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Abstract. The effects of initial geometric imperfection and pre- and post-buckling deformations 
on vibration of isotropic rectangular plates under uniaxial compressive in-plane load have been 
studied. The differential equations of plate motions, using the Mindlin theory and Von-Karman 
stress-strain relations for large deformations, were extracted. The solution of nonlinear differential 
equations was assumed as the summation of dynamic and static solutions. Due to a large static 
plate deflection as compared with its vibration amplitude, the differential equations were solved 
in two steps. First, the static equations were solved using the differential quadrature method and 
the arc-length strategy. Next, considering small vibration amplitude about the deformed shape and 
eliminating nonlinear terms, the natural frequencies were extracted using the differential 
quadrature method. The results for different initial geometric imperfection and different boundary 
conditions reflect the impact of the mentioned factors on the natural frequencies of plates. 
Keywords: post-buckling, vibration, imperfection, shear deformation, differential quadrature. 

1. Introduction 

Because of the high strength-to-weight ratio, plates have been widely used in various industrial 
applications. Due to this widespread use, the vibrations of thin-walled structures have been 
investigated by many researchers and still attract more attention. Numerous studies in vibration 
analysis of plates and shells with different shapes and boundary conditions were conducted. 
Nevertheless, there are some differences between the theoretical and experimental results that 
could be caused by the geometrical imperfection or structural deformations in the case of a loaded 
structure. Therefore, some researchers focused on the effect of initial imperfection and pre- and 
post-buckling deformations on the dynamic behavior of plates. 

The effects of geometric imperfections on vibrations of uniaxial and biaxial compressed 
rectangular plates were studied by Hui and Leissa [1]. Ilanko and Dickinson [2] and Ilanko [3] 
investigated the vibration of geometrically imperfect and simply supported rectangular plates 
under uni-axial loading in the pre- and post-buckled state using the Galerkin method. NG and 
White [4] developed the Rayleigh-Ritz and finite element methods to study the effects of pre- and 
post-buckling deformations on natural frequencies of uniaxial isotropic rectangular plates. They 
concluded that by increasing the load, the fundamental frequency of plate decreases in the 
pre-buckling state and increases in the postbuckling state. Employing analytical methods, Pasic 
and Herrmann [5] extracted the non-linear free vibration frequencies of buckled plates with 
deformable loaded edges. 

The Galerkin method was used by Sassy and Ostigu [6] to compute the effects of initial 
imperfection on postbuckling and vibration frequencies of plates. They observed that responses 
heavily depended on the initial imperfection amplitude and boundary conditions. The finite 
difference method was implemented by Williams et al. [7] to solve the postbuckling equations of 
circular plates. They employed the lumped mass modeling method to study the vibration of plates 
around their buckled shape. 

The Galerkin method was also used by Girish and Ramachandra [8] to investigate 
post-buckling and vibration of composite plates, subjected to thermal loads and initial geometric 
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imperfections. Li et al. [9] studied the nonlinear vibration of thermally post-buckled orthotropic 
circular plates. They obtained two sets of coupled ordinary differential equations; one for the 
thermal post-buckling, and the other for linear vibrations of the plate about the post-buckled 
configuration. These sets are solved numerically using the shooting method. Panda and Singh 
[10, 11] evaluated the thermal post-buckling strength of a laminated composite shell panel with 
the help of the finite element method. They assumed that the structural buckling is caused by 
thermal loads. They used the Green-Lagrange strain-displacement relations of the higher-order 
shear deformation theory. 

To the best of authors’ knowledge, the dynamic behavior of geometrically imperfect plates 
considering shear deformations and different boundary conditions using the differential 
quadrature method has not been yet investigated. Therefore, this study considers effects of initial 
imperfection and pre- and post-buckling deformations on natural frequencies and modal shapes of 
uniaxially loaded rectangular isotropic plates. The governing differential equations of the plate are 
derived applying the Mindlin theory considering the Von-Karman stress-strain relations. The 
solution includes two steps. In the first step, static nonlinear differential equations transform to a 
system of nonlinear algebraic equations using the differential quadrature method and then they 
will be solved using the arc-length strategy. Then, after assuming small amplitude vibration about 
buckled shape and eliminating the non-linear terms, the differential quadrature method will be 
applied to the linearized differential equations of motion and to the corresponding boundary 
conditions. The natural frequencies and mode shapes of the buckled plate could be determined by 
solving the resulting eigenvalue problem. 

2. Governing equations 

Using the Mindlin theory and considering the effect of initial geometric imperfection in the 
Von-Karman strain-displacement relations, the midplane strains of a plate with dimensions shown 
in Fig. 1 could be obtained. Fig. 1 shows the geometry of a thin rectangular plate with the length ܽ width ܾ, and thickness ℎ. There is a geometrical imperfection in the form of the plate first 
buckling mode shape with the amplitude ݓ଴. The plate is under uniaxial compression ܲ acting 
across its width: 

௫ߝ = ݔ߲ݑ߲ + ݖ ݔ߲ߙ߲ + 12 ൬߲ݔ߲ݓ ൰ଶ + ݔ߲ݓ߲ ݔ଴߲ݓ߲ ௬ߝ     , = ݕ߲ݒ߲ + ݖ ݕ߲ߚ߲ + 12 ൬߲ݕ߲ݓ ൰ଶ + ݕ߲ݓ߲ ݕ଴߲ݓ߲ ௭ߝ , = ௫௬ߛ ,0 = ݕ߲ݑ߲ + ݔ߲ݒ߲ + ݖ ݕ߲ߙ߲ + ݖ ݔ߲ߚ߲ + ݔ߲ݓ߲ ݕ߲ݓ߲ + ݔ߲ݓ߲ ݕ଴߲ݓ߲ + ݕ߲ݓ߲ ݔ଴߲ݓ߲ ௫௭ߛ , = ൬߲ݔ߲ݓ + ௬௭ߛ     ,൰ߙ = ൬߲ݕ߲ݓ +  ,൰ߚ
(1)

where ݒ ,ݑ and ݓ are displacements in the ݕ ,ݔ and ݖ directions, and ߙ and ߚ are rotations about 
the ݔ and ݕ axis, respectively. The stress relations for homogenous plates are given by: ߪ௫௫ = 1ܧ − ଶߥ ൫ߝ௫௫ + ௬௬ߪ    ,௬௬൯ߝߥ = 1ܧ − ଶߥ ൫ߝ௬௬ + ௭௭ߪ ,௫௫൯ߝߥ = 1ܧ − ଶߥ ൫ߝߥ௫௫ + ௬௬൯,     ߬௫௬ߝߥ = 1)2ܧ + (ߥ ൫ߛ௫௬൯, ߬௫௭ = 1)2ܧ + (ߥ ௬௭߬     ,(௫௭ߛ) = 1)2ܧ + (ߥ ൫ߛ௬௭൯, (2)

where ܧ is the Young’s modulus of elasticity and ߥ is the Poisson’s ratio. Using Eqs. (1) and (2), 
the resultant forces and moments (Fig. 2) can be obtained as:  
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቎ቐ ௫ܰܰ௬ܰ௫௬ቑ , ቐܯ௫ܯ௬ܯ௫௬ቑ቏ = න ൝ߪ௫௫ߪ௬௬߬௫௬ ൡ (1, ௛ଶ(ݖ
ି௛ଶ

൤൜ܳ௫ܳ௬ൠ൨    ,ݖ݀ = න ቄ߬௫௭߬௬௭ቅ௛ଶ
ି௛ଶ

(3) .ݖ݀

 
Fig. 1. Rectangular plate under uniaxial in plane compressive load 

 
Fig. 2. Forces and moments on plate element 

The governing differential equations of motion for the element depicted in Fig. 2 can be  
written as: ߲ܰݔ߲ݔ + ݕ߲ݕݔ߲ܰ = ߤ 2ݐ߲ݑ2߲ ݔ߲ݕݔ߲ܰ(4) , + ݕ߲ݕ߲ܰ = ߤ 2ݐ߲ݒ2߲ 2ݔ߲ݔܯ2߲(5) , + 2 ݕ߲ݔ߲ݕݔܯ2߲ + 2ݕ߲ݕܯ2߲        = ߤ ߲ଶݐ߲ݓଶ − ቆ ௫ܰ ߲ଶ(ݓ + ଶݔ߲(଴ݓ + 2 ௫ܰ௬ ߲ଶ(ݓ + ݕ߲ݔ߲(଴ݓ + ௬ܰ ߲ଶ(ݓ + ଶݕ߲(଴ݓ ቇ, (6)

ݔ߲ݔܯ߲ + ݕ߲ݕݔܯ߲ − ݔܳ = ݔܫ 2ݐ߲ߙ2߲ ݔ߲ݕݔܯ߲(7) , + ݕ߲ݕܯ߲ − ݕܳ = ݕܫ 2ݐ߲ߚ2߲ , (8)

where ߤ = ௫ܫ is the plate density, and ߩ .ℎߩ = ௬ܫ = ℎଷߩ 12⁄ . Substituting obtained forces and 
moments into Eqs. (4-8), one can obtain the nonlinear differential equations of motions in term of 
displacements. This nonlinear system of differential equations can be solved using the differential 
quadrature method. 



2766. DIFFERENTIAL QUADRATURE METHOD (DQM) FOR STUDYING INITIAL IMPERFECTION EFFECTS AND PRE- AND POST-BUCKLING VIBRATION 
OF PLATES. HESAM MAKVANDI, SHAPOUR MORADI, DAVOOD POORVEIS, KOUROSH HEIDARI SHIRAZI 

106 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. FEB 2018, VOL. 20, ISSUE 1. ISSN 1392-8716  

3. Initial imperfection 

As already mentioned earlier, the initial geometric imperfection could cause difference 
between the experimental and theoretical behaviors of plates. In the current study, the geometrical 
imperfections are presented in terms of the first buckling modal shape of the plate. Table 1 
represents the initial imperfection functions used for the various boundary conditions. 

Table 1. Initial geometric imperfection functions 
Boundary condition Initial geometric imperfection 

SSSS ݓ଴ = ଴ܹ ቀsin ܽݔߨ݊ ቁ ቀsin ܾݕߨ݊ ቁ 

CCCC ݓ଴ = ଴ܹ ൬1 − cos ܽݔߨ2݊ ൰ ൬1 − cos ܾݕߨ2݊ ൰ 

CSCS (Loaded clamped sides) ݓ଴ = ଴ܹ ൬1 − cos ܽݔߨ2݊ ൰ ቀsin ܾݕߨ݊ ቁ 

SCSC (Loaded simply supported sides) ݓ଴ = ଴ܹ ቀsin ܽݔߨ݊ ቁ ൬1 − cos ܾݕߨ2݊ ൰ 

To investigate the effects of initial imperfection on natural frequencies of a rectangular plate, 
the governing equations are solved in no-load condition. Hence, the nonlinear terms in these 
equations are neglected. The DQ method application to the resultant equations and their 
corresponding boundary conditions results in the following eigenvalue problem: ൤ܣ஻஻ ூ஻ܣ஻ூܣ ூூܣ ൨ ൜ܺ஻ܺூ ൠ = −߱ଶ ൤ 0 ூ஻ܤ0 ூூ൨ܤ ൜ܺ஻ܺூ ൠ, (9)

where ܺ஻  and ܺூ  are displacement vectors of boundary and interior points, respectively. The 
natural frequencies and modal shapes of the plate can be extracted from the solution of the 
eigenvalue problem. 

4. Post-buckling 

As it has already been mentioned, the deformation of plate under compressive in plane load 
can change its dynamic behavior. In order to evaluate this effect, natural frequencies of rectangular 
plate under uniaxial in-plane load are calculated using governing equations. To solve these 
equations, the solution is considered as a summation of static (time-independent solution) and 
dynamic ones (time-dependent solution). This represents the plate vibration about the deformed 
shape. Therefore, the solution can be written as: ݓ = ௦ݓ + ݑ    ,ௗݓ = ௦ݑ + ݒ    ,ௗݑ = ௦ݒ + ߙ    ,ௗݒ = ௦ߙ + ߚ    ,ௗߙ = ௦ߚ + ௗ, (10)ߚ

where ݓ௦, ݑ௦, ݒ௦, ߙ௦ and ߚ௦ are the postbuckling static responses and ݓௗ, ݑௗ, ݒௗ, ߙௗ and ߚௗ are 
the dynamic responses about the buckled shape. Substituting Eq. (10) in the governing equations 
and eliminating the time-dependent terms the plate buckling equations can be obtained. 

In the process of solution of these nonlinear differential equations, they will be converted to a 
set of nonlinear algebraic equations using the DQ method. then, the resultant equations and their 
corresponding boundary conditions will be solved using the arc-length method. If one uses the 
Newton-Raphson method to solve these equations, the load will control the path. In other words, 
the load increases with fixed load steps while displacements are unknown. This algorithm usually 
is not able to pass the bifurcation point, therefore, it is required to use the arc-length method, where 
the load is considered as a variable along with the displacement and a constraint on the load 
increase is used [14-16]. 
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5. Pre- and post-buckling vibration 

After solving static equilibrium equations in the first step, the result will be replaced in the 
differential equations of motion of the buckled plate. Eliminating the nonlinear time-dependent 
terms and the terms which only depend on the static response, the results will be obtained in the 
form of the following equations: ܧℎ1 − ଶߥ ቈ ௗ,௫௫ݑ + ௗ,௫ݓ௦,௫௫ݓ + ௦,௫ݓௗ,௫௫ݓ + ଴,௫ݓௗ,௫௫ݓ + ௗ,௫௬ݒ൫ߥ+଴,௫௫ݓௗ,௫ݓ + ௦,௬ݓௗ,௫௬ݓ + ௗ,௬ݓ௦,௫௬ݓ + ଴,௬ݓௗ,௫௬ݓ + +       ଴,௫௬൯቉ݓௗ,௬ݓ ℎ2(1ܧ + (ߥ ൤ ௗ,௬௬ݑ + ௗ,௫௬ݒ + ௦,௬ݓௗ,௫௬ݓ + ௗ,௬ݓ௦,௫௬ݓ + ௦,௬௬ݓௗ,௫ݓ+ௗ,௬௬ݓ௦,௫ݓ + ௗ,௬ݓ଴,௫௬ݓ + ௗ,௬௬ݓ଴,௫ݓ + ଴,௬ݓௗ,௫௬ݓ + ଴,௬௬൨ݓௗ,௫ݓ = ሷݑߤ ௗ, (11)

ℎ1ܧ − ଶߥ ቈ ௗ,௬௬ݒ + ௦,௬ݓௗ,௬௬ݓ + ௗ,௬ݓ௦,௬௬ݓ + ଴,௬ݓௗ,௬௬ݓ + ௗ,௫௬ݑ൫ߥ+଴,௬௬ݓௗ,௬ݓ + ௦,௫ݓௗ,௫௬ݓ + ௗ,௫ݓ௦,௫௬ݓ + ଴,௫ݓௗ,௫௬ݓ + +       ଴,௫௬൯቉ݓௗ,௫ݓ ℎ2(1ܧ + (ߥ ൤ ௗ,௫௬ݑ + ௗ,௫௫ݒ + ௦,௫ݓௗ,௫௬ݓ + ௗ,௫ݓ௦,௫௬ݓ + ௦,௫௬ݓௗ,௫ݓ+ௗ,௫௬ݓ௦,௫ݓ + ௗ,௬ݓ଴,௫௫ݓ + ௗ,௫௬ݓ଴,௫ݓ + ଴,௬ݓௗ,௫௫ݓ + ଴,௫௬൨ݓௗ,௫ݓ = ሷௗ, (12)ݒߤ

ௗ,௫ߙℎ൫ܩ௦ܭ + ௗ,௫௫൯ݓ + ௗ,௬ߚℎ൫ܩ௦ܭ + ௗ,௬௬൯ݓ + ℎ1ܧ − ଶߥ ௦,௫ݓௗ,௫௫ݑ) + ௦,௫ଶݓௗ,௫௫ݓ+       ௗ,௫ݓ௦,௫௫ݑ + ௗ,௫ݓ௦,௫ݓ௦,௫௫ݓ2 + ௦,௫ݓ଴,௫ݓௗ,௫௫ݓ + ௗ,௫ݓ଴,௫ݓ௦,௫௫ݓ + ௦,௫ݓௗ,௫௬ݒ)ߥ+       ଴,௫௫ݓௗ,௫ݓ௦,௫ݓ2 + ௗ,௫ݓ௦,௫௬ݒ + ଴,௬ݓ௦,௫ݓௗ,௫௬ݓ + ଴,௬ݓௗ,௫ݓ௦,௫௬ݓ + ((ௗ,௬ݓ௦,௫ݓ଴,௫௬ݓ+       ௦,௬ݓௗ,௫ݓ଴,௫௬ݓ + ℎ1ܧ − ଶߥ ଴,௫ݓௗ,௫௫ݑ) + ௦,௫ݓ଴,௫ݓௗ,௫௫ݓ + ௗ,௫ݓ଴,௫ݓ௦,௫௫ݓ + ଴,௫ଶݓௗ,௫௫ݓ ݒௗ,௫ݓ଴,௫ݓ଴,௫௫ݓ+        + ଴,௫ݓௗ,௫௬ݒ)ߥ + ௦,௬ݓ଴,௫ݓௗ,௫௬ݓ + ௗ,௬ݓ଴,௫ݓ௦,௫௬ݓ + ((ௗ,௬ݓ଴,௫ݓ଴,௫௬ݓ+       ଴,௬ݓ଴,௫ݓௗ,௫௬ݓ + ℎ1ܧ − ଶߥ ௦,௫௫ݓௗ,௫ݑ) + ௗ,௫௫ݓ௦,௫ݑ + 12 ௦,௫ଶݓ ௗ,௫௫ݓ + ௗ,௫ݓ଴,௫ݓ௦,௫௫ݓ+       ௗ,௫ݓ௦,௫ݓ௦,௫௫ݓ + ௦,௫ݓ଴,௫ݓௗ,௫௫ݓ + ௦,௫௫ݓௗ,௬ݒ)ߥ + ௗ,௫௫ݓ௦,௬ݒ + 12 ௦,௬ଶݓ ଴,௬ݓ௦,௫௫ݓௗ,௬ݓ+       ௗ,௫௫ݓ + ଴,௬ݓௗ,௫௫ݓ௦,௬ݓ + ((ௗ,௬ݓ௦,௫௫ݓ௦,௬ݓ  + ℎ1ܧ − ଶߥ ௗ,௫ݓ଴,௫ݓ଴,௫௫ݓ+       ଴,௫௫ݓௗ,௫ݑ) + ଴,௫௫ݓௗ,௬ݒ)ߥ + ((଴,௬ݓ଴,௫௫ݓௗ,௬ݓ + ℎ1ܧ − ଶߥ ௦,௬ݓௗ,௬௬ݒ) + ௦,௬ଶݓௗ,௬௬ݓ+       ௗ,௬ݓ௦,௬௬ݒ + ௗ,௬ݓ଴,௬ݓ௦,௬௬ݓ2 + ௦,௬ݓ଴,௬ݓௗ,௬௬ݓ + ௗ,௬ݓ଴,௬ݓ௦,௬௬ݓ + ௦,௬ݓௗ,௫௬ݑ)ߥ+       ଴,௬௬ݓௗ,௬ݓ௦,௬ݓ2 + ௗ,௬ݓ௦,௫௬ݑ + ௗ,௬ݓ௢,௫ݓ௦,௫௬ݓ + ଴,௫ݓௗ,௬ݓ௦,௫௬ݓ + ௗ,௬ݓ௦,௫ݓ଴,௫௬ݓ+       ଴,௫ݓ௦,௬ݓௗ,௫௬ݓ + ((௦,௫ݓௗ,௬ݓ௦,௫௬ݓ + ℎ1ܧ − ଶߥ ଴,௬ݓௗ,௬௬ݒ) + ௗ,௬ݓ଴,௬ݓ௦,௬௬ݓ+       ௦,௬ݓ଴,௬ݓௗ,௬௬ݓ + ଴,௬ଶݓௗ,௬௬ݓ + ଴,௬ݓௗ,௫௬ݑ)ߥ_ௗ,௬ݓ଴,௬ݓ଴,௬௬ݓ + ௗ,௫ݓ଴,௬ݓ௦,௫௬ݓ+       ݒ௦,௫ݓ଴,௬ݓௗ,௫௬ݓ + ଴,௬ݓ଴,௫ݓௗ,௫௬ݓ + ((ௗ,௫ݓ଴,௬ݓ଴,௫௬ݓ + ℎ1ܧ − ଶߥ ௗ,௫ݓ௦,௫ݓ଴,௫௫ݓ+       ଴,௫௫ݓௗ,௫ݑ) + ௗ,௫ݓ௦,௫ݓ଴,௫௫ݓ + ଴,௫௫ݓௗ,௬ݒ)ߥ + (ௗ,௬ݓ଴,௬ݓ଴,௫௫ݓ+       ௗ,௬ݓ௦,௬ݓ଴,௫௫ݓ + ℎ1ܧ − ଶߥ ௦,௬௬ݓௗ,௬ݒ) + ௗ,௬௬ݓ௦,௬ݒ + 12 ௦,௬ଶݓௗ,௬௬ݓ + ଴,௬ݓ௦,௬ݓௗ,௬௬ݓ+       ௦,௬ݓௗ,௬ݓ௦,௬௬ݓ + ݒ௦,௬ݓ௦,௬௬ݓௗ,௬ݓ + ௗ,௬௬ݓ௦,௫ݑ)ߥ + ௦,௬௬ݓௗ,௫ݑ + 12 ௦,௫ଶݓௗ,௬௬ݓ ଴,௫ݓ௦,௬௬ݓௗ,௫ݓ+        + ((଴,௫ݓௗ,௬௬ݓ௦,௫ݓ + ℎ1ܧ − ଶߥ ଴,௬௬ݓௗ,௬ݒ) + ௗ,௬ݓ଴,௬ݓ଴,௬௬ݓ+       ௗ,௬ݓ௦,௬ݓ଴,௬௬ݓ + ݒ଴,௬௬ݓௗ,௫ݑ)ߥ + ௦,௫ݓ଴,௬௬ݓௗ,௫ݓ + +       (଴,௫ݓ଴,௬௬ݓௗ,௫ݓ ℎ2(1ܧ + (ߥ ௗ,௬ݓ௦,௫௬ݑ) + ௦,௬ݓௗ,௫௬ݑ + ௗ,௬ݓ௦,௫௫ݒ + ௦,௬ݓௗ,௫௫ݒ + ௦,௬ଶݓௗ,௫௫ݓ ௗ,௬ݓ௦,௬ݓ௦,௫௫ݓ2+        + ௗ,௬ݓ௦,௬ݓ଴,௫௫ݓ2 + ௦,௬ݓௗ,௫ݓ௦,௫௬ݓ + ௦,௬ݓ௦,௫ݓௗ,௫௬ݓ+       ௦,௬ݓௗ,௫ݓ௦,௫௬ݓ + ௗ,௬ݓ௦,௫ݓ௦,௫௬ݓ + ௦,௬ݓ଴,௫ݓௗ,௫௬ݓ +  ௗ,௬ݓ௦,௫௬ݓ଴,௫ݓ

(13)

ௗ,௬ݓ଴,௬ݓ௦,௫௫ݓ+       + ௦,௬ݓ଴,௬ݓௗ,௫௫ݓ + ௗ,௫ݓ௦,௬ݓ଴,௫௬ݓ +   ((ௗ,௬ݓ௦,௫ݓ଴,௫௬ݓ
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      + ℎ2(1ܧ + (ߥ ଴,௬ݓௗ,௫௬ݑ) + ଴,௬ݓௗ,௫௫ݒ + ଴,௬ݓௗ,௬ݓ௦,௫௫ݓ + ଴,௬ݓ௦,௬ݓௗ,௫௫ݓ + ଴,௬ݓ௦,௫ݓௗ,௫௬ݓ+       ଴,௬ݓௗ,௫ݓ௦,௫௬ݓ + ଴,௬ݓௗ,௬ݓ଴,௫௬ݓ + ଴,௬ݓ௦,௬ݓௗ,௫௬ݓ + ଴,௬ݓ଴,௫ݓௗ,௫௬ݓ + ଴,௬ଶݓௗ,௫௫ݓ ଴,௫௬ଶݓ+        ((ௗ,௫ݓ଴,௬ݓ + ℎ2(1ܧ + (ߥ ௦,௫ݓௗ,௬௬ݑ) + ௗ,௫ݓ௦,௬௬ݑ + ௗ,௫ݓ௦,௫௬ݒ + ௗ,௬ݓ௦,௫ݓ௦,௫௬ݓ+       ௦,௫ݓௗ,௫௬ݒ + ௦,௬ݓௗ,௫ݓ௦,௫௬ݓ + ௦,௬ݓ௦,௫ݓௗ,௫௬ݓ + ௦,௫ଶݓௗ,௬௬ݓ + ଴,௬ݓ௦,௫ݓௗ,௫௬ݓ+       ௦,௫ݓௗ,௫ݓ௦,௬௬ݓ2 + ଴,௬ݓௗ,௫ݓ௦,௫௬ݓ + ௦,௫ଶݓௗ,௬௬ݓ + ௗ,௬ݓ௦,௫ݓ଴,௫௬ݓ + ௦,௫ݓ଴,௫ݓௗ,௬௬ݓ+       ௦,௬ݓௗ,௫ݓ଴,௫௬ݓ + ௦,௬௬ݓ଴,௫ݓௗ,௫ݓ + ((௦,௬ݓௗ,௫ݓ௦,௬௬ݓ2 + ℎ2(1ܧ + (ߥ ଴,௫ݓௗ,௫௬ݒ+       ଴,௫ݓௗ,௬௬ݑ) + ௦,௬ݓ଴,௫ݓௗ,௫௬ݓ + ௗ,௫ݓ଴,௫ݓ௦,௫௬ݓ + ௗ,௫ݓ଴,௫ݓ௦,௬௬ݓ + ଴,௫ଶݓௗ,௬௬ݓ+       ௦,௫ݓ଴,௫ݓௗ,௬௬ݓ + ଴,௬ݓ଴,௫ݓௗ,௫௬ݓ + ଴,௫ݓௗ,௫ݓ଴,௬௬ݓ + +       ((଴,௫ݓ଴,௫௬ݓௗ,௬ݓ ℎ(1ܧ + (ߥ ௗ,௫௬ݓ௦,௬ݑ) + ௦,௫௬ݓௗ,௬ݑ + ௗ,௫௬ݓ௦,௫ݒ + ௦,௫௬ݓௗ,௫ݒ + ௦,௬ݓௗ,௫ݓ௦,௫௬ݓ+       ௦,௬ݓ௦,௫ݓௗ,௫௬ݓ + ௗ,௬ݓ௦,௫ݓ௦,௫௬ݓ + ௦,௬ݓ଴,௫ݓௗ,௫௬ݓ + ଴,௬ݓௗ,௫ݓ௦,௫௬ݓ+       ௗ,௬ݓ଴,௫ݓ௦,௫௬ݓ + ((଴,௬ݓ௦,௫ݓௗ,௫௬ݓ + ℎ(1ܧ + (ߥ ଴,௫௬ݓௗ,௬ݑ) + ௗ,௬ݓ௦,௫ݓ଴,௫௬ݓ+       ଴,௫௬ݓௗ,௫ݒ + ௦,௬ݓௗ,௫ݓ଴,௫௬ݓ + ௗ,௬ݓ଴,௫ݓ଴,௫௬ݓ + ((଴,௬ݓௗ,௫ݓ଴,௫௬ݓ = ሷݓߤ ௗ. ܧℎଷ12(1 − (ଶߥ ൫ߙௗ,௫௫ + ௗ,௫௬൯ߚߥ + ℎଷ24(1ܧ + (ߥ ൫ߙௗ,௬௬ + ௗ,௫௬൯ߚ − ௗߙℎ൫ܩ௦ܭ + ௗ,௫൯ݓ = ℎଷ12(1ܧሷௗ, (14)ߙ௫ܫ − (ଶߥ ൫ߚௗ,௫௫ + ௗ,௫௬൯ߙߥ + ℎଷ24(1ܧ + (ߥ ൫ߙௗ,௫௬ + ௗ,௫௫൯ߚ − ௗߚℎ൫ܩ௦ܭ + ௗ,௬൯ݓ = ሷௗ, (15)ߚ௬ܫ

The DQ method is also used to discretize these equations and corresponding boundary 
conditions which result in a system of eigenvalue equations. The solution of this eigenvalue 
problem provides the natural frequencies and modal shapes of buckled plate. 

6. Results 

In this section, with the aim of the accuracy and reliability verification for the proposed method, 
the developed formulation will be used to investigate several case studies. Using the presented 
method, the natural frequencies of a simply supported square plate for different initial 
imperfection amplitudes are calculated without any external compressive load. The results are 
compared with those obtained from the FEM in Fig. 3. The plate is 1000 mm long, 1000 mm wide, 
and 10 mm thick. The elasticity modulus, Poisson’s ratio and density of the plate are 200 GPa, 0.3 
and 7800 Kg/m3, respectively. The results are compared with those of the commercial software 
package for finite element analyses. The FEM model consists of 100 shell elements. As it can be 
seen in figure 3, DQ results and FEM results are in a very good agreement. Furthermore, the figure 
shows that an increase in the initial imperfection amplitude results in an increase of plate stiffness, 
and therefore causes an increase in the natural frequencies. 

Fig. 4 shows the load ratio (i.e. ܲ ௖ܲ௥⁄ ) in terms of the transverse displacement of the center 
point of specified plate. The results show the excellent accuracy of the proposed method as 
compared with the FEM. It should be noted that the solution of the nonlinear problems, unlike the 
linear ones, only satisfies the boundary conditions and guarantees the energy conservation law 
[17]. Hence, the full compliance of responses in such an analysis seems unlikely. 

Fig. 5 shows the effect of initial imperfection amplitudes on the buckling behavior of the plate. 
An increase in the imperfection amplitude has a considerable impact on the behavior of the plate 
in vicinity of critical load. Therefore, an increase of the imperfection amplitude changes the plate 
buckling behavior. For example, at ଴ܹ ℎ⁄ = 1, the critical load is indistinguishable. A decrease of 
the imperfection amplitude will make the buckling behavior more visible, and the results become 
closer to the results of a flat plate. On the other hand, it can be seen that, if the axial load increases, 
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the effects of geometrical imperfection will decrease. As a result of this, for deflections larger than 
1.5 times of the thickness, the corresponding curves are coincided. Since the imperfection is 
negligible as compared with the plate deflections, its effect disappears and leads to the 
convergence of the diagrams. It can be concluded that with the existence of imperfection, it is 
inevitable to use the nonlinear analysis in order to obtain the buckling load of plate. 

 
Fig. 3. Variations of natural frequencies against initial imperfection amplitude ratio 

 
Fig. 4. Comparison of load-deflection curves as given by DQ (…) and FEM (---) 

 
Fig. 5. Load-deflection curves of SSSS square plate 

for different amount of initial imperfection amplitude 

 
Fig. 6. first five frequencies  
of SSSS plate (ݓ௢ ℎ⁄ = 0.1) 

The variations of the first five natural frequencies of a simply supported plate with different 
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amounts of initial imperfections in the state of the pre- and post-buckling vibration are presented 
in Figs. 6-8. It can be seen that as far as the applied compressive load increases from zero to the 
buckling load (ܲ ௖ܲ௥⁄ ൏ 1), all the frequencies decrease smoothly due to a reduction in the plate 
stiffness. A load increase to buckling load and beyond causes an increase in the frequencies 
(ܲ ௖ܲ௥⁄ ൐ 1). It can also be concluded that the lowest natural frequencies of the structure occur at 
the buckling load (ܲ ௖ܲ௥⁄ = 1). Natural frequencies decrease due to a reduction in the plate 
stiffness before the critical load and then increase as a consequence of a rise in the plate 
deformation which causes an increase in the plate stiffness by dominating the stretching stiffness 
over the bending stiffness. 

Fig. 9 shows the first five mode shapes of a simply supported square plate, before and after 
buckling. In this figure, the pre- and post-buckling loads are 0.5 and 1.5 times the critical load, 
respectively. Looking at Fig. 9, one can conclude that the first and second mode shapes have more 
variations as compared with the other modes. This is also shown in Figs. 6-8. 

 
Fig. 7. First five frequencies  
of SSSS plate (ݓ௢ ℎ⁄ = 0.01) 

 
Fig. 8. First five frequencies  

of SSSS plate (ݓ௢ ℎ⁄ = 0.001) 

 
Fig. 9. First five mode shape of SSSS Square plate  

at pre-buckling (ܲ ௖ܲ௥⁄ = 0.5) and post-buckling state (ܲ ௖ܲ௥⁄ = 1.5) 

Fig. 10 shows the variation of the first four natural frequencies of the aforementioned plate 
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with different initial imperfection amplitudes against the compressive load. It can be seen that the 
first two frequencies are more sensitive with respect to changes in the initial imperfection 
amplitudes than the last two ones. However, as the compressive in-plane load increases from the 
buckling load, the effect of imperfection amplitude decreases. This is due to the fact that after 
buckling, the plate curvature increases and the initial imperfection becomes negligible as 
compared with it. 

The solution for the other boundary conditions can also be calculated using the same method. 
Frequencies and mode shapes for different combinations of simply supported and clamped 
boundary conditions are provided in Figs. 11-14. 

 
Fig. 10. Variations of first four natural frequencies of SSSS plate with load ratio,  ݓ௢ ℎ⁄ ௢ݓ ,(_) 0.001 = ℎ⁄ = 0.01 (…) and ݓ௢ ℎ⁄ = 0.1 (---) 

 
Fig. 11. First five frequencies of fully clamped plate (ݓ௢ ℎ⁄ = 0.01) 

Fig. 11 presents the variations of the first five natural frequencies of a fully clamped square 
plate under uniaxial compressive loads. The figure shows that an increase of the applied 
compressive load from zero toward the buckling load results in a smooth reduction in all the 
natural frequencies. After the buckling, due to an increase in the stretching stiffness of the plate, 
the curves for the odd frequencies also start increasing. However, the even natural frequencies 
continue decreasing after the buckling. Besides, the figure also shows that after the buckling, the 
fundamental natural frequency increases with the applied load increase and exceeds the second 
frequency. The first mode shape of the plate is the first symmetric bending-stretching mode, 
whereas the second mode is the bending mode shape. Fig. 12 shows mode shapes of a fully 
clamped plate before and after the intersection.  
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Fig. 12. first five mode shape of CCCC Square plate  

at pre-buckling (ܲ ௖ܲ௥⁄ = 0.5) and post-buckling state (ܲ ௖ܲ௥⁄ = 1.4) 

 
Fig. 13. First five frequencies  
of CSCS plate (ݓ௢ ℎ⁄ = 0.01) 

 
Fig. 14. First five frequencies  
of SCSC plate (ݓ௢ ℎ⁄ = 0.01) 

Fig. 13 illustrates the variations of natural frequencies of an imperfect square plate with 
imperfection amplitude of 0.01 h, where all the loaded edges are clamped, and the rest ones are 
simply supported. The figure shows that all the frequencies decrease as the load factor increases. 
However, as the load continues increasing after buckling, the first, second, third and fifth 
frequencies increase due to the dominance of the stretching stiffness over the bending stiffness, 
while the forth frequency still decreases because it has a bending mode. It can be seen that at a 
load of 0.848 ௖ܲ௥, the second and the third frequencies intersect. After the intersection, the second 
frequency continues increasing its distance as compared with the third frequency. 

Fig. 14 demonstrates the variations of the natural frequencies of a plate with two simply 
supported loaded edges and two clamped edges having imperfection amplitude equal to 0.01 h. 
with the increase of the applied compressive load up to the buckling load, all of the natural 
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frequencies decrease smoothly. But, as far as the applied load increases from this point, due to the 
stretching stiffness, an increase in all frequencies takes place at once. Furthermore, at load ratios 
of 0.418, 1.281 and 1.444, there are intersections between the fourth and fifth, the second and third 
and again, the fourth and the fifth frequencies, respectively. 

7. Conclusions 

In this study, the effects of initial geometric imperfection and pre- and post-buckling 
deformations on natural frequencies of plates under uniaxial in-plane loads were investigated. The 
solution of the nonlinear differential equations consists of static and dynamic parts. The 
differential quadrature method together with an arc-length strategy was used to solve the static 
part, while the dynamic part was linearized and then solved using the differential quadrature 
method. The effects of initial imperfection and plate deformation on frequencies and mode shapes 
were examined for four different combinations of clamped and simply supported boundary 
conditions. The accuracy and the integrity of results were investigated using results obtained from 
a commercial software package for the finite element methods. 

It was observed that in a fully simply supported plate, with the increase of the initial 
imperfection, the natural frequencies also increase. However, an increase in the in-plane 
compressive load before the buckling load generally reduces the natural frequencies and 
afterwards increases them. The increase in natural frequencies for some modes results in their 
intersection. Furthermore, the investigation shows that the frequencies are sensitive to the 
imperfection amplitudes, especially about the buckling load. The similar behaviors with some 
differences could be seen for other combinations of the boundary conditions. It could be concluded 
that the effects of initial imperfection and in-plane compressive loads before and after the buckling 
are highly dependent on the boundary conditions. The research also shows that prior to buckling, 
an increase in the applied compressive load results in a smooth decrement of all natural 
frequencies for a SSSS plate, with no intersections between the modal shapes. However, for SCSC 
and CSCS plates the same conclusion can be drawn except that there are some intersections 
between natural frequencies. The mode intersections happen more frequently after the buckling 
for all the boundary conditions. 
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Appendix 

A1. Differential quadrature method (DQM) 

Bellman et al. [12] proposed the differential quadrature method which approximates the 
derivative of a function at a given discrete point as a weighted linear combination of function 
values at all the discrete points of the function domain along the respective variable direction. 
Considering the function ݂ = ,ݔ)݂ ,௜ݔits ݊th-order derivative at an arbitrary point ൫ ,(ݕ  ௝൯ can beݕ
written as: ߲߲݊݊ݔ ݂ ቀ݅ݔ, ቁ݆ݕ = ෍ ݔ݂݊(݊݇)݅ܥ

݇=1 ቀ݇ݔ,  ,ቁ݆ݕ
݉ݕ߲߲݉ ݂ ቀ݅ݔ, ቁ݆ݕ = ෍ ݕ݂݊(݉)݆݇ܥ

݇=1 ൫݅ݔ, ݊    ,൯݇ݕ = 1, . . . , ݔ݊ − 1,    ݉ = 1, . . . , ݕ݊ − 1, 
݉ݕ߲݊ݔ߲(݉+݊)߲ ݂ ቀ݅ݔ, ቁ݆ݕ = ෍ (݊݇)݅ܥ ෍ ݕ݂݊(݉)݈݆ܥ

݈=1 ൫݇ݔ, ݔ݊,൯݈ݕ
݇=1  

where ݊௫ and ݊௬ are the numbers of discrete points in the ݔ and ݕ directions, respectively. ܥ௜௝(௡) 
are weighting coefficients of the ݊th-order derivative. In this study, the weighting coefficients are 
calculated using the method developed by Quan and Chang [13]. The selection of sampling points 
plays a significant role in the accuracy of the method. Here, the roots of the Lagrange polynomials 
have been used: 

݅ݔ = 12 ൤1 − cos ൬2݅ − 1ܰ − 1 ൰൨ߨ ,    ݅ = 2,3, … , ݔ݊ − 1ݔ ,1 = ݔ݊ݔ    ,0 = ݆ݕ ,1 = 12 ൤1 − cos ൬2݆ − 1ܰ − 1 ൰൨ߨ ,     ݆ = 2,3, … , ݕ݊ − 1ݕ ,1 = ݕ݊ݕ    ,0 = 1. 
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