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Abstract. This paper concerns with the study of wave propagation in fibre reinforced anisotropic 
half space under the influence of temperature and hydrostatic initial stress. Lord-Shulman theory 
is applied to the heat conduction equation. The resulting equations are written in the form of vector 
matrix differential equation by using Normal Mode technique, finally which is solved by Eigen 
value approach. 
Keywords: eigenvalue, generalized thermoelasticity, normal mode, vector-matrix differential 
equation. 

Nomenclature ݑ Displacement tensor ݐ Time variable ߪ Stress components ߩ Mass density ݁ Strain components ߱ Rotational tensor ܶ Temperature ܶ Reference temperature ߚ Thermal elastic coupling tensor ܿ Specific heat at constant strain ܭ Thermal conductivity ܲ Initial pressure ݐ Relaxation time ߜ Kronecker Delta ߣ, ,ߙ Elastic parameters ்ߤ ,ߚ ߤ) −  Reinforced elastic parameter (்ߤ

1. Introduction 

Fibre-reinforced composite(FRC) materials are usually low weight and high strength used in 
construction engineering. The physical property of FRC material is governed by the theory of 
elasticity for different materials with the direction along the direction of fibre. Green [1] studied 
wave propagation in anisotropic elastic plates. Abbas and Othman [2] discussed the distribution 
of wave propagation under hydrostatic initial stress of fibre-reinforced materials in anisotropic 
half-space. Baylies and Green [3] analyse the flexural waves in fibre-reinforced laminated plates. 
Rogerson [4] discussed effect of penetration in a six-ply composite laminates. 

Most of the thermoelasticity and generalized thermoelasticity (coupled or uncoupled) 
problems have been solved by potential function approach. This method is not always suitable as 
discussed by Dhaliwal and Sherief [5] and Sherief and Anwar [6]. These may be summarized by 
the initial conditions and the boundary conditions for physical problems which are directly 
concern with the material quantities under consideration and not with the potential function. Also, 
the potential function representations are not convergent always while the physical problems in 
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natural variables constitute convergent solution. So, the alternative method of potential function 
approach is eigenvalue approach. In this method, we obtain a vector-matrix differential equation 
from the basic equations which reduces finally to an algebraic eigenvalue problem and the 
solutions for the field variables are obtained by determining the eigenvalues and eigenvectors from 
the corresponding coefficient matrix. In this theory, body forces and/or heat sources are also 
accommodated as in Das and Lahiri [7], Bachher et al. [8]. Now, two different models of 
generalized thermoelastisities are extensively used. One is Lord and Shulman (L-S) [9] theory and 
the other is Green and Lindsay (G-L) [10] theory. Introducing one relaxtion time parameter in L-S 
theory the heat conduction equation becomes hyperbolic type without violating conventional 
Fourier’s law. Whereas the G-L theory modified the heat conduction equation as well as the 
equation of motion in coupled thermoelasticitywo relaxation time parameters. There are other 
three models (Model I, II and III by Green and Nagdhi [11-13]) for generalized thermoelasticity 
concerned to the theory of with or without energy dissipation.  

2. Development of governing equations 

The stress-strain relation and the governing equations of motion without body forces and heat 
sources are written as follow: ߪ, − ܲ߱, = ሷݑߩ , (1)ߪ = ߜ݁ߣ + ்݁ߤ2 + ߜ൫ܽܽ݁ߙ + ܽ ܽ݁൯    +2(ߤ − ൫ܽܽ݁(்ߤ + ܽܽ݁൯ + ܽ݁ܽܽߚ ܽ − ܶ)ߚ − ܶ)ߜ,   ݅, ݆, ݇, ݉ = 1,2,3, (2)݁ = 12 ൫ݑ, + ,൯, (3)߱ݑ = 12 ൫ݑ, − ܭ,൯, (4)ݑ ܶ = ൫ܿߩ ሶܶ + ݐ ሷܶ ൯ + ܶ൫ݑሶ ,ݑሷ ,൯,    ݅, ݆ = 1,2,3. (5)

We consider the problem of a elastic half-space (ݔ ≥ 0)  in fibre-reinforced anisotropic 
material with ܽ ≡ (ܽଵ, ܽଶ, ܽଷ)  where ܽଵଶ + ܽଶଶ + ܽଷଶ = 1  as in I. A. Abbas [14], where the 
displacements are given: ݑ = ௫ݑ = ,ݔ)ݑ ,ݕ ݒ   ,(ݐ = ௬ݑ = ,ݔ)ݒ ,ݕ ݓ   ,(ݐ = ௭ݑ = 0. (6)

We consider the direction of fibre as ܽ ≡ (1,0,0)  with ݔ -axis as prefered direction, and  
Eqs. (1-5), reduces as given: 

ଵଵߪ = ߣ) + ߙ2 + ߤ4 − ்ߤ2 + (ߚ ݔ߲ݑ߲ + ߣ) + (ߙ ݕ߲ݒ߲ − ܶ)ଵଵߚ − ܶ), (7)ߪଶଶ = ߣ) + (்ߤ2 ݕ߲ݒ߲ + ߙ) + (ߣ ݔ߲ݑ߲ − ܶ)ଶଶߚ − ܶ), (8)ߪଵଶ = ߤ ൬߲ݔ߲ݒ + ଵଵܣ൰, (9)ݕ߲ݑ߲ ߲ଶݔ߲ݑଶ + ൬ܣଵଶ + ߤ − 2ܲ൰ ߲ଶݕ߲ݔ߲ݒ + ൬ߤ + 2ܲ൰ ߲ଶݕ߲ݑଶ − ଵଵߚ ݔ߲߲ܶ = ߩ ߲ଶݐ߲ݑଶ ଶଶܣ(10) , ߲ଶݕ߲ݒଶ + ൬ܣଵଶ + ߤ − 2ܲ൰ ߲ଶݕ߲ݔ߲ݑ + ൬ߤ + 2ܲ൰ ߲ଶݔ߲ݒଶ − ଶଶߚ ݕ߲߲ܶ = ߩ ߲ଶݐ߲ݒଶ ଵଵܭ(11) , ߲ଶ߲ܶݔଶ + ଶଶܭ ߲ଶ߲ܶݕଶ = ቆ ݐ߲߲ + ݐ ߲ଶ߲ݐଶቇ ൬ܿߩܶ + ܶߚଵଵ ݔ߲ݑ߲ + ܶߚଶଶ ൰, (12)ݕ߲ݒ߲
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with: ܣଵଵ = ߣ + ߙ)2 + (ߤ + ߤ)4 − (்ߤ + ଵଶܣ     ,ߚ = ߙ + ଶଶܣ     ,ߣ = ߣ + ଵଵߚ ,்ߤ2 = ߣ2) + ߙ3 + ߤ4 − ்ߤ2 + ଵଵߙ(ߚ + ߣ) + ଶଶߚ    ,ଶଶߙ(ߙ = ߣ2) + ଵଵߙ(ߙ + ߣ) +  ,ଶଶߙ(்ߤ2
where ߙଵଵ, ߙଶଶ are linear thermal expansion coeeficients. 

To transform the above governing equations in non-dimensional forms, we introduce the non-
dimensional variables as follows: 

,ᇱݔ) ,ᇱݕ ,ᇱݑ (ᇱݒ = ܿଵ߯(ݔ, ,ݕ ,ݑ ᇱݐ    ,(ݒ = ܿଵଶ߯ݐ,    ܶᇱ = ܶ)ଵଵߚ − ܶ)ܿߩଵమ ,    ߯ = ,ᇱଵଵߪ) ,ଵଵܭܿߩ ,ᇱଵଶߪ (ᇱଶଶߪ = ଵଶܿߩ1 ,ଵଵߪ) ,ଵଶߪ ଶଶ),     ܿଵଶߪ = ߩଵଵܣ . (13)

Using non-dimensional Eq. (13), the governing equations reduces to (eleminating primes for 
convenience): 

ଵଵߪ = ݔ߲ݑ߲ + ଵܤ ݕ߲ݒ߲ − ଶଶߪ(14) ,ܶ = ଵܤ ݔ߲ݑ߲ + ଶܤ ݕ߲ݒ߲ − ଵଶߪଷܶ, (15)ܤ = ସܤ ൬߲ݔ߲ݒ + ଶݔ߲ݑ൰, (16)߲ଶݕ߲ݑ߲ + ൬ܤଵ + ସܤ − ܴ2 ൰ ߲ଶݕ߲ݔ߲ݒ + ൬ܤସ + ܴ2 ൰ ߲ଶݕ߲ݑଶ − ݔ߲߲ܶ = ߲ଶݐ߲ݑଶ ଶܤ(17) , ߲ଶݕ߲ݒଶ + ൬ܤଵ + ସܤ − ܴ2 ൰ ߲ଶݕ߲ݔ߲ݑ + ൬ܤସ + ܴ2 ൰ ߲ଶݔ߲ݒଶ − ଷܤ ݕ߲߲ܶ = ߲ଶݐ߲ݒଶ , (18)߲ଶ߲ܶݔଶ + ଵߝ ߲ଶ߲ܶݕଶ = ቆ ݐ߲߲ + ݐ ߲ଶ߲ݐଶቇ ൬ܶ + ଶߝ ݔ߲ݑ߲ + ଷߝ ൰, (19)ݕ߲ݒ߲

where: (ܤଵ, ,ଶܤ (ଷܤ = ଵଵܣ1 ,ଵଶܣ) ,ଶଶܣ ଷܤ     ,(ଵߤ = ଵଵߚଶଶߚ ,     ܴ = ,ଶߝ) ,ଵଵܣܲ (ଷߝ = ܶߚଵଵܣଵଵܿߩ ,ଵଵߚ) ଵߝ    ,(ଶଶߚ =  .ଶଶܭଵଵܭ
3. Solution procedure 

3.1. Normal mode analysis: formulation of vector-matrix differential equation 

For the solution of the Eqs. (14-19), physical variables can be decomposed using normal modes 
Eq. (20) in the following form: ሾݑ, ,ݒ ܶ, ,ଵଵߪ ,ଵଶߪ ,ݔ)ଶଶሿߪ ,ݕ (ݐ = ሾݑ∗, ,∗ݒ ܶ∗, ∗ଵଵߪ , ∗ଵଶߪ , ∗ଶଶߪ ሿ(ݔ)݁ఠ௧ା௬, (20)

where ݅ = √−1, ߱ is the angular frequency and a is the wave number along ݔ-axis. 
Using Eq. (20), Eqs. (14-19) reduces to omitting ‘*’ for convenience: 

ଵଵߪ = ݔ݀ݑ݀ + ݒ(ଵ݅ܽܤ) − ܶ, (21)
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ଶଶߪ = ଵܤ ݔ݀ݑ݀ + ݒ(ଶ݅ܽܤ) − ଵଶߪଷܶ, (22)ܤ = ସܤ ݔ݀ݒ݀ + ଶݔ݀ݑଶ݀(23) ,ݑ(ସ݅ܽܤ) = .41ܯ ݑ + 0. ݒ + 0. ܶ + 0. ᇱݑ + .45ܯ ᇱݒ + ܶᇱ, (24)݀ଶݔ݀ݒଶ = 0. ݑ + .52ܯ ݒ + .53ܯ ܶ + .54ܯ ᇱݑ + 0. ᇱݒ + 0. ܶᇱ, (25)݀ଶܶ݀ݔଶ = 0. ݑ + .62ܯ ݒ + .63ܯ ܶ + .64ܯ ᇱݑ + 0. ᇱݒ + 0. ܶᇱ, (26)

where: 

41ܯ = ܽଶ ܤସ + ܴ2 ൨ + ߱ଶ,     45ܯ = −݅ܽ ܤଵ + ସܤ − ܴ2 ൨ 52ܯ   , = ܽଶܤଶ + ߱ଶܤସ + ܴ2 , 
53ܯ = ܴ2 − ଵܤ − ସܤସܤ + ܴ2 54ܯ     , = ସܤଷܤܽ݅ + ܴ2 62ܯ     , = ߱)ଷߝܽ݅ + 63ܯ ,(߱ଶݐ = ߱ + ߱ଶݐ + 64ܯ     ,ଶܽଶߝ = ߱)ଶଶߝ +  .(߱ଶݐ

Eqs. (24-26) can be written in the form of vector-matrix differential equation as [2, 8]: ݀ ሬܹሬሬԦ݀ݔ = Ԧܣ ሬܹሬሬԦ, (27)

where ሬܹሬሬԦ =ሾݑ      ܶ      ݒ      ݑᇱ        ݒᇱ      ܶᇱ    ሿ் and ܣ = ܮଵଵ ଶଵܮଵଶܮ  :ଶଶ are given byܮ ଶଵ andܮ ଵଶ identity matrix of order 3×3 respectively andܮ ଵଵ is null matrix andܮ ଶଶ൨. Whereܮ

ଵଵܮ = ൮0 0 00 0 00 0 0 ൲,     ܮଵଶ = ൮1 0 00 1 00 0 1 ൲,      
ଶଵܮ = ൮41ܯ 0 00 52ܯ 530ܯ 62ܯ ଶଶܮ     ,63൲ܯ = ൮ 0 45ܯ 54ܯ1 0 64ܯ0 0 0 ൲. 
3.2. Solution of the vector-matrix differential equation 

To solve the vector-matrix differential Eq. (27), we apply the method of eigenvalue approach, 
The characteristic equation of the matrix ܣԦ is given by: |ܣ − |ܫߣ = 0. (28)

The roots of the characteristic Eq. (28) are ߣ = ݅ ,ߣ = 1, 2, 3 which are of the form ߣ = ߣ ,ଵߣ± = ߣ ଶ andߣ± =  .ଷ and they are also eigenvalues of the matrixߣ±
The eigenvector, ሬܹሬሬԦ corresponding to the eigenvalue ߣ can obtained as: Ԧܺఒ = ሾߜଵ      ߜଶ      ߜଷ    ߜߣଵ        ߜߣଶ    ߜߣଷሿ், (29)
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where ߜଵ = ܽଶܾଷ − ܽଷܾଶ, ߜଶ = ܽଷܾଵ − ܽଵܾଷ, ߜଷ = ܽଵܾଶ − ܽଶܾଵ.  
As in Lahiri et al. [7], the general solution of Eq. (27) which is regular as can be written as: 

ሬܹሬሬԦ = ଷ
ୀଵ ܣ ܺ݁ିఒ௫,     ݔ ≥ 0. (30)

Hence the field variables can be written as the following: ݑ = ଵଵ݁ିఒభ௫ݔଵܣ + ଶଵ݁ିఒమ௫ݔଶܣ + ݒ ,ଷଵ݁ିఒయ௫ݔଷܣ = ଵଶ݁ିఒభ௫ݔଵܣ + ଶଶ݁ିఒమ௫ݔଶܣ + ܶ ,ଷଶ݁ିఒయ௫ݔଷܣ = ଵଷ݁ିఒభ௫ݔଵܣ + ଶଷ݁ିఒమ௫ݔଶܣ +   .ଷଷ݁ିఒయ௫ݔଷܣ
The simplified form of Eqs. (21-23) can be written as: ߪଵଵ = (ݔ)ଵܴଵଵܣ + (ݔ)ଶܴଵଶܣ + ଶଶߪ,(ݔ)ଷܴଵଷܣ = (ݔ)ଵܴଶଵܣ + (ݔ)ଶܴଶଶܣ + ଷଷߪ,(ݔ)ଷܴଶଷܣ = (ݔ)ଵܴଷଵܣ + (ݔ)ଶܴଷଶܣ +  ,(ݔ)ଷܴଷଷܣ

where: ܴଵଵ(ݔ) = ሾ−ߣଵݔଵଵ + ଵଶݔଵ݅ܽܤ − (ݔ)ଵଷሿ݁ିఒభ௫, ܴଵଶݔ = ሾ−ߣଶݔଶଵ + ଶଶݔଵ݅ܽܤ − (ݔ)ଶଷሿ݁ିఒమ௫, ܴଵଷݔ = ሾ−ߣଷݔଷଵ + ଷଶݔଵ݅ܽܤ − (ݔ)ଷଷሿ݁ିఒయ௫, ܴଶଵݔ = ሾ−ߣଵܤଵݔଵଵ + ଵଶݔଶ݅ܽܤ − (ݔ)ଵଷሿ݁ିఒభ௫, ܴଶଵݔଷܤ = ሾ−ߣଶܤଵݔଶଵ + ଶଶݔଶ݅ܽܤ − (ݔ)ଶଷሿ݁ିఒమ௫, ܴଶଵݔଷܤ = ሾ−ߣଷܤଵݔଷଵ + ଷଶݔଶ݅ܽܤ − (ݔ)ଷଷሿ݁ିఒయ௫, ܴଷଵݔଷܤ = ሾܤସ݅ܽݔଵଵ − (ݔ)ଵଶሿ݁ିఒభ௫, ܴଷଶݔଵߣ = ሾܤସ݅ܽݔଶଵ − (ݔ)ଶଶሿ݁ିఒమ௫, ܴଷଷݔଶߣ = ሾܤସ݅ܽݔଷଵ −  .ଷଶሿ݁ିఒయ௫ݔଷߣ
4. Boundary conditions 

Considering the problem of a half-space ߶, defined as follows: ߶ = ,ݔ) ,ݕ :(ݖ 0 ≤ ݔ ≤ ∞,    − ∞ ≤ ݕ ≤ ∞,     − ∞ ≤ ݖ ≤ ∞. 
In order to determine the arbitrary constants ܣᇱݏ , ݅ =  1, 2, 3, we consider the boundary 

conditions as follows.  

4.1. Case 1 

a) Mechanical Boundary condition: 
For stress-free surface ݔ ଵଵߪ ,0= = ଵଶߪ ,0 = 0. 
b) Thermal Boundary condition: 

ܶߥ − ݔ݀ܶ݀ = (31) ,ݎ

where ߥ is Biot’s number. 
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4.2. Case 2 

a) Mechanical Boundary condition: 
For stress-free surface ݔ ଵଵߪ ,0 = = − ଵܲ + ଶܲ݁ఠ௧ା௬, ߪଵଶ = 0. 
b) Thermal Boundary condition: ܶ = ଷܲ݁ఠ௧ା௬. (32)

5. Numerical analysis 

5.1. Case 1 

5.1.1. Distribution of different stress components 

Fig. 1 represents distribution of normal stress ߪଵଵ for ݕ = 0.3. 
For fixed time ߪ ,ݐଵଵ gradually increases as ݔ increases. For fixed ݔ numerical values of ߪଵଵ 

gradually decreases as t increases. 
Fig. 2 represents distribution of normal stress ߪଵଶ for ݕ = 0.2. 
For fixed time ߪ ,ݐଵଶ gradually decreases as ݔ increases. For fixed x numerical values of ߪଵଶ 

gradually increases as ݐ increases. 
Fig. 3 represents distribution of normal stress ߪଶଶ for ݕ = 0.5. 
For fixed time ߪ ,ݐଶଶ gradually decreases as ݔ increases. For fixed ݔ numerical values of ߪଵଶ 

gradually increases as ݐ increases. 

 
Fig. 1. Stress component ߪଵଵ at ݕ = 0.3 for different values of ݐ verses ݔ 

 
Fig. 2. Stress component ߪଵଶ at ݕ = 0.2 for different values of ݐ verses ݔ 

Fig. 4 represents distribution of normal stress ߪଵଵ for different values of ݔ and ݕ for fixed  ݐ = 0.1 and ߱  the numerical value ݕ increases. For fixed ݕ ଵଵ gradually decreases asߪ numerical value of ݔ .0.5 =
of ߪଵଵ gradually increases as ݔ increases. ߪଵଵ is maximum when ݔ = 1 and ݕ = 0. 

Fig. 5 represent distribution of normal stress ߪଵଶ  for different values of ݔ  and ݕ for fixed  ݐ = 0.4 and ߱ = 5. 
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For fixed ݔ  numerical value of ߪଵଶ  gradually decreases as ݕ  increases. For fixed ݕ  the 
numerical value of ߪଵଶ gradually decreases as ݔ increases. Significant changes occur in the region 
0.2 ≤ ݔ ≤ 0.6 and 0.6 ≤ ݕ ≤ 1.0. 

Fig. 6 represent distribution of stress component ߪଶଶ at for different values of ݔ and ݕ for fixed ݐ = 0.1 and 0.1. 

 
Fig. 4. Stress component ߪଵଵ at ݐ = 0.1 and ߱ = 0.5 verses ݔ and ݕ 

 
Fig. 5. The variation of stress component ߪଵଶ at ݐ = 0.4 and ߱ = 3 verses ݔ and ݕ 

 
Fig. 6. Stress component ߪଶଶ at ݐ = 0.1 and ߱ = 0.1 verses ݔ and ݕ 

For fixed ݔ numerical value of ߪଶଶ gradually increases as ݕ increases. For fixed ݕ numerical 
value of ߪଶଶ gradually increases as ݔ increases. 

Fig. 7 represent distribution of normal stress ߪଵଶ  for different values of ݔ  and ݐ  for fixed  ݕ = 0.2 and 1. 
For fixed ݔ, nominal decreasing of numerical values of ߪଵଶ has been seen as ݐ increases, while 

For fixed ݐ, numerical values of ߪଵଶ decreases gradually as ݔ increases. numerical values of ߪଵଶ 
minimum at ݔ = 1 and 0.02 ≤ ݐ ≤ 0.1 

Fig. 8 represent distribution of normal stress ߪଶଶ  for different values of ݔ  and ݐ  for fixed  ݕ = 0.5 and 2. 
For fixed ݔ, nominal decreasing of ߪଶଶ has been seen as t increases. For fixed ݐ, numerical 

values of ߪଵଶ decreases as ݔ increases. Also, significant changes occur in the region 0.6 ≤ ݔ ≤ 1.0 
and 0 ≤ ݐ ≤ 1.0. 
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Fig. 7. Stress component ߪଵଶ at ݕ = 0.2 and ߱ = 1 verses ݔ and ݐ 

 
Fig. 8. The distribution of stress component ߪଶଶ at ݕ = 0.5 and ߱ = 2 verses ݔ and ݐ 

5.1.2. Distribution of temperature 

Fig. 9 represent distribution of temperature, ܶ for different values of ݔ and ݕ for fixed ݐ = 0.3 
and 2. 

For fixed ݔ numerical value of ܶ gradually decreases as ݕ increases. For fixed ݕ numerical 
value of ܶ gradually increases as ݔ increases. ܶ in minimum at ݔ = 0 and significant changes 
occurs in the region 0.6 ≤ ݔ ≤ 1.0 and 0 ≤ ݕ ≤ 1.0 

Fig. 10 represent distribution of temperature, ܶ  for different values of ݔ  and ݐ  for fixed  ݕ = 0.1 and 1.5. 

 
Fig. 9. The variation of ܶ at ݐ = 0.3 and ߱ = 2 verses ݔ and ݕ 

For fixed ݐ numerical value of ܶ nominally increases as ݔ increases. For fixed ݔ numerical 
value of ܶ gradually increases as ݐ increases. 

Fig. 11 represent distribution of temperature, ܶ  for different values of ݕ  and ݐ  for fixed  ݔ = 0.5 and 3. 
For fixed ݐ numerical value of ܶ nominally increases as ݕ increases. For fixed ݔ numerical 

values of ܶ decreases as ݐ increases.  
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Fig. 10. Variation of ܶ at ݕ = 0.1 and ߱ = 1.5 verses ݔ and ݐ 

 
Fig. 11. Variation of ܶ at ݔ = 0.5 and ߱ = 3 verses ݕ and ݐ 

5.2. Case 2 

5.2.1. Distribution of different stress components 

Fig. 12 represents distribution of normal stress ߪଵଵ for ݕ ݐ ,0.3 = = 0.01 and 5 for different 
numerical values of ܴ. 

For fixed ܴ ଵଵߪ ,  gradually decreases as ݔ  increases. For fixed x numerical values of ߪଵଵ 
gradually decreases as ܴ increases. 

Fig. 13 represents distribution of normal stress ߪଵଵ for ݕ ݐ ,0.3 = = 0.01 and 5 for different 
fractional values of ܴ. 

For fixed time ܴ, ߪଵଵ gradually increases as ݔ increases. For fixed ݔ numerical values of ߪଵଵ 
gradually decreases as ܴ increases. Significant changes occurred for 0 ≤ ݔ ≤ 0.4. 

Fig. 14 represents the distribution of stress component ߪଵଶ at ݕ ݐ ,0.2 = = 0.03 and 0.3 for 
different fractional values ܴ of verses ݔ for ܲ1 = 1. 

For fixed time ܴ, ߪଵଵ gradually decreases as ݔ increases. For fixed x numerical values of ߪଵଵ 
increases as ܴ increases. Significant changes occurred for 0 ≤ ݔ ≤ 0.4. 

Fig. 15 represents the distribution of stress component ߪଵଶ  at ݕ ݐ ,0.3 = = 0.1 and 4 for 
different integral values ܴ for ܲ1 = 0. 

For fixed ܴߪ ,ଵଶ  gradually decreases as ݔ  increases. For fixed ݔ  numerical values of ߪଵଶ 
increases as ܴ increases. 

Fig. 16 represents the distribution of stress component ߪଶଶ at ݕ ݐ ,0.2 = = 0.6 and 0.4 for 
different values ܴ for ܲ1 = 0. 

For fixed ܴ  ଶଶߪ ,increases but for other fixed values of ܴ ݔ ଶଶ gradually increases asߪ ,0.9 =
gradually decreases as ݔ  increases. For fixed ݔ ଶଶߪ ,  gradually increases as ݔ  increases for  ܴ = 0.9 but for other fixed values of ܴ, ߪଶଶ gradually decreases as ݔ increases. 

Fig. 17 represents the distribution of stress component ߪଵଵ for different values of ݐ for fixed ݕ = 0.2 and 1.5. 
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Fig. 12. Stress component ߪଵଵ at ݕ ݐ ,0.3 = = 0.01 and ߱ = 5 for different values ܴ of verses ݔ 

 
Fig. 13. Stress component ߪଵଵ at ݕ = 0.2 and ߱ = 0.2 for different values ܴ of verses ݔ 

 
Fig. 14. Stress component ߪଵଶ at ݕ ݐ ,0.2 = = 0.03 and ߱ = 0.3  

for different values ܴ of verses ݔ for ܲ1 = 1 

 
Fig. 15. Stress component ߪଵଶ at ݕ ݐ ,0.3 = = 0.1 and ߱ = 4 for different values ܴ of verses ݔ for ܲ1 = 0 

For fixed ݐ, the numerical value of ߪଵଵ gradually increases as ݔ increases. For fixed ݔ, the 
numerical value of ߪଵଵ gradually increases as ݐ increases. 

Fig. 18 The distribution of stress component ߪଵଶ for fixed ݕ = 0.3 and 0.5 for different values 
of ݐ. 

For fixed ݐ, the numerical value of ߪଵଶ gradually decreases as ݔ increases. For fixed ݔ, the 
numerical value of ߪଵଶ gradually increases as ݐ increases. 
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Fig. 16. Stress component ߪଶଶ at ݕ ݐ ,0.2 = = 0.6 and ߱ = 0.4  

for different values ܴ of verses ݔ for ܲ1 = 0 

 
Fig. 17. Stress component ߪଵଵ at ݕ = 0.2 and ߱ = 1.5 for different values of ݐ verses ݔ 

 
Fig. 18. Stress component ߪଵଶ at ݕ = 0.3 and ߱ = 0.5 for different values of ݐ verses ݔ 

 
Fig. 19. Stress component ߪଶଶ at ݕ = 0.5 and ߱ = 0.2 for different values of ݐ verses ݔ 

Fig. 19 represents the distribution of stress component ߪଶଶ  at fixed ݕ = 0.5 and 0.2 for 
different values of ݐ. 

For fixed ݐ, the numerical value of ߪଵଶ gradually increases as ݔ increases, but for fixed ݔ, the 
numerical value of ߪଵଶ gradually decreases as t increases. 

Fig. 20 represents distribution of normal stress ߪଵଵ  for different values of ݔ  and for fixed  
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ݐ = 0.3 and ݕ = 0.3. 
For fixed ݔ numerical value of ߪଵଵ remain constant as increases, but for fixed ߱ the numerical 

value of ߪଵଵ gradually decreases as ݔ increases. 
Fig. 21 represents distribution of normal stress ߪଵଶ  for different values of ݔ  and for fixed  ݕ = 0.3 and ݐ = 0.5. 
For fixed ݔ, nominal increasing of numerical values of ߪଵଶ has been seen as increases, while 

for fixed ߱, numerical values of ߪଵଶ increases gradually as ݔ increases after ݔ = 0.6 (approx.). 
Numerical values of ߪଵଶ minimum at ݔ = 0.5 (approx.) and 1 ≤ ݐ ≤ 3. 

Fig. 22 represents distribution of stress component ߪଶଶ at for different values of ݔ and for fixed ݐ = 0.1 and ݕ = 0.4. 
For fixed ߱ numerical value of ߪଶଶ gradually decreases as ݔ increases. Numerical values of ߪଶଶ minimum at ݔ = 1 and 0 ≤ ߱ ≤ 1. 

 
Fig. 20. Stress component ߪଵଵ at ݕ = 0.3 and ݐ = 0.3 verses ݔ and ߱ 

 
Fig. 21. Stress component ߪଵଶ at ݕ = 0.3 and ݐ = 0.5 verses ݔ and ߱ 

 
Fig. 22. Stress component ߪଶଶ at ݕ = 0.4 and ݐ = 0.1 verses ݔ and ߱ 

5.2.2. Distribution of temperature 

Fig. 23 represents distribution of temperature, ܶ  for different values of ݔ  and ߱  for fixed  ݐ = 0.1 and ݕ = 0.4. 
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For fixed ݔ numerical value of ܶ gradually increases in the region 0 ≤ ߱ ≤ 0.3 (approx.) For 
fixed ߱ numerical value of ܶ nominally increases as ݔ increases.  

 
Fig. 23. The variation of ܶ at ݕ =0.4 and ݐ = 0.1 verses ݔ and ߱ 

6. Conclusion 

We consider the physical parameters in SI units given in Dhaliwal and Singh following below 
to obtain the numerical result to observe the effect of wave propagation: ߩ = 2660݇݃/݉ଷ,   ߣ = 5.65ൈ10ଵܰ/݉ଶ, ܶߤ = 2.46ൈ1010ܰ/݉2,   ܮߤ = 5.66ൈ1010ܰ/݉2, ߙ = −1.28ൈ10ଵܰ/݉ଶ,   ߚ = 220.90ൈ10ଵܰ/݉ଶ, 11ߙ = 0.017ൈ10−4݀݁݃−1,   22ߙ = 0.015ൈ10−4݀݁݃−1, ݈ = 0.5,   ܶ = ܿ   ,ܭ293 = 0.787ൈ10ଷି݃ܭܬଵ݀݁݃ିଵ 11ܭ = 0.0921ൈ101022ܭ 1−1݀݁݃−ݏ1−݉ܬ = 0.0963ൈ10101ܲ 1−1݀݁݃−ݏ1−݉ܬ = 2ܲ   ,1 ݎ 0 = 0.1,    ܲ3 = 0.2. 
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