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Abstract. The purpose of this study is to investigate the characteristics of vibration isolation 
system with a single degree-of-freedom (SDOF) and a two-degree-of-freedom (2DOF) 
respectively based on the high-static-low-dynamic-stiffness (HSLDS). This model consists of a 
simple configuration connecting a vertical spring and a pair of oblique springs. The restoring force 
of the isolation system is approximated to linear and cubic stiffness by applying the Maclaurin 
series expansion. The dynamic equations of the SDOF and 2DOF are established for the harmonic 
force excitation. The frequency-amplitude response equation of the SDOF is obtained by 
employing the harmonic balance method (HBM) and is demonstrated in the classical Runge-Kutta 
method. The solution stability is ensured by applying the Floquet theory. Effects on the frequency 
response curves (FRCs) for the damping ratio and excitation amplitude are explored and 
discussed. The force transmissibility (FT) is defined to evaluate the vibration suppression 
capability. Effects on the FT of the SDOF and 2DOF for the excitation amplitude, mass ratio, and 
damping ratio are investigated. An experimental investigation of the SDOF is carried out to 
evaluate the actual attenuation performance in comparison with the equivalent linear system 
(ELS). The simulation and experimental results show that the HSLDS system with harmonic force 
excitation demonstrates hardening stiffness with multi-valued solutions. The occurrence of jump 
phenomenon is observed and explained by the stiffness variation. The system response and 
resonance frequency are affected by the excitation amplitude and damping ratio. The HSLDS 
system outperforms the ELS in a low frequency range if an appropriate mass is mounted. It is 
excited by a proper force and owns a suitable damper, which offers a theoretical guidance for the 
design and application of a novel HSLDS isolator. 
Keywords: high-static-low-dynamic-stiffness, vibration isolation system, harmonic balance 
method, frequency response curves, force transmissibility. 

1. Introduction 

Undesirable vibration is a harmful effect that affects practical equipment, high-precision 
machinery and human health. It is evident that the bandwidth of vibration isolation is often limited 
by the mounted stiffness element required to support a static load. To overcome this limitation, 
the High-static-low-dynamic-stiffness (HSLDS) mechanism was put forward, what results in low 
a natural frequency with a small static displacement. Whilst it maintains locally low stiffness near 
equilibrium and static load bearing, which reduces the natural frequency and extends the 
frequency isolation region [1]. When there is an isolator, whose dynamic linear stiffness is zero 
or near zero, it is called as a quasi-zero-stiffness (QZS) isolator [2]. The isolation system with 
HSLDS characteristic has been well established both theoretically and experimentally in recent 
literatures, and has recently been the subject of growing interest of both engineers and researchers. 
There are many approaches to get the HSLDS characteristics. Carrella and Wu investigated 
vibration isolators with the HSLDS property via a combination of a mechanical spring and 
magnets [3, 4]. Zhou proposed a QZS isolator with a cam-roller mechanism [5]. Li presented a 
device using a magnetic spring combined with rubber membranes to suppress vibration [6]. Meng 
concerned the quasi-zero-stiffness by combining in parallel a negative disk spring with a linear 
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positive spring [7]. Liu developed a quasi-zero-stiffness by connecting the Euler buckled beam 
mechanism and a linear spring [8]. Zhou used a pair of electromagnets and a permanent magnet 
to build a tunable semi-active isolator with the HSLDS property [9]. Yashikazu applied super 
elastic Cu-Al-Mn shape memory alloy bars to develop a QZS isolator [10]. 

The above mentioned literatures as well as other literatures concerning HSLDS isolators have 
been more focused on the mechanism and theoretical analysis of a single-degree-of-freedom 
(SDOF)-HSLDS system. Experimental investigations and theoretical analysis of the  
SDOF-HSLDS system have been seldom reported, and their practical applications are even rare. 
Little changes were made in the control strategy to expand the isolation range to a lower frequency 
but with a high isolation performance. Unlike previous studies, the aim of this paper is to develop 
a SDOF-HSLDS and two-degree-of-freedom (2DOF)-HSLDS system experimentally and 
theoretically that can be useful for the elimination of line spectra of noise radiated from a 
submarine. 

In this paper, an investigation of a SDOF isolation system and 2DOF isolation system with the 
HSLDS characteristics was presented. The harmonic balance method (HBM) was applied to 
achieve the amplitude frequency characteristic equation, and the stable and unstable solutions 
were derived based on the Floquet theory. The effects of the excitation amplitude, mass ratio and 
damping ratio on frequency response curves (FRCs) and force transmissibility (FT) of the HSLDS 
vibration isolation system were investigated analytically and experimentally as compared with 
that of the equivalent linear system (ELS). 

2. Vibration isolation of SDOF system 

2.1. Description of general model 

The system depicted in Fig. 1 is a parallel connection of two oblique linear springs with 
identical stiffness ݇ଵ and a vertical linear spring with identical stiffness ݇ଶ. The oblique springs 
are hinged at ܣ and ܤ , and connected with the vertical spring at point ܥ . The configuration 
geometry is decided by horizontal distance ܽ  from point ܣ to ܥ  and initial height ℎ , while ݔ 
denotes the vertical displacement from the initial unloaded position caused by the force ݂. 

 
a) 

 
b) 

Fig. 1. Schematic representation of isolator based on HSLDS 

The general equation between the force ݂ and the displacement ݔ can be derived as: 

݂ = ݇ଶݔ + 2݇ଵ(ℎ − (ݔ ൫√ܽଶ + ℎଶ − ඥܽଶ + (ℎ − ଶ൯ඥܽଶ(ݔ + (ℎ − ଶ(ݔ . (1)

Noting thatݕ = ݔ − ℎ, Eq. (1) can be remade in the dimensionless form as: 
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መ݂ = ොݕ + 2෠݇ଵݕො ቆ1 − 1ඥ ොܽଶ + ොଶቇ (2)ݕ

where ෠݇ଵ = ݇ଵ ݇ଶ⁄ ොݕ , = ݕ √ܽଶ + ℎଶ⁄ , መ݂ = ݂ ൫݇ଶ√ܽଶ + ℎଶ൯⁄ , ොܽ = ܽ √ܽଶ + ℎଶ⁄ . Approximating 
Eq. (2) to the third order by using the Maclaurin series expansion, one yields: መ݂ ≐ ඥ1 − ොܽଶ + ቆ1 − 2෠݇ଵ(1 − ොܽ)ොܽ ቇ ොݕ + ෠݇ଵݕොଷොܽଷ.   (3)

The dimensionless dynamic stiffness can be obtained by differentiating Eq. (3) to ݕො: ෠݇ = ቆ1 − 2෠݇ଵ(1 − ොܽ)ොܽ ቇ + 3 ෠݇ଵݕොଶොܽଷ . (4)

The dimensional form of Eq. (4) is ݇ = ݇ଶ − 2݇ଵ(1 − 1 ොܽ)⁄ + (3݇ଵܽଶ ොܽ⁄  ଶ. It is clear thatݕ(
the oblique springs can reduce the positive stiffness so that the linear natural frequency is smaller 
in the isolation range; and they introduce the cubic stiffness term so that the peak response bends 
to higher frequencies, what potentially reduces the frequency region. 

The SDOF system is depicted in Fig. 2. It includes a rigid mass ݉ suspended on a three-springs 
mount in parallel with a viscous damperܿexcited by harmonic excitation ௘݂ =  cosΩܶ. The massܨ
moves in the vertical direction through the guide rod and bushing. By applying the Newton’s 
second law, the motion equation of SDOF system can be expressed as. ݉ݑᇱᇱ + ᇱݑܿ + ݇ᇱଵݑ + ݇ᇱଷݑଷ = cosΩܶ, (5)ܨ

where ݇′ଵ = ݇ଶ + 2݇ଵ(1 − 1 ොܽ⁄ ),  ݇′ଷ = 3݇ଵܽଶ ොܽ⁄  and (⋅)′ = ݀(⋅) ⁄ݐ݀ .  The following 
dimensionless variables are introduced as ݐ = Ω௡ܶ, ߱ = Ω Ω௡⁄ , Ω௡ = ඥ݇′ଵ ݉⁄ ߦ , = ܿ (݉Ω௡)⁄ , ݂ = ට݇′ଷܨ ݇′ଵଷ⁄ . Eq. (5) can be expressed in the dimensionless form as: ݑ′′෢ + ෡′ݑߦ + ොݑ + ොଷݑ = ݂cos(߱ݐ). (6)

What is a hardening Helmholtz-Duffing oscillator and primes. 

 
a) 

 
b) 

Fig. 2. Structural model of SDOF system with HSLDS characteristic: 1 – loading platform, 2 – oblique 
spring, 3 – guide device, 4 – pillar, 5 – vertical spring, 6 – base plate, 7 – linear bearing, 8 – sliding rod 

2.2. Amplitude-frequency equation and stability analysis 

Considering that the vibration isolation system with the HSLDS characteristic is a strongly 
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nonlinear, the Mathieu equation criterion and perturbation methods are invalid. The corresponding 
steady-state approximate solution is obtained by using the general Hill equation and HBM [11]. 

Applying the HBM, the solution of Eq. 6, denoted by ݑො , is supposed as a truncated Fourier 
series ݑ଴ plus a small perturbationݒ. The system response is given by: 

ොݑ = ଴ݑ + ݒ = ଴ݎ + ෍ ݐ߱݅)௜cosݎ − ߶௜)ே
௜ୀଵ + (7) ,ݒ

where ݎ଴, ݎ௜ and ߶௜ are Fourier parameters of harmonic balance solution and ܰ is the truncated 
order. In particular, substituting Eq. (7) into Eq. (6) with ܰ = 3, Eq. (6) can be transferred as: 

′′ݒ + ′ݒߦ + ቎ߠ଴ + 2 ෍ ቀߠ௝௖cos(݆߱ݐ) + ቁ଺(ݐ݆߱)௝௦sinߠ
௝ୀଵ ቏ ݒ + ଶݒ3 ෍൫ݎ௜cos(݅߱ݐ − ߶௜)൯ଷ

௜ୀଵ + ଷݒ
      = − ଴ܲ − ෍൫ ௞ܲcos(݇߱ݐ) + ൯ଽ(ݐ߱݇)௞sinܩ

௞ୀଵ = 0,  (8)

where the functional dependence of ଴ܲ , ௞ܲ ௞ܩ , ଴ߠ , ௝௖ߠ ,  and ߠ௝௦  on the parameters ݎ଴ ௜ݎ , , ߶௜  is 
shown in Appendix. Since the substitution introduced seven parameters into the system, which 
can be obtained by the coefficients ௝ܲ(ݎ଴, ,௜ݎ ߶௜)  and ܩ௝(ݎ଴, ,௜ݎ ߶௜)  of harmonic cos(݇߱ݐ)  and sin(݇߱ݐ) equated to zero respectively (݅ = 1,…, 3, ݆ = 1,…, 9, ݇ = 1,…, 9). The linearized 
variational equation of the Eq. (8) can be written as: 

′′ݒ + ′ݒߦ + ቎ߠ଴ + 2 ෍ ቀߠ௝௖cos(݆߱ݐ) + ቁସ(ݐ݆߱)௝௦sinߠ
௝ୀଵ ቏ ݒ = 0. (9)

It is worthy of noting that the stability analysis of Eq. (7) is changed to the general Hill  
equation. According to the Floquet theory [12], the solution of Eq. (10) can be assumed to be: 

ݒ = ݁ఙ௧(ݐ)ߟ    ,(ݐ)ߟ = ෍ ܾ௠ cos(݉߱ݐ − ߮௠)ஶ
௠ୀଵ , (10)

where ߪ  is the characteristic Floquet exponent. Eq. (10) is substituted into Eq. (9), and the 
coefficients of the same harmonics are equated and ignore the higher harmonics. This leads to an 
infinite set of linear homogeneous equations ܠۯ =  0, where ܠ  is the column vectors (⋯ , ܾ௜, ܾ௜ାଵ, ⋯ ܠۯ ,is the matrix of coefficients. Following the procedure stated in Ref. [12] ۯ ,்( = 0 exists an nontrivial solutions if the determinant of ۯ, denoted by Δ, vanishes. Thus, the 
stable (respectively, unstable) condition is determined by whether Δ(ߪ = 0) > 0  is positive 
(negative), the boundary between the stable and unstable regions is Δ(ߪ = 0) = 0. 

This paper aims to find the primary resonance response. The corresponding steady-state 
harmonic solution is supposed to be ݑො = ଴ݎ + ݐ߱)ଵcosݎ − ߶ଵ) +  which leads to the following ,ݒ
amplitude-frequency relation according to the Appendix: 

ቐݎ଴(1 + ଴ଶݎ + ଵଶݎ3 2)⁄ = 0,(1 − ߱ଶ)ݎଵcos߶ଵ + ଵsin߶ଵݎ߱ߦ + ଴ଶݎ4)3 + ଵcos߶ଵݎ(ଵଶݎ 4⁄ − ݂ = 0,(1 − ߱ଶ)ݎଵsin߶ଵ − ଵcos߶ଵݎ߱ߦ + ଴ଶݎ4)3 + ଵsin߶ଵݎ(ଵଶݎ 4⁄ = 0.  (11)

With the term containing ߶ଵ  eliminated, Eq. (11) can be expanded and arranged. The 
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amplitude-frequency equation can be yielded as: 

ቆ3ݎଵଷ4 + (1 − ߱ଶ)ݎଵቇଶ + ଶ(ଵݎ߱ߦ) = ݂ଶ. (12)

With the term containing ݎଵ  eliminated, Eq. (11) can be expanded and arranged. The  
phase-frequency equation can be yielded as: 

߶ଵ = −arctan ൬ ଵଶݎ3߱ߦ4 − 4߱ଶ + 4൰. (13)

The two positive solutions for ߱, which are the resonant and non-resonant branches in the 
frequency response function, can be solved analytically in Eq. (12): 

߱ଵ,ଶ = 12 ඨ3ݎଵଷ − ଵݎଶߦ2 + ଵݎ4 ± 2ඥݎଵଶߦସ − ଶߦଵସݎ3 − ଶߦଵଶݎ4 + 4݂ଶݎଵ . (14)

The peak response can be reached when ߱ଵ and ߱ଶ are equal. Thus, the peak response of ݎଵ௣ 
and corresponding ߱௣ are found as follows: 

۔ۖەۖ
ଵ௣ݎۓ = ඨߦଷ − ߦ4 + ඥߦ଺ − ସߦ8 + ଶߦ16 + 48݂ଶ6ߦ ,

߱௣ = 12√2 ඨ−3ߦଷ + ߦ4 + ඥߦ଺ − ସߦ8 + ଶߦ16 + 48݂ଶߦ . (15)

Noting that ܰ =  1 and according to the procedure shown in Appendix, Eq. (9) can be  
written as: ݒ′′ + ′ݒߦ + ݌] + ݒ[cos2߮ݍ2 = 0, (16)

where ݌ = 1 + ଵଶݎ3 2⁄ ݍ , = ଵଶݎ3 4⁄ , ߮ = ݐ߱ − ߶ଵ. 
According to the Floquet theory, the solution of Eq. (16) can be assumed to be: ݒ = ଵܸcos߮ + ଶܸsin߮. (17)

By substituting Eq. (17) into Eq. (16) and applying the HBM, one can conclude that: ((−߱ଶ + ݌ + (ݍ ଵܸ + ߱ߦ ଶܸ)cos߮ + ((−߱ଶ + ݌ − (ݍ ଶܸ − ߱ߦ ଵܸ)sin߮     +ݍ ଵܸcos(3߮) + ݍ ଶܸsin(3߮) = 0.  (18)

With the term containing sin(3߮)  and cos(3߮)  neglected, the coefficients of harmonics cos(߱ݐ) and sin(߱ݐ) are equated to zero respectively, what can be derived as: 

൜(−߱ଶ + ݌ + (ݍ ଵܸ + ߱ߦ ଶܸ = 0,(−߱ଶ + ݌ − (ݍ ଶܸ − ߱ߦ ଵܸ = 0. (19)

Nontrivial solutions exist only when the determinant of the matrix in Eq. (19), denoted by Δ, 
vanishes, waht can be derived as: 
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Δ = ଵସ16ݎ27 + 3(1 − ߱ଶ)ݎଵଶ + (1 − ߱ଶ)ଶ + ଶ߱ଶߦ = 0. (20)

Eq. (20) is the boundary between the stable and unstable regions and the unstable regions can 
be determined by Δ < 0. 

2.3. Effects on FRCs for damping ratio and excitation amplitude 

In this section, the effects of the damping ratio and excitation amplitude on the shape of the 
FRCs are investigated by the controlling variables method. It is worthy of noting that the 
steady-state solution is obtained only by considering the component of the primary resonance 
response, where the classical Runge Kutta method needs to be used to validate the accuracy of the 
appropriate solutions obtained by HBM. These curves are plotted in Figs. 3-5 for three 
distinguishable cases, where the red solid line and the blue dotted line of the FRCs represent the 
stable and unstable solutions, respectively, and the symbols black “o” and green “*” denote the 
numerical solution and peak response, respectively. It can be observed from the Figs. 3-5, the 
analytical and numerical results fit in well. 

 
Fig. 3. FRCs of system with different damping  

ratios where ݂ = 0.5 and ߦ = 0.1, 0.2, 0.3 

 
Fig. 4. FRCs of system with different excitation 

amplitudes where ߦ = 0.1 and ݂ = 0.5, 1, 1.5 

 
Fig. 5. Dependence of response amplitude on excitation amplitude where ߦ = 0.1 and ߱ = 1.6, 2, 2.2 

As shown in Fig. 3, an increase in the damping ratio results in a decrease in the resonance 
frequency and peak response when the excitation amplitude is fixed. The unstable regions also 
decreases as the damping radio increases and the FRCs approach is equal at lower or high 
frequencies. The FRCs of the harmonic response are bent to the right, as they are intended for the 
hardening stiffness characteristic. However, the FRCs will tend to the linear form when the 
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damping ratio is excessive. 
In the above analysis, the excitation amplitude of the HSLDS system is always fixed. It is 

interesting to study the effects of excitation amplitude on the FRCs when the damping ratio is 
fixed. The FRCs with different excitation amplitudes are plotted in Fig. 4. It can be seen obviously 
that larger excitation amplitude can result in both larger resonance frequency and peak response. 
An increase in the excitation amplitude yields an increase in the unstable region. The FRCs 
changes are larger with larger excitation amplitude at lower frequencies while that approaches are 
the same at high frequencies. 

The dependence of the response amplitude on the excitation amplitude is plotted in Fig. 5. By 
observing Fig. 5, sometimes the number of steady-state solution is only one, sometimes it is three, 
depending on the initial conditions. The region of existing three stable solutions extends as the 
excitation frequency increases. 

2.4. FT definition 

The FT is defined as the ratio between the amplitude of force ௕݂ transmitted to the base and 
amplitude of the excitation force ݂ [13]: 

௙ܶ = ௕݂݂. (21)

The ௕݂ contains the elastic force and damping force, which can be expressed by: 

௕݂ = ᇱݑߦ + ݑ + ଷݑ = ݐ߱)ଵsinݎ߱ߦ− + (ߠ + ݐ߱)ଵcosݎ + (ߠ + ݐ߱)ଷݏ݋ଵଷܿݎ + (22) .(ߠ

Thus, substituting Eq. (12) and Eq. (13) into Eq. (22) and only considering the dynamic force, 
the FT of the HSLDS isolator can be expressed by: 

௙ܶ = ฬ ௕݂݂ฬ = ଵ݂ݎ ඨ൬1 + 34 ଵଶ൰ଶݎ + ଶ߱ଶ. (23)ߦ

The peak FT corresponds to the peak response ݎଵ௣. Substituting Eq. (15) into Eq. (23), one 
yields: 

ห ௙ܶห௠௔௫ = ඥߦସ − ଶߦ4 + ଷߦ)߆ + ߦ4 + ଶ݂൯ߦ൫8√6(߆ , (24)

where Θ = ඥߦ଺ − ସߦ8 + ଶߦ16 + 48݂ଶ. For the ELS, the mathematical expression of FT is given 
in dimensionless quantities by: 

௟ܶ == ඨ 1 + ଶ(1(߱ߦ) − ߱ଶ)ଶ + ଶ. (25)(߱ߦ)

2.5. Effects on FT for damping ratio and excitation amplitude 

The Effects on the FT of the HSLDS system and the ELS for the damping ratio and excitation 
value are plotted in Figs. 6-7, where the red solid parts and black solid parts represent the FT of 
the HSLDS system and the ELS respectively, the symbols “●” denote the peak amplitude of FT, 
and the FT values are expressed in dB, i.e. as 20 ݈݋ ଵ݃଴ܶ. By inspecting Fig. 6-7, one conclusion 
can be obtained that the isolation performance of the HSLDS system will be better or worse than 
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that of the ELS depending on the excitation frequency and system parameters. 
As shown in Fig. 6, larger damping ratio yields both smaller peak amplitude and smaller 

resonance frequency of the FT when the excitation amplitude is fixed. However, the excessive 
damping ratio is detrimental to the isolation performance of HSLDS system at high frequencies. 
As for the ELS, larger damping ratio yields smaller peak amplitude, while the resonance frequency 
remains unchanged. As compared with the ELS, the HSLDS system has a smaller initial frequency, 
wider isolation band and better isolation performance. But when the excitation frequency is 
excessive, the FT of the HSLDS system is greater than that of the ELS. 

As shown in Fig. 7, an increase of the excitation amplitude yields both larger peak value and 
larger resonance frequency of the FT when the damping ratio is fixed. The FTs of the different 
excitation amplitudes approach to the same level at higher frequencies. As for the ELS, the peak 
amplitude and resonance frequency are independent from the excitation amplitude. As compared 
with the ELS, the HSLDS system has a smaller initial frequency, wider isolation band and better 
isolation performance; but the excessive excitation frequency will deteriorate the isolation 
performance of the HSLDS system. 

 
Fig. 6. FT of HSLDS system and its ELS  

with different damping ratios where ݂ = 0.5  
and adjusted ߦ = 0.1, 0.2, 0.3 

 
Fig. 7. FT of HSLDS system and its ELS  

with different excitation amplitudes where ߦ = 0.1 
and ݂ = 0.5,1,1.5 0.5, 1, 1.5 

2.6. Experimental investigation 

To assess the attenuation performance of the proposed SDOF-HSLDS system and to validate 
the nonlinear phenomenon presented in the previous section, a prototype experiment is carried out. 
The experimental apparatus of the HSLDS is shown in Fig. 8. The mass is supported by the vertical 
spring and moves in the vertical direction through the guide rod and bushing. The HSLDS isolator 
was installed at a rubber vibration isolation system. A vibration exciter powered by a power 
amplifier is mounted on top of the mass to provide external force in the vertical direction. Between 
the exciter and the mass, a force sensor is installed to measure the excitation force. Another force 
sensor is placed underneath the base plate of the HSLDS device to measure the transmitted force 
during vibration. A data acquisition analyzer is used to extract the output signal from the sensors. 
A personal computer is used to handle the I/O data operation for the whole measuring system. The 
experimental setup can be divided into three steps: excitation system, data acquisition system and 
measured subject. The isolator parameters are shown in Table 1. 

The vibration isolation performance is assessed by the FT, which is defined as the ratio of the 
root mean square (RMS) value of the force transmitted to the base, and as of the RMS value of 
the excitation force. A linear system is used for a benchmark comparison. The external excitation 
frequency is varied from 0.5 to 25 Hz. In the actual experiments, two series of experiments are 
conducted for two series of excitation conditions. The excitation force keeps constant at the level 
of 20 N for the Case I and keeps constant at the level of 10 N for the Case II. Fig. 9 shows the 
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transmissibility of different levels of excitation force. It is evident that the linear system has the 
resonance peak of about 2.1 Hz, while the HSLDS system is not involved in the resonance.  

Table 1. Physical parameters for making experimental apparatus 
Parameter  Original value ݇௩ 0.4 (N/mm) ݇଴ 0.711 (N/mm) ݉ 2.3 (kg) ܽ 70 (mm) ܮ଴ 90 (mm) ℎ 56.5 (mm) 

 

 
a) Schematic representation of isolator 

 
b) Prototype of experimental apparatus 

Fig. 8. Experimental setup of HSLDS isolator 

 
a) Case I 

 
b) Case II 

Fig. 9. Experimental comparison of force transmissibility between HSLDS  
and ELS at different levels of excitation force 

Theoretically, the HSLDS system has a bended resonance peak, but a small damping can make 
the peak vanish. It is because that the stiffness of the HSLDS system about the equilibrium is close 
to zero so that the resonance peak has shifted to a lower frequency. The HSLDS system starts the 
effective attenuation from 0.3 Hz where the transmissibility value is less than one, while the ELS 
can only start from 3 Hz. The performance of the HSLDS system appears to be equivalent to that 
of ELS in the high-frequency band after 4 Hz. It can be seen obviously that the performance of 
the proposed HSLDS system is superior to the ELS in terms of the isolation frequency region, 
which validates the concept of HSLDS isolator usage to lower the dynamic stiffness to a positive 
stiffness. 

Vibration exciter

M

Force sensor1

Fixture

Concave 
boss

Rubber
isolatorPedestal

Force 
sensor2

Isolation mass

Horizontal springVertical spring

Vibration exciter

Force sensor

Isolation mass

Horizontal spring

Vertical spring

Force sensor

Locking fixture Rubber isolator

0 5 10 15 20 25
0

1

2

3

4

5

Excitation frequency(Hz)

Tr
an

sm
is

si
bi

lit
y(

dB
)

 

 
HSLDS system
Linear system

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

Excitation frequency(Hz)

Tr
an

sm
is

si
bi

lit
y(

dB
)

 

 
HSLDS system
Linear system



2592. CHARACTERISTIC ANALYSIS OF VIBRATION ISOLATION SYSTEM BASED ON HIGH-STATIC-LOW-DYNAMIC STIFFNESS.  
KAI CHAI, JINGJUN LOU, QINGCHAO YANG, SHUYONG LIU 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. SEP 2017, VOL. 19, ISSUE 6. ISSN 1392-8716 4129 

3. Vibration isolation of 2DOF system 

3.1. 2DOF nonlinear isolation system and equivalent linear isolation system 

In this section the 2DOF nonlinear (hereinafter referred to as “N-N”) isolation system shown 
in Fig. 8 is investigated to see if this isolation performance is superior to the corresponding 2DOF 
linear (hereinafter referred to as “L-L”) isolation system. The N-N isolation system, which 
includes the mass of vibration object ݉ଵ, together with a vertical stiffness ݇ଶଵ, a viscous damper ܿଵ and two horizontal stiffness ݇ଵଵ; and the mass of the intermediate object ݉ଶ, in parallel with a 
vertical stiffness ݇ଶଶ, a viscous damper ܿଶ and two horizontal stiffness ݇ଵଶ, consists of two SDOF 
isolators shown in Fig. 10(a). ௧݂ is the force transmitted to the base, and ௧݂ is the excitation force. ݔଵ and ݔଶ denote the vertical displacement of ݉ଵ and ݉ଶ, respectively. 

 
a) N-N configuration 

 
b) L-L configuration 

Fig. 10. Schematic of N-N and L-L isolator 

In the analysis above, the motion equation of the SDOF system with the HSLDS characteristic 
in Fig. 2 can be approximated by: ݉ݔᇱᇱ + ᇱݔܿ + ݇ଶݔ + 2݇ଵݔ ቀ1 − ℎ ඥܽଶ + ⁄ଶݔ ቁ = cosΩT. (26)ܨ

Thus, the motion equation of the N-N isolation system under harmonic force excitation can be 
expressed as: 

۔ۖەۖ
ଵᇱᇱݔଵ݉ۓ + ܿଵ(ݔଵᇱ − ଶᇱݔ ) + ݇ଶଵݔଵ − ݇ଶଵݔଶ + 2݇ଵଵ ቆ1 − ℎඥܽଶ + ଵଶቇݔ ଵݔ = ,cosΩܶܨ

݉ଶݔଶᇱᇱ + ܿଶݔଶᇱ − ܿଵ(ݔଵᇱ − ଶᇱݔ ) − ݇ଶଵݔଵ + ݇ଶଵݔଶ + ݇ଶଶݔଶ + 2݇ଵଶ ቆ1 − ℎඥܽଶ + ଵଶቇݔ ଶݔ = 0. (27)

Eq. (27) can be transferred into the matrix form as: ܠۻᇱᇱ + ᇱܠ۱ + ܠ(ݔ)۹ = (28) ,܎

where: ۻ = ൤݉ଵ 00 ݉ଶ൨ ,   ۱ = ቂ ܿଵ −ܿଵ−ܿଵ ܿଵ + ܿଶቃ ܠ   , = ቂݔଵݔଶቃ ܎   , = ቂܨcosΩܶ0 ቃ, 
(ݔ)۹ = ቎݇ଶଵ + 2݇ଵଵ ቀ1 − ℎ ඥܽଶ + ⁄ଵଶݔ ቁ −݇ଶଵ−݇ଶଵ ݇ଶଵ + ݇ଶଶ + 2݇ଵଶ ቀ1 − ℎ ඥܽଶ + ⁄ଵଶݔ ቁ቏. 
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By introducing the dimensionless parameters as follows: 

ොଵݔ = ଵℎݔ ොଶݔ   , = ଶℎݔ ,   ෠݇ = ݇ଶଶ݇ଵଶ ଵߙ   , = 1 − 2 ݇ଵଵ݇ଶଵ √ܽଶ + ℎଶ − ܽܽ ଵߚ   , = 3݇ଵଵℎଶ√ܽଶ + ℎଶ݇ଶଵܽଷ ଶߙ , = 1 + ݇ଶଶ݇ଶଵ − 2 ݇ଵଶ݇ଶଵ √ܽଶ + ℎଶ − ܽܽ ଶߚ   , = 3݇ଵଶℎଶ√ܽଶ + ℎଶ݇ଶଵܽଷ ߤ   , = ݉ଶ݉ଵ ଵߦ   , = ܿଵ2݉ଵΩ௡, 
ଶߦ = ܿଶ2݉ଶΩ௡ ,   Ω௡ = ඨ݇ଶଵ݉ଵ ,   ߱ = ΩΩ௡ ݐ   , = Ω௡ܶ. 

Eq. (28) can get the dimensionless dynamic equation: ۻ෡ ෢′′ܠ + ۱෠ܠ′෡ + ۹෡ ଵܠො + ۹෡ ଷܠො(ଷ) = መ, (29)܎

where: ۻ෡ = ൤1 00 ൨,   ۱෠ߤ = 2 ൤ ଵߦ ଵߦ−ଵߦ− ଵߦ + ଶ൨,   ۹෡ߦߤ ଵ = ൤ ଵߙ −1−1 ଶߙ ൨,   ۹෡ ଷ = ൤ߚଵ 00 ොܠ   ,ଶ൨ߚ = ൤ݔොଵݔොଶ൨, ܠො(ଷ) = ൤ݔොଵଷݔොଶଷ൨,   ܎መ = ൤ܨ෠cos(߱ݐ + ߮ிଵ)0 ൨. 
By applying the HBM [14-15], set the Eq. (29) solution as: 

(ݐ)ො௜ݔ = ෍ ቀܽ௜,௡cos(݊߱ݐ) + ܾ௜,௡sin(݊߱ݐ)ቁே
௡ୀଵ ,    ݅ = 1, 2, (30)

where ܽ௜,௡ , ܾ௜,௡  and ܰ  represent the Fourier coefficient of harmonic balance solution and 
truncated order, respectively. The first and second derivatives of Eq. (30) are given by: 

۔ۖەۖ
෡′ݔۓ ௜(ݐ) = ෍ ݊߱ ቀܽ௜,௡cos(݊߱ݐ) + ܾ௜,௡sin(݊߱ݐ)ቁ ,ே

௡ୀଵݔ′′෢௜(ݐ) = ෍ −݊ଶ߱ଶ ቀܽ௜,௡cos(݊߱ݐ) + ܾ௜,௡sin(݊߱ݐ)ቁ ,      ݅ = 1, 2.ே
௡ୀଵ

 (31)

By substituting Eq. (31) into Eq. (29), one can obtain the appearance of high-order ݔො௜(ݐ) term. 
According to the orthogonally of trigonometric functions [16-17], one can reach: 

௣((ݐ)ො௜ݔ) = ෍൫ ෤ܽଵ,௡௣ cos(݊߱ݐ) + ෨ܾଵ,௡௣ sin(݊߱ݐ)൯ே
௡ୀଵ ,    ݅ = ݌    ,1,2 = 2,3, (32)

where: 

۔ۖەۖ
ۓ ෤ܽ௜,௡௣ = ߨ2߱ න ൭෍൫ܽ௜,௡ cos(݊߱ݐ) + ܾ௜,௡ sin(݊߱ݐ)൯ே

௡ୀଵ ൱ଶగఠ଴
௣ cos(݊߱ݐ)݀ݐ,

෨ܾ௜,௡௣ = ߨ2߱ න ൭෍൫ܽ௜,௡ cos(݊߱ݐ) + ܾ௜,௡ sin(݊߱ݐ)൯ே
௡ୀଵ ൱ଶగఠ଴

௣ sin(݊߱ݐ)݀ݐ.  (33)
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Supposing that ܰ = 1, the solution of Eq. (29) can be assumed as: ݔො௜(ݐ) = ܽ௜,௡cos(߱ݐ) + ܾ௜,௡sin(߱ݐ) = ෠ܺ௜cos(߱ݐ + ߮ி௜),    ݅ = 1,2. (34)

By substituting Eq. (34) into Eq. (29) and setting the coefficients of the terms including cos(߱ݐ) and sin(߱ݐ) to be zero respectively and ignoring the higher harmonics, one yields the 
implicit amplitude-frequency equation in the form of matrix derived as: 

൫۹෡ ଵ − ߱ଶۻ෡ ൯܆෡Φி + ෡(ଷ)۹෡܆3 ଷΦி4 + ߱۱෠܆෡Φிۯ = ۴෠Φி, (35)

where: 

Φி = ൤cos߮ிଵ sin߮ிଵcos߮ிଶ sin߮ிଶ൨ ۯ   , = ቂ0 −11 0 ቃ,   ܆෡ = ቈ ෠ܺଵ 00 ෠ܺଶ቉,   ܆෡(ଷ) = ቈ ෠ܺଵଷ 00 ෠ܺଶଷ቉,     ۴෠ = ൤ܨ෠ 00 0൨. 
The dimensionless force transmitted to the base is: መ݂௧ = ۹෡ ௧ଵܠො + ۹෡ ௧ଷܠො(ଷ) + ۱෠௧ܠ′෡ , (36)

where ۹෡ ௧ଵ = ଵߙ] − 1 ଶߙ − 1], ۹෡ ௧ଷ = ଵߚ] ଶ], ۱෠௧ߚ = [0  .[ଶߦ2
Assuming that መ݂௧ = ݐ߱)෠௧cosܨ + ்߮), the force magnitude can be obtained as: 

෠௧Φ௧ܨ = ۹෡ ௧ଵ܆෡Φி + 3۹෡ ௧ଷ܆෡(ଷ)Φி4 + ߱۱෠௧܆෡Φி(37) ,ۯ

where Φ் = [cos்߮ sin்߮]. 
According to the Eq. (21), the FT of the N-N isolator can be expressed by ௙ܶ = ෠௧ܨ ⁄෠ܨ . 
For a comparison, two pairs of horizontal springs are removed, and the corresponding linear 

isolator is shown in Fig. 10(b). The dimensionless dynamic equation for the L-L isolation system 
can be expressed as: ۻ෡ ෢′′ܠ + ۱෠ܠ′෡ + ۹෡ܠො = መ, (38)܎

where: ۻ෡ = ൤1 00 ൨,   ۱෠ߤ = 2 ൤ ଵߦ ଵߦ−ଵߦ− ଵߦ + ଶ൨,   ۹෡ߦߤ ଵ = ቂ 1 −1−1 1 + ෠݇ቃ,    ܠො = ൤ݔොଵݔොଶ൨,     ܎መ = ൤ܨ෠cos(߱ݐ + ߮ிଵ)0 ൨. 
The dimensionless force transmitted to the base is: መ݂௧௟ = ۹෡ ௧௟ܠො + ۱෠௧௟ܠ′෡  (39)

where: ۹෡ ௧௟ = [0 ෠݇],   ۱෠௧௟ = [0  .[ଶߦ2
Assuming that መ݂௧ = ݐ߱)෠௧cosܨ + ்߮), the force magnitude can be obtained as: ܨ෠௧௟Φ௧ = ۹෡ ௧௟܆෡Φி + ߱۱෠௧௟܆෡Φி(40) ,ۯ
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where Φ் = [cos்߮ sin்߮]. 
According to the Eq. (21), the FT of the L-L isolator can be expressed by ௙ܶ௟ = ෠௧௟ܨ ⁄෠ܨ . 

3.2. Effect of parameters on FT 

In the above analysis, the FT is closely related to the excitation amplitude, mass ratio and 
damping ratio. It is interesting to study the effects of different system parameters on the FT with 
the help of the controlling variable method. The FTs of N-N and L-L isolation system are plotted 
together to compare the isolation performance, expressed in dB. A given set of parameters ߙଵ = ଵߚ ,0.02–  = ଶߙ ,4.47  = ଶߚ ,0.98  =  4.47, ෠݇ =  1 are chosen to conduct the following 
investigation. 

Fig. 11 shows the FT of N-N isolator and L-L isolator with the changed excitation amplitude. 
It can be seen that the first and second resonance frequencies and corresponding peak of FTs 
increase obviously as the excitation amplitude increases. However, the FT of L-L isolator is not 
affected by the excitation amplitude. The FT of the N-N isolator is larger than that of the L-L 
isolator at low frequencies while the FT of the N-N isolator changes to a smaller value than that 
of the L-L isolator at frequencies greater than the first resonance frequency. Thus, one can 
conclude that the N-N isolator outperforms than that of the L-L isolator at high frequencies. 

 
Fig. 11. FT of N-N isolator and L-L isolator with different excitation amplitudes where  ߦଵ = ଶߦ ߤ ,0.03 = = 2 and ݂ = 0.01, 0.1, 0.5 

Fig. 12 shows the effect on the FT with the changed mass ratio. For the N-N isolator, it can be 
seen that an increase of the mass ratio will result in an increase of the first resonance frequency 
and corresponding peak of FTs, but in a decrease of the second resonance frequency and 
corresponding peak of FTs. However, for the L-L isolator, one can conclude that the first 
resonance frequency, corresponding FT peak and the second resonance frequency decrease, while 
the second peak of FTs increases as the mass ratio increases. Thus, an increase of the mass ratio 
can broaden the frequency region of isolation, but a decrease of the isolation performance can 
occur near the second resonance frequency. 

In the previous sections, the isolation performance of the N-N isolator is better than the L-L 
isolator for specific values of damping ratio. Here the effects of the damping ratio on the FT are 
investigated in Fig. 11 when the excitation amplitude and mass ratio are fixed. Fig.13(a) illustrates 
that the damping ratio ߦଶ in the lower stage is fixed and the damping ratio ߦଵ of the upper stage is 
varied. By inspecting Fig. 13(a), one can conclude that the first resonance frequency and 
corresponding peak of the N-N isolator and L-L isolator are hardly changed after the damping 
ratioߦଵincreased. But the second resonance frequency, corresponding peak of the N-N isolator and 
second peak of the L-L isolator reduce with the increase of the damping ratio ߦଵ, while the second 
resonance frequency of the L-L isolator remains unchanged. But an increase of the damping ratio ߦଵ  will deteriorate the isolation performance at frequencies greater than the second resonance 
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frequency. Fig. 13(b) illustrates that the damping ratio ߦଵ in the upper stage is fixed, the damping 
ratio ߦଶ of the lower stage is varied. By inspecting Fig. 13(a), one can conclude that the first 
resonance frequency, corresponding peak and second resonance frequency of the N-N isolator 
decrease as the damping ratio ߦଶ increases, while the second peak increases. The first resonance 
frequency and corresponding peak of the L-L isolator decrease as the damping ratio ߦଶ increases, 
while the second resonance frequency and corresponding peak remain unchanged. Thus, it is 
preferable to have properly high damping ratio ߦଵ to control the response at the second resonance 
frequency and as a small damping ratio ߦଶ to reduce the transmitted force. 

 
Fig. 12. FT of N-N isolator and L-L isolator with different mass ratios where ߦଵ = ଶߦ = 0.03, ݂ = 0.1 and ߤ = 1, 2, 3 

 
a) Effect of regular ߦଶ and variable ߦଵ where ݂ ଶߦ ,0.1 = ߤ ,0.03 = = 2 and ߦଵ = 0.01, 0.03, 0.05 

 
b) Effect of regular ߦଵ and variable ߦଶ where ݂ ଵߦ ,0.1 = ߤ ,0.03 = = 2 and ߦଶ = 0.01, 0.03, 0.05 

Fig. 13. FT of N-N isolator and L-L isolator with different damping ratios 

4. Conclusions 

In this study, the characteristics of the vibration isolation system based on the HSLDS have 
been investigated theoretically and experimentally. The isolation system consists of a vertical 
spring providing a positive stiffness and of two auxiliary springs providing a negative stiffness. 
HSLDS isolation system is termed as follows: SDOF and 2DOF. The effects of excitation 
amplitude, mass ratio, and damping ratio on FRCs and FTs are analyzed. The conclusions can be 
summarized as follows: 

Firstly, for the SDOF, the effects of the excitation amplitude decrease and the damping ratio 
increase are properly beneficial to the isolation performance as compared with the ELS, but they 
degrade the performance at a higher frequency. The experimental results demonstrate that the 
HSLDS isolator is not involved into the resonance phenomena as compared with the ELS. 
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Secondly, for the 2DOF, if the excitation amplitude and damping ratio ߦଶ as well as the mass 
ratio and damping ratio ߦଵ decrease properly, the N-N isolator possesses smaller initial isolation 
frequency, wider isolation band and better isolation performance ad compared with the L-L 
isolator. The appropriate damper increase is also a feasible way to avoid the occurrence of jump 
phenomenon of the N-N isolator and to make this kind of HSLDS isolator performance better. 

Thirdly, the introduction of the negative stiffness mechanism is an effective way to lower the 
resonance frequency, and the HSLDS isolation system can reduce the dynamic stiffness and hence 
can increase the frequency range of isolation. 

Finally, the present study will provide a useful insight into the design principles when putting 
such a kind of low-frequency HLSDS isolator into practice. Future studies will extend the 
proposed design to the cases where loading excitations are more realistic and will evaluate the 
system performance in practical applications. 
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Appendix 

Functional dependencies. By substituting: 

ොݑ = ଴ݑ + ݒ = ଴ݎ + ෍ ݐ߱݅)௜cosݎ − ߶௜)ே
௜ୀଵ +  .ݒ

Into: ݑ′′෢ + ෡′ݑߦ + ොݑ + ොଷݑ = ݂cos(߱ݐ). 
This differential equation can be given as: 

′′ݒ + ′ݒߦ + ቎ߠ଴ + 2 ෍ ቀߠ௝௖cos(݆߱ݐ) + ቁ଺(ݐ݆߱)௝௦sinߠ
௝ୀଵ ቏ ݒ + ଶݒ3 ෍൫ݎ௜cos(݅߱ݐ − ߶௜)൯ଷ

௜ୀଵ     +ݒଷ = − ଴ܲ − ෍( ௞ܲ cos(݇߱ݐ) + ௞ܩ sin(݇߱ݐ))ଽ
௞ୀଵ ,  

where: 

଴ܲ = ଴(1ݎ + ଴ଶݎ + (଴ܣ + 34 ଶ(cos2߶ଵݎଵଶݎ − ߶ଶ) + 32 ଷcos(߶ଵݎଶݎଵݎ + ߶ଶ − ߶ଷ), ଵܲ = (1 − ߱ଶ)ݎଵcos߶ଵ + ଵsin߶ଵݎ߱ߦ + ଵcos߶ଵݎଵܣ + ଶݎଵݎ଴ݎ3 cos(߶ଵ − ߶ଶ)+ 34 ଷݎଵଶݎ cos(2߶ଵ − ߶ଷ) + ଷcos(߶ଶݎଶݎ଴ݎ3 − ߶ଷ) + 34 ଷcos(2߶ଶݎଶଶݎ − ߶ଷ) − ଵܩ ,݂ = (1 − ߱ଶ)ݎଵsin߶ଵ − ଵcos߶ଵݎ߱ߦ + ଵsin߶ଵݎଵܣ − ଶsin(߶ଵݎଵݎ଴ݎ3 − ߶ଶ)        − 34 ଷsin(2߶ଵݎଵଶݎ − ߶ଷ) − ଷsin(߶ଶݎଶݎ଴ݎ3 − ߶ଷ) + 34 ଷsin(2߶ଶݎଶଶݎ − ߶ଷ), 
ଶܲ = (1 − 4߱ଶ)ݎଵcos߶ଵ + ଵsin߶ଵݎ߱ߦ2 + 32 ଵଶcos2߶ଵݎ଴ݎ + ଷcos(߶ଵݎଵݎ଴ݎ3 − ߶ଷ)          +ܣଶݎଶcos߶ଶ + 32 ଷcos(߶ଵݎଶݎଵݎ − ߶ଶ + ߶ଷ),  
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ଶܩ = (1 − 4߱ଶ)ݎଵsin߶ଵ − ଵcos߶ଵݎ߱ߦ2 + 32 ଵଶsin2߶ଵݎ଴ݎ − ଷsin(߶ଵݎଵݎ଴ݎ3 − ߶ଷ)          +ܣଶݎଶsin߶ଶ + 32 ଷsin(߶ଵݎଶݎଵݎ − ߶ଶ + ߶ଷ),  
ଷܲ = (1 − 9߱ଶ)ݎଵcos߶ଵ + ଵsin߶ଵݎ߱ߦ3 + 14 ଵଷcos3߶ଵݎ + 34 ଶଶcos(߶ଵݎଵݎ − 2߶ଶ)      +3ݎ଴ݎଵݎଶcos(߶ଵ + ߶ଶ) +      ,ଷcos߶ଷݎଷܣ

ଷܩ = (1 − 9߱ଶ)ݎଵsin߶ଵ − ଵcos߶ଵݎ߱ߦ3 + 14 ଵଷsin3߶ଵݎ − 34 ଶଶsin(߶ଵݎଵݎ − 2߶ଶ)          +3ݎ଴ݎଵݎଶsin(߶ଵ + ߶ଶ) +      ,ଷsin߶ଷݎଷܣ
ସܲ = (1 − 16߱ଶ)ݎଵcos߶ଵ + ଵsin߶ଵݎ߱ߦ4 + 32 ଶଶcos2߶ଶݎ଴ݎ + 34 ଶcos(2߶ଵݎଵଶݎ + ߶ଶ)          + 34 ଷଶcos(߶ଶݎଶݎ − 2߶ଷ) − 32 ଷcos(߶ଵݎଶݎଵݎ − ߶ଶ − ߶ଷ) + ଷcos(߶ଵݎଵݎ଴ݎ3 + ߶ଷ), ܩସ = (1 − 16߱ଶ)ݎଵsin߶ଵ − ଵcos߶ଵݎ߱ߦ4 + 32 ଶଶsin2߶ଶݎ଴ݎ + 34 ଶsin(2߶ଵݎଵଶݎ + ߶ଶ)          − 34 ଷଶsin(߶ଶݎଶݎ − 2߶ଷ) − 32 ଷcos(߶ଵݎଶݎଵݎ − ߶ଶ − ߶ଷ)  + ଷsin(߶ଵݎଵݎ଴ݎ3 + ߶ଷ), 
ହܲ = 34 ଶଶcos(߶ଵݎଵݎ + 2߶ଶ) + 34 ଷଷcos(߶ଵݎଵݎ − 2߶ଷ) + 34 ଷcos(2߶ଵݎଵଶݎ + ߶ଷ)+ ଷcos(߶ଶݎଶݎ଴ݎ3 + ߶ଷ), ܩହ = 34 ଶଶsin(߶ଵݎଵݎ + 2߶ଶ) − 34 ଷଷsin(߶ଵݎଵݎ − 2߶ଷ) + 34 ଷsin(2߶ଵݎଵଷݎ + ߶ଷ)+ ଷsin(߶ଶݎଶݎ଴ݎ3 + ߶ଷ), 
଺ܲ = 14 ଶଷcos3߶ଶݎ + 32 ଷଶcos2߶ଷݎ଴ݎ + 32 ଷcos(߶ଵݎଶݎଵݎ + ߶ଶ + ߶ଷ), ܩ଺ = 14 ଶଶsin3߶ଶݎ + 32 ଷଶsin2߶ଷݎ଴ݎ + 32 ଷsin(߶ଵݎଶݎଵݎ + ߶ଶ + ߶ଷ), 
଻ܲ = 34 ଷcos(2߶ଶݎଶଶݎ + ߶ଷ) + 34 ଷଶcos(߶ଵݎଵݎ + 2߶ଷ),   ܩ଻ = 34 ଷsin(2߶ଶݎଶଶݎ + ߶ଷ) + 34 ଷଶsin(߶ଵݎଵݎ + 2߶ଷ),   ଼ܲ = 34 ଷଶcos(߶ଶݎଶݎ + 2߶ଷ), ଼ܩ = 34 ଷଶsin(߶ଶݎଶݎ + 2߶ଷ),   ଽܲ = 14 ଽܩ   ,ଷଷcos3߶ଷݎ = 14 ଴ܣ ,ଷଷsin3߶ଷݎ = 32 ଵଶݎ) + ଶଶݎ + ଵܣ   ,(ଷଶݎ = 34 ଴ଶݎ4) + ଵଶݎ + ଶଶݎ2 + ଶܣ ,(ଷଶݎ2 = 34 ଴ଶݎ4) + ଵଶݎ2 + ଶଶݎ + ଷܣ   ,(ଷଶݎ2 = 34 ଴ଶݎ4) + ଵଶݎ2 + ଶଶݎ2 + ଴ߠ ,(ଷଶݎ = 1 + ଴ଶݎ3 + 32 ଵଶݎ) + ଶଶݎ + ଵ௖ߠ ,(ଷଶݎ = 32 ଵcos߶ଵݎ଴ݎ2] + ଶcos(߶ଵݎଵݎ − ߶ଶ) + ଷcos(߶ଶݎଶݎ − ߶ଷ)]ߠଵ௦= 32 ଵsin߶ଵݎ଴ݎ2] − ଶsin(߶ଵݎଵݎ − ߶ଶ) − ଷsin(߶ଶݎଶݎ − ߶ଷ)], ߠଶ௖ = 34 ଵଶcos2߶ଵݎ] + ଶcos߶ଶݎ଴ݎ4 + ଷcos(߶ଵݎଵݎ2 − ߶ଷ)]ߠଶ௦= 34 ଵଶsin2߶ଵݎ] + ଶsin߶ଶݎ଴ݎ4 − ଷsin(߶ଵݎଵݎ2 − ߶ଷ)], ߠଷ௖ = 32 ଶcos(߶ଵݎଵݎ4] + ߶ଶ) + ଷ௦ߠ   ,[ଷcos߶ଷݎ଴ݎ2 = 32 ଶsin(߶ଵݎଵݎ4] + ߶ଶ) + ସ௖ߠ ,[ଷsin߶ଷݎ଴ݎ2 = 34 ଶଶcos2߶ଶݎ] + ଷcos(߶ଵݎଵݎ2 + ߶ଷ)],   ߠସ௦ = 34 ଶଶsin2߶ଶݎ] + ଷsin(߶ଵݎଵݎ2 + ߶ଷ)], 
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ହ௖ߠ = 32 ଷcos(߶ଶݎଶݎ + ߶ଷ),   ߠହ௦ = 32 ଷsin(߶ଶݎଶݎ + ߶ଷ), ߠ଺௖ = 34 ଺௦ߠ   ,ଶଷcos3߶ଶݎ = 34  .ଶଷsin3߶ଶݎ
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