cantilever beam 

 
Fig. 10. MAC value of every moment 

Table 4. The self-MAC of some moments 
1.0201 s 2.0201 s 3.0201 s 

Order 1 2 3 Order 1 2 3 Order 1 2 3 
1 1.000 0 0 1 1.000 0 0 1 1.000 0 0 
2 0 1.000 0 2 0 1.000 0 2 0 1.000 0 
3 0 0 1.000 3 0 0 1.000 3 0 0 1.000 

Table 5. Time-space consumptions based on MWSIPCA 
Method Absolute time consumption (s) Memory consumption (MB) 

MWPCA 374.135 7196 
MWSIPCE 200.397 2397 

4.5. The analysis of simulation results 

When the time is in the interval of 0.5002 s-0.972 s and 3.6520 s-3.7820 s, there is a big 
deviation between the third-order frequency identified by MWSIPCE and the third-order 
theoretical value. However, the third-order frequency identified by MWSIPCE is similar to the 
forth-order theoretical value. In addition, it is because in these transient times, the contribution 
rates of the third modal and the forth modal are changed, so the third modal identified by 
MWSIPCE is changed. As we can see in Table 2, the third-order modal frequency identified by 
MWSIPCE is corresponding to the forth-order nature frequency. Because of the modal exchange, 
Fig. 8(c) shows that the third-order real shape is corresponding to the fourth-order modal shape, 
which is identified by MWSIPCE. 

Fig. 7, Fig. 8, Fig. 9 and Fig. 10 approve that MWSIPCE algorithm can identify the modal 
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shape and nature frequency of SLTV structure accurately. Table 3 shows that MWSIPCE is more 
precise than MWPCA at some moments. The reason is there are singular value decomposition of 
matrix or the ill-posed problems for MWPCA. Table 4 shows that the different modal shapes 
identified by MWSIPCE are complete orthogonal. 

When the limited memory length is 8192, Δ݂ = 1.22 Hz is less than Δ ݂(3) = 12.2436 Hz and 
the identified effect is good while it needs high time and space complexity. When the limited 
memory length is 2048, its Δ݂ = 4.88 Hz is more than Δ ݂(3) = 3.0609 Hz. In addition, it needs 
low time and space complexity, but the identified effect is the worst, even in some time, the modal 
parameters are not identified for the data points are not enough. Therefore, the limited memory 
length is chosen to be 4096 according to compromise, because its Δ݂ = 2.44 Hz is less than Δ ݂(3) = 6.1218 Hz and its time and space complexity is not too high. 

MWSIPCE algorithm extracts several principal components from every rectangular data 
window. The number of identified order depends on the requirements of the user. However, 
MWPCA must calculate all components. Table 5 shows that the MWSIPCE algorithm has less 
time and space consumption. 

Tianshu Zhang implemented the method and completed the experimental verification. He also 
writhed the paper. Cheng Wang proposed the ideas, and gave guides in writing the paper. Jianying 
Wang provided with the data, and helped accomplish the experiment. Yewang Chen gave help in 
algorithm optimization. Yiwen Zhang helped modify English mistakes. 

5. Conclusions 

The simulation results of cantilever beam show that the MWSIPCE method can track the 
time-varying transient modal frequency and modal shape of SLTV structure well. Simulation 
results show that MWSIPCE needs less time and space consumption than MWPCA, and it 
real-timely measures and monitor SLTV structure. Furthermore, this paper gives detail 
explanations to the modal exchange in the simulation, which has great significance for 
malfunction monitoring of SLTV structure. Besides, the article illustrates the way of setting length ܮ and the limitation of MWSIPCE method.  

However, this study has some limitations. Each order of modal shapes got by PCA is 
normalized orthogonal, which loses amplitude information. It may be inappropriate to use average 
values to estimate the intermediate time for a period of time in the FFT of PCs, which would cause 
more burrs in the results of FFT of PCs. In the simulation verification, level of 2.0 % Gauss 
measurement noise is added into response signals to simulate the noise in the real scene, the design 
of real experiments and experimental verification of SIPCE are the future work. The next research 
is to identify the modal parameters in real-time using on-line and recursive techniques and 
integrate the algorithms into embedded device for mechanical fault diagnosis. How to select ܮ 
scientifically and adaptively is also a future study. 
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