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Abstract. In this paper, we explored the nonlinear dynamics behavior and vibration suppression
of a nonlinear electromechanical oscillator system under harmonic and parametric excitation. The
model comprises of an electrical part coupled to mechanical part and displayed by a coupled
nonlinear ordinary differential equations. The analytical up to second order approximate solutions
are sought applying the method of multiple scales method. We utilized the time-series and method
of averaging to analyze the response and stability of the solutions at the worst resonance cases.
We checked the results of perturbation solution through numerical simulations and the effects of
different system parameters have been reported. Comparison between analytical and numerical
solutions is obtained. Also, the numerical results are obtained using MAPLE and MATLAB
algorisms.
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1. Introduction

Controlling nonlinear coupling between vibrating modes are critical for the development of
advanced nano-mechanical or micro-electromechanical devices. The coupled oscillators give
principal models for the dynamics of different physical, biological, chemical and engineering
systems. The nonlinear electromechanical oscillator systems consist of an electrical part as a sign
component of the measured vibration coupled magnetically to a mechanical part as a sensor
communicate through the air-gap of a permanent magnet. Yamapi et al. [1] studied the stability,
oscillations and chaos control in a nonlinear electromechanical system. Ge and Lin [2] studied
dynamic behavior, synchronization and chaos control (delayed feedback control, adaptive control)
of electromechanical gyrostat system subjected to external disturbance. Yamapi and Bowong [3]
examined the dynamic behavior and chaos control of a self-sustained electromechanical system
without and with discontinuity and they utilized a sliding mode controller to control the
electrostatic transducers system. Siewe et al. [4] used an electromechanical oscillator system to
record the vertical movement of earth during earthquake. Also, they examined the chaos control
of the system using small amplitude damping. They found that the chaotic and periodic orbits
depend on the estimation of the damping coefficient. Yamapi et al. [5, 6] investigated the dynamics
and synchronization of two systems, one of them is a coupled self-sustained electromechanical
systems with multiple functions and the other is an electrical Rayleigh—Duffing oscillator coupled
magnetically with linear mechanical oscillators. They established the amplitudes of the oscillatory
states applying the harmonic balance and averaging methods. Kwuimy and Woafo [7, 8] studied
the chaotic behavior, global bifurcations and dynamics of a self-sustained of non-linear
electromechanical systems with nonlinear. Ngueuteu et al. [9] investigated the effects of higher
nonlinearity parameters on the synchronization and dynamics of coupled electromechanical
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system. Hegazy [10] investigated the chaotic motions and nonlinear vibrations in an
electromechanical seismograph system with time-varying stiffness. He used different types of
active controllers to reduce the system oscillations and he found that the negative velocity
feedback is the best active control on the system behavior. Siewe et al. [11] used an analytical
method based on the Melnikov theory to investigate the bifurcation and control of homoclinic
orbits in electromechanical seismographs with cubic-nonlinearities. Kwuimy and Woafo [12]
presented simulations and an experimental investigation of a self-sustained electromechanical
system. The considered system was made up of an electrical execution of a van der Pol-Duffing
oscillator through a macro scale mass—spring—damper linear oscillator. Siewe and Buckjohn [13]
investigated the heteroclinic motion associated to a Melnikov-like investigation, energy transfer,
and harvesting in coupled oscillator with nonlinear magnetic coupling. Amer [14] studied the
behavior, stability, approximate solutions, active feedback control of a nonlinear
electromechanical seismograph system with time-varying stiffness and he compared the numerical
solution with perturbation one. Eissa et al. [15] investigated the effects of saturation phenomena
on nonlinear oscillating systems under multi-parametric or external excitation forces. Also, the
occurrence of saturation phenomena at different parameters values was studied. Eissa et al.
[16-18] used a negative velocity feedback or square or cubic feedback to control the vibration of
simple and spring pendulum system at the primary resonance. Amer et al. [19] investigated and
control the behavior of a twin-tail aircraft system having both quadratic and cubic nonlinearities.
Hamed et al. [20-22] used a passive vibration control on the ultrasonic machining system with
multi types of excitation forces. Kamel and Hamed [23] utilized the multiple scale technique to
investigate the vibrations behavior of the inclined cable system with harmonic excitation at the
simultaneous of primary and internal resonance cases. Hamed et al. [24] investigated the behavior
of vibrations for the nonlinear string beam system under external, parametric and tuned excitations
forces. Sayed and Hamed [25] presented a mathematical study for the analytical, numerical
solutions and stability of a coupled pitch roll system to harmonic and parametric excitation forces.
Sayed and Kamel [26, 27] used the saturation control of a linear controller to reduce the vibrations
due to rotor blade flapping motion and they investigated the effect of different controllers on the
vibrating system. Sayed et al. [28-31] investigated the non-linear dynamic characteristics of the
angle-ply composite laminated rectangular plate model under both parametric and external
excitations. Also, they studied three cases of primary and internal resonance (1:2, 1:1, 1:1:3) and
they compared the analytical results with the numerical one of the modal equations. Hamed and
Amer [32] used different types of control algorithms and studied its effectiveness to reduce the
large vibrations of a flexible composite beam system. Hamed et al. [33] studied the stability and
nonlinear oscillations of the MEMS gyroscope system under different types of parametric
excitations. The averaging method has been used to obtain the frequency response equations at
simultaneous resonance case. We can find a detailed analysis of dynamical systems excited by
external and parametric forces in the books of Cartmell [34], Nayfeh and Balachandran [35]. In
the present paper, the nonlinear dynamics and vibration suppression of a nonlinear
electromechanical system under harmonic and parametric excitations are investigated. The
time-series and method of averaging [36] to analyze the response and stability of the solutions at
the worst resonance cases were utilized. the results of perturbation solution through numerical
simulations and the effects of different system parameters have been reported. Comparison
between analytical and numerical solutions is obtained.

2. Description of the system with equations of motion

Fig. 1 showed the scheme of the investigated electromechanical oscillator system. The
electromechanical device modeling consist of two parts electrical and mechanical. the electrical
part consists of a linear inductor L, a linear capacitor C, a linear resistor R, and voltage-charge q.
The mechanical part is composed of a large suspended mass. The mechanical and electrical parts
interact through the air-gap of a permanent magnet which creates a radial magnetic field B which
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given in the appendix.

The nonlinear differential equations corresponding to the system in Fig. 1 may be obtained using
Newton’s second law and Kirchhoff’s law. Thus, the complete mathematical model [13] that
describes the dynamics of the system is governed by the following nonlinear differential equations:

my + poy + koy + kiy? = F, + F(t),

A ()
Lg + Rq +Eq + Epems =0,

where y is the relative displacement of the mass m with inertial forces my and damping forces
Uoy and ky, k, are linear and nonlinear stiffness of the electromechanical oscillator system; k; <
0, the external ground motion is assumed to be stochastic or periodic (F (t) = Fy + Ficos(Qt) +
F,ycos(Q,t)) where F, is the critical amplitude, Fycos(€,t) is the external force, with amplitude
F; and Q, the excitation frequency, F,ycos(Q,t) is the parametric force, with amplitude F, and
Q, the excitation frequency. We address the case where the critical value of the force is zero, and
this means F, = 0 in the corresponding equation.

We put system Eq. (1) into dimensionless form by setting: x = y/l, z = q/Q, where Q, is the
reference charge and [ is the reference length. By introducing the characteristic parameters of the
system:

1 ko Ho R

We =7 wmzat /'41:mwe: Uz

- Lw,

And using the time transformation T = w,t.

In the mechanical part F; is the relationship between the force and the current and Ej,, is the
Lenz electromotive voltage in the electrical part and they are defined in the appendix.

The mathematical model [13] described the dynamics of the electromechanical oscillator
system and the following dimensionless form of system Eq. (1) is obtained and governed by the
following nonlinear differential equations:

K+ ek + wix — eayx3 + e(yy + vox + y3x2)z = efjcos(Q1) + £f;xc05(Q,7), (2a)
7+ ey + w3z + (B + fox + P3xH)x = 0. (2b)

With initial conditions x(0) = 0.01, x(0) = 0, z(0) = 0, 2(0) = 0., and the parameters of
Egs. (2a) and (2b) are defined as:

o =fm o Nl
YT w, YT mi2w?’
K _ K _ Q Y5 _ 2y0aq
fl - l ’ f2 - l y V1 = l 2 2 -1 ’ 2 2 ’
m we m we m we ymax mwe yrnax
lag —ko (Y5 —2Y0Q —la,
V3 = 2.2 :ﬁlz 12(2 _11ﬁ2= 2 :ﬁ3= 2.2
mwe ymax L we yrnax Lwe ymax Lwe yrnax

The first oscillator x (mechanical part) is a forced Duffing oscillator associated with nonlinear
coupling term, and the second one z (electrical part) is a linear damped oscillator with nonlinear
coupling term. x, zZ, X and Z are the first and second derivative with respect to time ¢, y; and .
are linear damping coefficients, a; is non-linear parameters, € is a small perturbation where
0 < e K1, fi, f, are the amplitudes of excitation force w,, w, are the natural frequencies and €,
(), are excitation frequencies, y; and f; (j = 1, 2, 3) are the coupling terms.
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Fig. 1. Schematic of electromechanical model with the associated electric circuit [13]
3. Mathematical analysis

In this section, we applied the multiple scale perturbation and averaging method [35, 37] to
obtain the approximate solutions and frequency response equations respectively.

3.1. Perturbation analysis

To obtain the approximate solutions for Eq. (2a) and (2b), we used the multiple scale
perturbation method. Assuming the solution to be in the form:

{x(t; &) = xo(To, Ty) + ex,(Ty, Ty) + 0(e2), 3)

z(t;€) = zo(To, Ty) + €2, (Ty, Ty) + 0(52)-

We introduced the derivatives in the form:

d
E=D0+€D1+“', .
d? “
yria D¢ + 2eDgDy + -+-.

For the approximate solutions, we introduce two time scales, where T,, = €™t and the
derivatives D,, = 8/9 T,,, (n = 0, 1). Substituting Egs. (3), (4) into Egs. (2a) and (2b) and equating
the coefficients of powers of ¢ leads to:

(Dg + w%)xO = 0' (5)

(Do + w})zy =0, (6)

(Do? + w,2)x; = —2DDyxg — pyDoxo + @y x3 — ¥1Dozg — V220 Doz — ¥3x& Do 2o %
+ficos(Qt) + fox,c0s(Q,t),

(Dg + w%)zl = —2D¢D1zy — U Dozo — B1Doxg — B2xoDoxo — ,83x§D0x0. (3

The differential Egs. (5) and (6) have the general solutions:

xo = Apexp(iw;Tp) + fl_oexP(_l'w1To)x &)
zo = Boexp(iw,Ty) + Boexp(—iw,Ty), (10)

where 4,, Ay, By and B, are complex functions in T;. Substituting Eq. (9) and (10) into Eq. (7)
and (8), and eliminated the coefficients of the secular terms, thus the general solutions will be in
the form:
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— a —
X1 = Alexp(iwlTo) + Alexp(_iwlTo) - S—sz(AgeXp(Sl(l)lTo) + Agexp(—3la)1T0))
1
1

+m(—y1iw230 - 2y3i(l)2A014_0B0)eXp(i(1)2T0)
1 2
1 .= , - .
+m(y1lw230 + 2y3iw,AgAgBy)exp(—iw,Ty)
1 2
N 1 —}/2iouonBoexp(iTo(a)1 + (uz)) ]
wi = (w1 + @)% | +y,iw,AgBoexp(—iTo(w; + w,))

VziszogoeXp(iTo(w1 - wz)) ]

1
R B
wf — (0 — wy)? [_VziszoBoeXp(_iTo(w1 - wz))
+ 1 [ _ygiszozBoeXp(iTo(za)l + (1)2))
w? — Qw, + w,)? +y3iw21§02§0exp(—iT0(2w1 - w,)) (an
+ 1 ygiszozBoeXp(iTo(Z(Dl - (1)2))
wlz - (20)1 - wZ)z _)/3iw214_02B0eXp(_iT0(2w1 - wz))
fl . 1 .
+——L  exp(iT)+o——— exp(—iQ,T,
2((1)% _ Q%) eXp(l 1 ) 0 2((1)12 + Q%) eXp( 295} 0)
f .
+ A To(Q, +
0T = (0 ) PP ([Tl + o)
f -
+ A —iTy(Q, +
2wt = (@ o) P+ )
f2 - .
+ A To(Q, —
2wt = @, = o) T )
f: .
- AoeXP(_lTo(ﬂz - w1));

+
2002 = (9 — @)
7z, = Biexp(iw,Ty) + Biexp(—iw,Ty)

1 e .
+— 2 (=Biiw Ay — B3iw1A02A0)eXp(lw1To)
w; — Wy

1 . 1 . 1 .
+ 0)22—_ oy (Briw, Ay + Bziwi AgAf)exp(—iw, Ty) (12)
1 _
t T 2a? (=Briw; Afexp(2iw; Ty) + Briw; Afexp(—2iw; Ty))
- 1
1

+—
2 2
w5 — 9w;

(_ﬁz iw1A03 exp(3iw,Tp) + 5> iwlf‘Io3 EXP(_3iw1To)),

where A, A;, B; and B, are complex functions in T;.

From the derived approximate solutions, we extracted all resonance cases and reported it as
the following:

a) Primary resonance: (; = 1wy, Q, = Tw,; (s =1, 2),

b) Sub-harmonic resonance: 0, = tnw;; (n =2, 4), Q; = +3w,,

¢) Internal resonance: w; = thw,; (n= 1, 2), w, =tmw,;; (m=1, 2, 3, 4, 95),
2w, = 13w,

d) Combined resonance: Q; = +(nw; + w,); (n =1,2), Q, = +(Mw,; + w,); (m =1, 2, 3),
tw, + w, = Tw;.

3.2. Averaging method

The averaging method is applied to obtain the frequency response equations for Egs. (2a) and
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(2b). When € = 0, the general solution of Egs. (2a) and (2b) can be expressed as:

x = a;cos(w it + @q), (13)
z = azcos(wyt + ¢,), (14)

where a,, a,, ¢, and @, are constants. It follows from Egs. (13), (14) that:

X = —w,a,sin(wt + ¢@q), (15)
Z = —w,a,sin(w,t + @,). (16)

For & # 0 small enough, let a,, a,, ¢, and ¢, are unknown function of time t in Eqgs. (2a) and
(2b).
We derivative the Egs. (13) and (14) with respect to t yields:

x = a,cos(wit + @) — wia;sin(w it + @) — a, @ sin(w, t + ¢4), 17)
Z = a,cos(wyt + @;) — w,a,sin(w,t + @,) — ay@,sin(w,t + @5). (18)

Comparing Egs. (15), (16) and (17), (18), we conclude that:

a;cos(wit + @1) — a; @ sin(w,t + @) =0, (19)
a,cos(wyt + @,) — a@,sin(w,t + @,) = 0. (20)

Differentiating Eqgs. (15) and (16) with respect to t, we have:

% = —wia;sin(w,t + @1) — w?a;cos(w it + @) — wia; @ cos(w it + @q), 21)
7 = —w,a,sin(w,t + @,) — wiaycos(wyt + @y) — WA, P,cos(wyt + @y). 22)

Inserting for x, z, X, Z, ¥ and Z from Egs. (13)-(22) into Egs. (2a) and (2b), we obtain:

sa a3

a;sin(w,t + @) + a;p,cos(w,t + @) + euya;sin(w,t + @) + cos3(w t + ¢@4)

w1
Y, 0, W £y, a4 Ay W
+ %sin(wzt + @,) + %cos(wlt + @,)sin(w,t + @,)
1 1
2 (23)
Yz afa, w —£
+ Mcosz(wlt + @y)sin(w,t + @) = fi cos(Q;t)
w1 w1
efra
— {j ! cos(w;t + @;)cos(Q,t),
1
a,sin(w,t + @3) + ayp,cos(wyt + @,) + epya,sin(w,t + @5)
efrawy eB,a5 w, .
— t+ @)+ —— t+ t+
w0, sin(w; ®1) o, cos(w; ®1)sin(w, ®1) (24)
3
efza3w
+@cosz(w1t + @)sin(w,t + ¢@;) = 0.

2

Substituting Eqs. (19), (20) into Egs. (23), (24) and solving it for a4, a,, ¢, and ¢, yield:

—&la
a; = % (1 - cosRwyt + 2¢,))
sayad i 1
-1 <sin(4w1t +4¢,) +—sinQRw,t + 2<p1)) (25)
w; 8 4
Y1 W,a
% [cos((w2 +w)t+ @, + gol) — cos((w1 —wy )t + ¢, — 902)]
1
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&Y, w,0a10,
4w,

2
—sy3(é);a1a2 [cos((w1 + wy)t+ @, + (pz) — cos((3w1 — wy)t + 3¢, — (pz)]
1

—[cos((cu1 —wy )t + ¢, — <p2) + cos((3ou1 + w,)t + 3¢, + <p2)]
—% [sin((Q + @)t + ¢;) —sin((Q; — )t — @1)]

[cos((wz + 2w )t + @, + 2<p1) —cosQRw; — wy)t + 2¢, — (pz]

f ! [sm((ﬂ2 + 2wt + 2¢;) — sin((Q, — 2w )t — Z(pl)]
a, ¢, = 'ul ! (sin(wyt + 2¢7))
sa ad /3 1
- (— + —cos(4w,t + 4¢p,) + —cos(Zwlt + 2<p1))
(OF] 8 8
gy wya
% [sm((w2 +w)t+ @, + (pl) - sm((w1 W)t + @ — (pz)]
EY2W201a; [ (((uz + Za)l)t> 1 ((Z(ul - wz)t)]
———— " sin(w,t + +—51n — =sin
20012 (@t + ) +¢, + 2¢4 2 +2¢, — @,
EYaw,ata
—% [sin((Sw1 + w,)t + 3¢, + (pz) - sin((3a)1 —wy)t + 3¢, — (pz)
1

+3sin((w; + w,)t + @1 + @2)—3sin((w; — W)t + @1 — 9]
—% [cos((Q1 +w )t + (pl) + cos((Ql —w)t — (pl)]
1

1 1
- cos(Q,t) + 5 cos((Q; + 2wt + 2¢1) + 5 cos((Qy — 2wy)t — 29,)|,
s;;al [ 2t) +5c05((Qz + 20)t +2¢1) + 5 cos((Q; — 20, %)]
1
a, = —e;;zaz (1 — (cos2w,t + 2902))
efw
%[ 0s((w; + W)t + @z + 1) — cos((wy — W)t + p1 — )]
Wy
+—gﬁiw1a—1 (cos((@2 + 201t + 92 +201) = cos((2w; ~ W)t + 201 — 92))
(L))
gﬁgzl *cos((@1 + w2t + 91 +95) = cos(Bwy — wo)t + 391 — )
—coS((w1 W)t + @1 — @z)+cos((Bwy + W)t + 391 + 9],
a,p, = M 2 (sin(szt + 2<Pz))
efw
ﬁ;wz = [sin((@; + @)t + @2 + ¢1) + sin((w1 — 0Dt + @1 — 9,)]
gﬁiwla—l [sin(2w; — o)t + 291 — @) + sin((2w; + w,)t + 201 + )]
5ﬁ30)1a2

8% [ ln((Zw1 W)t +2¢, — (pz) + sin((cu1 —wy)t + @ — <p2)
+Sin((3(l)1 a)z)t + 3(p1 - §02)+Sin((a)1 + wz)t + (pl + q)z)]

3.3. Periodic solutions

(26)

27

(28)

In this section, we obtained the averaging equations corresponding to simultaneous primary,

sub-harmonic and internal resonance by utilizing the detuning parameters (o4, 05, 03) as:

O =wy+e0y, Qy =2w;+¢€0, w,=w+eo0;3.
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And keeping only the constant terms and slowly varying parts in Egs. (25)-(28), we have:

H1 V102 P Y3wz P
aZCOS 3 ——a1a2COS 3

=T Gy 40,
Y32 fi . f2 . (29)
+ 8w, aja,cosf; + 2—00151n91 + 4—wla151n92,
3a; , V10 V30>
P1aq B, a;y 20, a,sinf; 20, asa,sinfs
Y30 f f 30)
-2 242q,sin0; — —— cosf; — ——a,cosd
8w, 23 2wy Vo4, ! z
. Ha Brwy Bzwq
Gy = ——ay = z—a)2a1c0503 ~ 8o, a3cosfs, 31
. Brwy . Bzw; .
Pra, = 2_w2a15m93 + 8—a)2af51n93, (32)
where:
01 =01T1 —¢1, 0, =0T1 —2¢,, 63=0¢,—¢; +03T.
We can have written the first approximation periodic solution in the form:
x = a;cos(Qt — 6,), (33)
z = azcos(Qqt + 053), (34)

where a4, a,, 8, 6, and 85 are the solutions of Egs. (29)-(32).
3.4. Stability of the fixed points

We obtained the fixed point of the dynamical system of Egs. (29)-(32) when a,, = 0,
(m =1,2)and 6,, = 0, where (n = 1, 3) as the following:

M1 Y102 Y3Wz 5
—a = a,cosf; — aia,cosf,
2 2(1)1 4(1)1 (35)
V3wz fi . f2 .
+ 0; + —sinf, + > a,siné,,
8%)1 aZa,cosf, 20, sinf, T, a,sinf,
aq Y102 . V303 .
a0+ 8—w1af = _2_(4)1a251n03 Tt a?a,sinf,
f f 36)
_ V392 24 sin; — L cosBy — 2> a,cos6
8w, X7 2w, Vo4, ! z
U Brw1 Bz w1
S0 = = 20, a,cosf; — 80, a3cosb;, 37
Brw1 . Bzw, .
ay(o —03) = Z—a)2a15m93 + 80, a3sinf;. (38)

Where 0 = 0; = g,/2. For the case (a; # 0, a, # 0), the frequency response equations are
given by:

(o 00, _Diroly, , _onte 167t wia}
wi(4B; +aiBs)?  wf(4P; +aiBs)?  wi(4By +aifs)  ajwi(4B; + aifs)? (39)
e ), (niedie, _Buuien i
wi (4B, + aipBs) wi(4B; +aifs)?  wf(4B; +aiBs) wi(4B; + aifs)?
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3‘1101%]/160%“% n 9“1‘1‘1*]/30)%“% 32y12w§a§G3 6‘1%)’3 w%a%og
wi (4P + aifs)  4wi(4P 4+ aiPs) aiwi(4By +aifs)?  wi(4B; + aips)
+ 3a;a1 16yfwsa;03 24y, w3a505y,  1fEf 9aial 1 ffa}
4wy afwf (4B, +aif3)?  wf(4p; + a%ﬁ3)2 4o 64wi 16 wf
2y, w3a315Y3 2uyiwiazu, 1 pafyswiaiu, N 4yfwiazus
(4,31 ta 33)2 w?(4p; + a1ﬁ3) 2 w (4B, +aifs)  aiwi(4B; + aifs)?
1 Y3 alwzazﬂz 3“1“1)’10)2“203 9 “1“1‘)’30)561%03 9y32w‘2*afa263

4 wi(4Py +aiBs)?  wi(4B+aiBs) 4wi(4B +aiBs)  wi(4Py + aips)?
1 1fifo04
+ Zlifaf 2 =0,

1

2,2 2,2 2
2 2 2 2 nu2 2 2:81 wl 2 1830‘)1 2 6 ﬁlig3w1

at0? + (—20a3)o; + | 0%a? + —= a2 — a? —ai — > a5a; — >

4w 64w 8w;

2 a%af) =0. (40)
To study the stability of the nonlinear solution, we lets:
A = Amo + Ay, O = Ono + Oy, (41)

where a,,,o and 8,,, are the solutions of Eq. (29)-(32), (im = 1, 2) and (n = 1, 3). Inserting Eq. (41)
into Egs. (29)-(32) and linearizing equations in a,,; and 6,4, we get:

ay = |— % - ]/23:)2 a100y0C0S0,0 + ]:1-3:)12 Q19QyC0SH0,0 + Zf—az)lsinZQw] a1
+ [Zf—al)l cosB;, +2f—w1a10c052910] 011 (42)
+ [)/21;)12 ay0Sinfs + };3—(:2 aZoa,0sinfz, — };33—:)12 a%oazosin03o] 031,

01, = [aim + Z—Zialo + )/23—:a205in630 + T—:izazosineg,o + ﬁcoﬂem] a1

Sll’l910 - %Slnzglo] 911

@ 43
[ V192 sinfs, + 302 a,Sinf @a sinf ] )
2w1a10 30 R 10 30 T 80)1 10 30| Qzq
Y1 V3> V3> .
a57C0SO39 + —— a17A,(C0SO35 + —— Ao A5,SiNG ]9 ,
20105 20 30 4o, 10420 30 8w, 10a20 30| 031
. [P 3psw; , K
ay = Tcosem . aiocosbzg| a1 — ?au
2 2 (44)
+ hroo, ——ay,Sinf Bzw1 — —a3,sind ] 6
sz 10 30 8&)2 10 30 31
o 9a 3yzw
931 = [_3 —1a10 Mazosin930 + LCOSZGN
aip 8w 4w, w1a10
w w4
+ Froy sinf3, + s a1051n030] a1 + [ sinf,, — f—zsin2610] 011
WL A0 9 2w5045 wW1Qa19 3 2w,
03 a Y1, Y32 . Y3w2 .
+|—+— + 22 5inf,, + =2 a,,5in0s0 + ——2 a,,sind 45
[azo 8w, (1) w10, 30 4o, 10 30 4w, 10 30 (45)
f Y102
———cosf, + cosZ@lo] a, + [— a,,C0s03q
§w1a1oa20 40’1‘12‘8) 2 ﬁl 10
1 £15) W1Pp3 4 w1
+———0a4(A2(C0S03¢ + a;ocosfzy + a10c05930] 031.
8w, 8w, a;0 2w, a5
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The system of Egs. (42)-(45) has an eigenvalues and are given by the equation:
2.4 + T1/13 + Tz/’{z + Tgl + = 0, (46)

where 1y, 1,, 13 and 1, are constants and given in the Appendix. The periodic solution of the
system is stable, if the real part of the eigenvalue is negative; otherwise become unstable. As
indicated by the Routh-Huriwitz criterion, the necessary and sufficient conditions for all the roots
of Eq. (46) to have negative real parts (asymptotically stable system), are if and only if the
following equation is satisfied:

>0, rr,—1r>0, r(nr—r)—1rfr,>0 1 >0. 47
4. Results and discussion

Within this section, the results are presented in graphical forms as steady state amplitudes
(a4, a,) against detuning parameters (d;, ) and the time response for both an electromechanical
system and controller. The system original Egs. (2a) and (2b) have been solved numerically using
ODE45 MATLAB solver. The numerical solution of the mathematical modeling and its stability
is studied here and the solutions of the frequency response function regarding the stability of the
electromechanical system and the controller are examined. The effects of various parameters on
the steady state solution are obtained and studied also different resonance cases are reported and
discussed.

4.1. System behavior and frequency response curves

In this section, the figures demonstrating the effects of different electromechanical oscillator
system and controller parameters on the whole system behavior are gotten. All the derived
resonance cases from Egs. (11) and (12) are studied numerically. The analysis is performed by
adopting the following values of the system parameters:

u; =0.06, p, = 0.006, a; =0.002, ¢=1, w;=3, U =w;, O, =2w,,
fl = 0.2, fz = 0.02, yl = 0.2, ]/2 = 0.25, ]/3 = 0.5,
ﬂl = _0.2, ﬁz = _0.25, ﬁ3 = _0.5.

We summarized the results of worst cases in Table 1. From this table, the worst results have
been obtained for the simultaneous primary, sub-harmonic and internal resonance case
Q;=wy, 0, =2w; and W, = w; .

Fig. 2. represents the system time histories and the phase-plane for the electromechanical
system before control at the simultancous primary and sub-harmonic resonance case where
Q4 =wq, 0, = 2w,. It is noticed from this figure that the steady state amplitude of the main
system is about 560 % of the greatest excitation force amplitude f;, the oscillation response begins
with increasing amplitude and becomes stable and the phase plane shows limit cycle.

For the uncontrolled system, where a; # 0, a, = 0. Fig. 3(a) shows the steady state
amplitude of the electromechanical system against the detuning parameters g;, the system
responds as a linear system. It is clear that the greatest steady state amplitude occurs at
simultaneous primary and sub-harmonic resonance case Q; = w;, Q, = 2w; (where g; = 0).
Figs. 3(b) and 3(c) illustrates that the steady state amplitude of the system is inversely proportional
to the linear damping coefficients y; and the natural frequency w,. Fig. 3(d) shows the effects of
the non-linear parameters @, we note that from Fig. 3(d), for the negative and positive values of
a4, the curve is either bent to the right or to the left leading to the existence of the jump
phenomenon and producing either hard or soft spring respectively. Fig. 3(e) and 3(f) shows that
the steady state amplitude a; is directly proportional to the external and parametric excitation
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forces f; and f,. Also, for increasing excitation forces the curve is bent to the left and we obtain
unstable region.

1.2

0.8
0.4
0} § (o}

-0.4

Andlitude x

-0.8

- . X [5) 0.6 1.2
Time Amplitude x

a) b)
Fig. 2. The response amplitude of the electromechanical system before control
atthecase 01 = wy, 0y = 20,

Table 1. Summaries of the worst resonance cases of the electromechanical system and controller

.. Amplitude ration (x Amplitude ration Amplitude
Case Condition \sithout contro%le{fl) x/fi )pwith controller I‘atiOIl:l) (z/f1) Ea
W, = W, 550 % 8 % 160 % 70
w; = 2w, 550 % 400 % 50 % 38
Q0 - Wy = 20, 550 % 400 % 225 % 38
lewl w, = 3w, 550 % 350 % 75 % 58
2 1 W, = 4w, 550 % 550 % 9 % 1
w, = 5w, 550 % 550 % 5% 1
3w, = 2w, 550 % 450 % 45 % 22
W, = w, 560 % 5% 165 % 110
wy = 20, 560 % 400 % 50 % 4
Qo W, = 20, 560 % 400 % 225 % 4
Q 1 2a)1 w, = 3wy 560 % 350 % 75 % 6
2 ! W, = 4w, 560 % 550 % 8.5 % 1
W, = 5w, 560 % 550 % 4.5 % 1
3w, = 20, 560 % 450 % 45 % 25
W, = W, 555 % 5% 165 % 110
W, = 20, 555 % 400 % 225 % 4
Qo Wy = 20, 555 % 350 % 75 % 6
0 =40 w, = 3w, 555 % 550 % 8.5 % 1
2 1 Wy = 4wy 555 % 550 % 4.5 % 1
w, = 5wy 555 % 450 % 45 % 25
3w, = 2w, 555 % 400 % 225 % 4

Fig. 4 simulates the system time histories for the electromechanical system after adding the
control at simultaneous primary, internal and sub-harmonic resonance case, where ; = w4,
O, =2w;, ;= w,. According to this figure, the steady state amplitude for the
electromechanical system is 5 %, but the steady state amplitude of the controller is about 165 %
of maximum excitation amplitude f;. In addition, the effectiveness of the controller E,, (E, = the
steady state amplitude for system before control/the steady state amplitude for the system after
control) is about 110.

Fig. 5(a), illustrate the steady state amplitudes of the electromechanical system and controller
versus the detuning parameter g; when the controller is in action, where a; # 0, a, # 0 at
similar estimations of parameters appeared in Fig. 4. According to this figure, the minimum steady
state amplitude of the main system appear when o; = 0, which confirms that the controller is able
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to reduce the vibration effectively and efficiently. Also, Fig. 5(a) indicate that the system has
multiple coexisting solutions, and jump phenomenon that occurs in the case of the system became
unstable when the controller associated with the system. Fig. 5(b), (c), (d) illustrate that, the steady
state amplitude are directly commensurate to external and parametric excitation forces f;, f, and
inversely commensurate to the natural frequency w;.

1.2 T T T 2

0.8

-0.4 -0:2 6 012 0.4 -0.4 -0.2 0 0.2 0.4
o, S

a) Effects of detuning parameters o b) Effects of damping coefficient py
25 : ‘ ‘

12 @,=0.002

0.4
0.5
o= . . . 0 . . .
-0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4

Sy

c) Effects of natural frequency w4

f) Effects of parametric excitation f,
Fig. 3. The frequency-response curves of uncontrolled system
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0.3 0.6

0.2 1 0.4

0.1 0.2
: § \H
g i “ : i m
E -0.1 ‘ g -0.2 ‘

0.2 -0.4

0.3 -0.6

0.4 -0.8

o Time 250 500 o Time 250 500
a) b)

Fig. 4. The response amplitude of the electromechanical system after control at the case
Q= wq, Oy = 204, W1 = Wy, Yt = 0.06, u, = 0.006, a; = 0.002, w; =3, Qy = w1, Ay = 2wy,
f1=02,f,=0.02,y, =0.2,y, =0.25,y3 = 0.5, f; =—0.2, §, =-0.25, B3 = 0.5

In addition, the regions of instability system are increased for increasing f;, f, and decreasing
wq. Fig. 5(e) and (f), shows the effects of the damping coefficients y; and u, on both the
electromechanical system and controller. According to this figure, the small values of damping
coefficients u,, i, the presence of various solution, bifurcation points and jumping phenomenon
occurs. In addition, for large values of damping coefficients, both the system and the controller
displays linear responses and the jumping phenomenon disappears. It is clear that, as y; increases,
the controller’s efficiency to eliminate the primary, principle parametric resonance excitations
slightly decreases, but the electromechanical system and the controller peak amplitudes decreases.
For negative value of the nonlinear parameters a4, 51, 5 the curve is bent to the right leading to
the occurrence of the jump phenomena and multi-valued amplitudes produce hardening spring
type as shown in Figs. 5(g), (k) and (1). It is clear that, from Figs. 5(h) and (i) that the steady state
amplitude of the system is inversely commensurate to the control gains y,, y3.

Figs. 6 simulate the frequency response curves of the system after control versus detuning
parameter o3 at simultancous primary, sub-harmonic and internal resonance case Q; = wq,
Q, = 2w,, w; = w, with the same parameters values as shown in Fig. 4. From Figs. 6, we
observe that the electromechanical system and controller has continuous curve with stable solution.
According to fig. 6(a), we observe that the controller reaches maximum value at o3 = 0 and the
main system has minimum value at the same value of g; = 0. The electromechanical system and
controller intersect with each other in two points.

It is clear that from Fig. 6(a) we find that at 3 = 0 the amplitudes a; = 0.01 and a, = 0.33.
These values are very closed to the steady state amplitude of obtained Figs. 4 and 5(a) for a, and
a,. For increasing value of external excitation force f;, parametric excitation force f, the
electromechanical system and controller have increasing amplitudes, as illustrated in Figs. 6(b)
and 6(c). It is clear from Fig. 6(d) that the steady state amplitudes of the main system and controller
are decreasing for increasing value of natural frequency.

a) Effects of detuning parameter o, on the frequency- b) Effects of external excitation f; on the controlled
response curves of controlled system system
(a4 main system, a, controller).

1
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c) Effects of parametric excitation f,
on the controlled system
14

06 03 0 03 06

d) Effects of natural frequency w;
on the controlled system

1,20.06

4
¥ 1,=0.09
"

1

1,=0.2

1,=0.006

1,=0.07

1,=0.1

0 0.2 0.4 0.4 02 0 . 02
o, f

e) Effects of damping coefficient p
on the controlled system

04 02 0 02 04

f) Effects of damping coefficient u,
on the controlled system

,=0.002

7,=0.6
i

g) Effects of nonlinear parameter a,
on the controlled system

h) Effects of linear control gain y;
on the controlled system

B0z B,=-0.9

0.8

i) Effects of nonlinear control gain y3
on the controlled system

06 03 0 0.3 0.6

j) Effects of linear control gain 3,
on the controlled system

k) Effects of nonlinear control gain 3 on the controlled system
Fig. 5. The frequency-response curves of controlled system (a; main system, a, controller)
against detuning parameter o,
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amplitudes

-1 -0.5 0 EX 0.5 1 -1 -0.5 0 o, 0.5 1 -1 -0.5 0 o, 0.5 1
a) Effects of detuning parameter o3 against the b) Effects of external excitation f;
frequency response curves of system after control on the controlled system

(a; main system, a, controller)
0.4

1,=0.02

-1 -0.5 0 0.5 1

c) Effects of parametric excitation f, d) Effects of natural frequency w4
on the controlled system on the controlled system
Fig. 6. The frequency response curves of system after control
(a, main system, a, controller) against detuning parameter o3

4.2. Comparison study

To approve the simulations of perturbation analysis, the analytical results were checked by
integration numerically of the Egs. (2a), (2b), and the numerical outcomes for steady state
solutions Fig. 7 indicates a comparison between the time histories and approximate modulated
amplitudes of the electromechanical system after control approached by Egs. (2a), (2b) and
(29)-(32) respectively. In addition, Figs. 8, 9 presents a comparison between the frequency
response curves for the electromechanical system after control against g; and o3 respectively with
the numerical simulation of Egs. (2a), (2b) at the same parameters values appear in Fig. 4. Figs. 7-9
illustrate an excellent agreement between the analytical and numerical solutions.

0.4 0.8 :
0 Time 250 500 0 Tme 250 500

a) b)
Fig. 7. Comparison between numerical simulation (using Runge-Kutta method) and analytical solution
(using perturbation method) of the system at resonance case, ; = w4, Q, = 204, W1 = W,

0.6

——— Numerical solution
az(t) perturbation solution

1’1 I
(Al l.l

T
i

______ a1(t) perturbation solution 7

m
W\
H\

———  Numerical solution 1

4.3. Comparison with published work

In comparison with previous researches, Siewe and Buckjohn [13] investigated the heteroclinic
motion, transient chaos and energy transfer from mechanical to electrical oscillators under
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harmonic excitation. They applied Melnikov method with linear damping and nonlinear coupling
terms to study the possibility of existence of chaos and transversal heteroclinic orbits and their
control in a dynamical system.

1.2 14

Stable solution Stable solution

— — — — Unstable solution 1.2 - — — — Unstable solution

O O O Numerical integration

04 02 0 02 0.4 24 02 0 02 04
61 o

a) b)
Fig. 8. The frequency response curves of the electromechanical system
after control at w; = 4 (a; main system, a, controller)

1 0.35

0.8 1 0.3

0.25

0.15

0.1
-1

b)
Fig. 9. The frequency response curves of the electromechanical system
after control (a, main system, a, controller)

Within this work, the authors studied the nonlinear dynamics behavior and vibration
suppression of a nonlinear electromechanical oscillator system under harmonic and parametric
excitation. Also, the authors investigated the energy transfer from mechanical to electrical
oscillators Multiple scales perturbations method is applied to obtain the second approximate
solutions of this system. The method of averaging is applied to analyze the response and stability
of the solutions at the worst resonance cases. In numerical results, the steady state amplitude for
the electromechanical system is 5 %, but the steady state amplitude of the controller is about 165 %
of maximum excitation amplitude f; and the effectiveness of the controller E; is about 110. Also,
jump down phenomenon and multi-valued solutions are appeared using suitable value of system
parameters. Finally, the numerical simulations are in good agreement with analytical solutions.

5. Conclusions

An active vibration control is applied to suppress and eliminate the vibrations of a nonlinear
electromechanical system under harmonic and parametric excitations. The model comprises of an
electrical part coupled to mechanical part and displayed by a coupled nonlinear ordinary
differential equations. The analytical up to second order approximate solutions are sought
applying the method of multiple scales method. We utilized the time-series and method of
averaging to analyze the response and stability of the solutions at the worst resonance cases. We
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checked the results of perturbation solution through numerical simulations and the effects of
different system parameters have been reported. Comparison between analytical and numerical
simulations is obtained. According to the above results and discussion, we may conclude the
following:

1) In the design of such system, some simultaneous resonance cases should be avoided.

2) For the system before control, the steady state amplitude at simultancous resonance case
QO = wq, Oy = 2w, is about 560 % of the excitation force amplitude f;, which is one of the worst
resonance.

3) The effectiveness of the controller E, is about 110.

4) The steady state amplitude is directly commensurate to external and parametric excitation
forces f;, f, and inversely commensurate to the natural frequency w.

5) For large values of damping coefficients, both the electromechanical system and the
controller displays linear responses and the jumping phenomenon disappears.

6) The jump phenomena and multi-valued amplitudes occur and produce hardening spring type
for negative value of the nonlinear parameters a; .

7) The steady state amplitude of the system is inversely commensurate to the control

gains yy, ¥3.
8) The analytical solutions an excellent agreement with the numerical simulations.
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where B, is the highest intensity that the field B reaches, y, is the armature initial position, y is
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