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Abstract. Many existing approaches for asymmetric damped system are based on the assumption 
that the eigenvalues are simple or semisimple with separated derivatives. This paper presents a 
new algorithm for computing the derivatives of the semisimple eigenvalues and corresponding 
eigenvectors of asymmetric damped system. Compared with the existing methods, the algorithm 
can be applicable to problems whether the repeated eigenvalues have well separated derivatives. 
In the proposed method, the derivatives of eigenvectors are divided into a particular solution and 
a homogeneous solution, where the particular solution is constructed by using generalized inverse 
matrix. The effectiveness of the proposed algorithm is illustrated by one numerical example. 
Keywords: asymmetric damped system, eigenvalues derivatives, eigenvectors derivatives, 
generalized inverse. 

1. Introduction 

In the past decades, damped system has become a topic of great interest to researchers because 
it arises frequently in many areas such as applied mechanics, electrical oscillation, vibro-acoustics, 
fluid dynamics, signal processing and so on. In this paper, we consider the equation of damped 
system with the following form [1]: ܙۻሷ (ݐ) + ሶܙ۱ (ݐ) + (ݐ)ܙ۹ = , (1)

where the matrices ۱ ,ۻ and ۹ are asymmetric and damping is non-proportional. 
Studies on the sensitivity analysis of damped system have widely used in damage detection 

[2], system identification [3], carbon nanotube vibration [4], model updating [5, 6] and many other 
disciplines. The fundamental objective of sensitivity analysis is to compute the derivatives of 
eigenvalues and eigenvectors. Research on this topic has received much attention and many 
different algorithms [7-18] have been developed in a recent treatise. Most of the existing 
algorithms can be divided into two categories. The first category is to convert the damp system to 
undamped system by using linearization [7-9]. The second category is to differentiate Eq. (1) and 
compute the derivatives of eigenvectors directly [10-18]. Although there are various algorithms 
for damped system, most of existing approaches are based on the assumption that the eigenvalues 
are simple or semisimple with separated derivatives. In order to fill this gap, Qian et al. [19] 
relaxed the restriction that the repeated eigenvalues must have well separated derivatives and 
presented a new algorithm for computing eigensensitivity of damped system by utilizing the 
method of [20]. By using generalized inverses, Wang and Dai [21] introduced a method for 
computing the first-order derivatives of eigenvalues and eigenvectors for symmetric damped 
system. 

Different from symmetric damped system, eigenvalues of an asymmetric damped system have 
different right and left eigenvectors. Therefore, the eigenvectors may be not unique by one 
normalization. By adopting an additional normalization to guarantee the uniqueness of the 
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eigenvectors, we extend the method of [21] to asymmetric damped system in this paper. we derive 
the first-order derivatives of right and left eigenvectors regardless of whether the eigenvalues have 
multiple derivatives. 

The structure of this paper is divided into five parts. We begin in Section 2 with a brief 
description of algorithm for eigenvalue derivatives, and Section 3 gives a comprehensive 
discussion on the derivations of the eigenvector in two cases according to whether the derivatives 
of the eigenvalue have multiple roots. A numerical example is presented to illustrate effectiveness 
of the proposed algorithm in Section 4. Section 5 concludes the paper with some final remarks. 

2. Calculation of eigenvalues derivatives  

We consider the damped system with parameters . Suppose that ߣ() is the eigenvalue and ݑோ(), ܷ() are the corresponding right and left eigenvectors respectively, i.e.: (ߣଶ()()ۻ + ()۱()ߣ + ()ோܝ(()۹ = ()ۻ()ଶߣ)()்܃(2) ,0 + ()۱()ߣ + (()۹ = 0, (3)

where ()۱ ,()ۻ and ۹() ∈ ۱× are asymmetric analytic matrices and ()ۻ is nonsingular 
in this paper. 

We consider the algorithm for eigenpair derivatives of Eq. (2) with multiple eigenvalue. For 
this reason, we suppose that ߣ is the semisimple eigenvalue with multiplicity ݎ > 1 at  and the 
column vectors of Φோ, Φ ∈  × are the right and left eigenvectors respectively. From lemma 3ܥ
in Ref. [22], Φ் ۻߣ2) + ۱)Φோ is non-singular. Without loss of generality, let Φ, Φோ satisfy: Φ் ۻߣ2) + ۱)Φோ = ۷. 

Suppose Λ() = diag(ߣଵ(), ⋯ , ()ோ܃ :and the eigenvector subsets (()ߣ = ൫ܝோଵ(), ⋯ , ()܃   ,൯()ோܝ = ൫ܝଵ(), ⋯ ,  ,൯()ܝ
are the eigenvalues functions and corresponding eigenvectors functions when   varies at the 
neighborhood of . Then: ܃()ۻோ()Λଶ() + ()Λ()ோ܃()۱ + ()ோ܃()۹ = , (4)Λଶ()܃் ()ۻ() + Λଶ()܃் ()۱() + ்܃ ()۹() = , (5)

where ܃ோ(), ܃() satisfy: ܝ்()(ߣ2()()ۻ + ()ோܝ(()۱ = 1,    (݅ = 1, ⋯ , (6) .(ݎ

It is well known that the eigenvectors given by Eqs. (4), (5) and (6) are nonunique to the extent 
of a non-zero constant, and another normalized condition should imposed to result in unique 
eigenvectors and thereafter, for one to solve the corresponding eigenvectors derivatives. Because 
the mass matrix is not positive definite, the conventional mass normalization is not used. In this 
paper, the normalizing condition in Ref. [15] is adopted. Suppose: ܝோ() = ,()ோభܝ) ݍ   ,்(()ோܝ   ,⋯ = min {݇||ܝோೖ()| =∥ ()ோܝ ∥ஶ}, (݅ = 1, ⋯ ,  .(ݎ

The normalizing condition of ܝோ() (݅ = 1, ⋯ , ோݑ :is (ݎ () ≡ 1. (7)
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Because the linear combinations of eigenvectors corresponding to eigenvalues ߣ  are also 
eigenvectors of ߣ , we can express Φோ , Φ  by the differentiable eigenvector subset ܃ோ() ()ோ܃ :in the following manner ()܃ , = ΦோΓோ,   ܃() = ΦΓ. (8)

For the sake of simplify notation,   is omitted for variables evaluated at  =  . Using  
Eq. (6) at  = ்܃ :, we have ۻߣ2) + ோ܃(۱ = ۷. (9)

Then: Γ் Γோ = Γ் Φ் ۻߣ2) + ۱)ΦோΓோ = ்܃ ۻߣ2) + ோ܃(۱ = ۷, (10)

i.e., Γோ is the inverse of Γ் . 
In order to compute Λ′ and Γோ, let ܅ = ۻଶߣ + ۱ߣ + ′܅ ,۹ = ′ۻଶߣ + ۱′ߣ + ۹′, where (⋅)′ 

denotes the derivative of (⋅). Differentiating both sides of Eqs. (2) and (3) with respect to  and 
letting  → ோ′܃܅ :, one has = ۴ଵ, (11)܃′் ܅ = ۶ଵ, (12)

where ۴ଵ = ۻߣ2)− + ′ோΛ܃(۱ − ,ோ܃′܅  ۶ଵ = −Λ′܃் ۻߣ2) + ۱) − ்܃ .′܅  Premultiplying 
each side of Eq. (11) by ܃்  one obtains: Λ′ = ்܃− ோ. (13)܃′܅

Substituting Eq. (9) into Eq. (13), we have: ۲Γோ = ΓோΛ′, (14)

where ۲ = −Φ் Φோ. Eq. (14) shows that diagonal elements of matrix Λ′ are ݊ eigenvalues of ۲′܅  and matrix Γோ  are corresponding right eigenvectors matrix. Hence, solving eigenproblem ۲Γோ = ΓோΛ′ yields eigenvalues derivative Λ′ and matrix Γோ. 

3. Calculation of eigenvectors derivatives  

In this section, we will present a comprehensive discussion on the derivations of the 
eigenvectors according to whether the derivatives of the eigenvalues have multiple roots. 

Case 1. The eigenvalues of Eq. (14) are distinct (ߣ′ ≠ ,()′ߣ ݆ ≠ ݇, ݆, ݇ = 1, ⋯ ,  ,In this case .(ݎ
by solving Eq. (14) one can obtain the eigenvalue derivative Λ′ and the corresponding eigenvector 
matrix Γோ  uniquely up to scalar multipliers, and then ܃ோ  are determined by the relation  ܃ோ = ΦோΓோ  and normalizing condition Eq. (7). In order to obtain ܃ோᇱ,  we introduce the 
generalized inverse matrix ۵  of matrix ܅ , i.e. ۵  satisfies ܅۵܅ = ܅ . Then ۵۴ଵ  will be a 
particular solution of Eq. (11) and the general solution of Eq. (11) can be expressed as: ܃ோᇱ = ۵۴ଵ + Φோ܉ଵ, (15)

where ܉ଵ is a ݎ × constant matrix. Let ۶ ݎ = ۻߣ2 + ۱, ۶′ = ′ۻߣ2 + ۱′, we will get another 
particular solution ܃ோ(ଵ) of Eq. (11) by taking ܉ଵ = −Φ் ۶۵۴ଵ in Eq. (15): 
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ோ(ଵ)܃ = (۷ − ΦோΦ் ۶)۵۴ଵ = ்۾ ۵۴ଵ, (16)

where ۾் = ۷ − ΦோΦ் ۶. Because: ۴ଵ = ۻߣ2)− + ′ோΛ܃(۱ − ோ܃′܅ = ۻߣ2)− + ۱)ΦோΓோΛ′ − =      ோ܃′܅ ோ܃′܅− + ۻߣ2) + ۱)ΦோΦ் ோ܃′܅ = −(۷ − ۶ΦோΦ் ோ܃′܅( =  ,ோ܃′܅ோ۾−
where ۾ோ = ۷ − ۶ΦோΦ் , then: ܃ோ(ଵ) = ்۾− ோ܃′܅ோ۾۵ = −۵܃′܅ோ, (17)

where ۵ = ்۾ ோ(ଵ) satisfies: Φ்܃ and ,[10] ܅ ோ is a restricted generalized inverse of۾۵ ோ(ଵ)܃۶ = 0. (18)

Therefore, the solution of Eq. (11) can be written as: ܃ோᇱ = ோ(ଵ)܃ + ଵ. (19)܌ோ܃

The computation of matrix ܌ଵ  need employ the second-order differential information of 
Eq. (2): ܃܅ோᇱᇱ = ۴ଶ, (20)

where: ۴ = ோ܃′′܅− − ܃′܅ோᇲ − ′′ோ܃۶ − ۶܃ோᇲ′ − ۶′܃ோ′ − ܃ۻோ(ᇱ), ܅ᇱᇱ = ᇱᇱۻଶߣ + ۱ᇱᇱߣ + ۹ᇱᇱ. 
Premultiplying each side of Eq. (20) by ܂ு , yields: Λ′′ = ்܃ ଶ, (21)

where ଶ = ۴ଶ + ோΛ′′, then: ۴ଶ܃۶ = ଶ − ′′ோΛ܃۶ = ଶ − ்܃ோ܃۶ ଶ = (۷ − ்܃ோ܃۶ ଶ( = ଶ. (22)ோ۾

Using the similar discussion about Eq. (11), one can express the general solution  
of Eq. (20) as: ܃′′ோ = ோ(ଶ)܃ + ଶ, (23)܌ோ܃

where ܃ோ(ଶ) = ்۾ ۵۴ଶ = ்۾ ோ۴ଶ۾۵ = ۵ଶ. By the relation ଶ = ۴ଶ + ଶ :ோΛ′′, one has܃۶ = ோ܃′′܅− − ோᇲ܃′܅2 − ′ோᇲΛ܃2۶ − ′ோΛ܃2۶′ − ோ(Λ′)ଶ܃ۻ2 = ோ܃′′܅− − ோ(ଵ)܃′܅ଵ        −2܌ோ܃′܅2 − ′ோ(ଵ)Λ܃2۶ − ′ோΛ܃2۶′ − ோ(Λᇱ)మ܃ۻ2 − ଵΛᇱ. (24)܌ோ܃2۶

Then: ܃ோ(ଶ) = ۵ଶ = ଵ܌ோ(ଵ)܃2 + ோ(ଶ), (25)܃
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where ܃ோ(ଶ) = ோ܃′′܅− − ோ(ଵ)܃′܅2 − ′ோ(ଵ)Λ܃2۶ − ′ோΛ܃2۶′ −  ோ(Λ′)ଶ. Substituting Eq. (24)܃ۻ2
into Eq. (21), rearranging the equation yields: ܌ଵΛ′ − Λ′܌ଵ + 0.5Λ′′ = −0.5 ்ܷ ோ܃′′܅ − ்܃ ்܃−       ′ோΛ܃۶′ ோ(Λ′)ଶ܃ۻ − ்܃ ோ(ଵ)܃′܅ =ୣୢ (26) .(ଵݑ)

Then we can get the off-diagonal elements of matrix ܌ଵ: 

݀ଵ = ′ߣଵݑ − . (27)′ߣ

The diagonal elements of ܌ଵ can be determined from Eq. (7). Let ܃ோ =  by Eq. (7) and ,(ோೕݑ)
Eq. (19) one has: ܍் ோ(ଵ)܃) + ܍(ଵ܌ோ܃ = 0. (28)

Then: ܍் ܍ଵ܌ோ܃ + ்܍ ܍ோ(ଵ)܃ = 0. (29)

So: 

݀ଵ = ்܍− ܍ோ(ଵ)܃ − 
ୀଵ,ஷ ோ݀ଵ. (30)ݑ

Repeat the above process with Eq. (12), we have the derivatives of left eigenvectors: ܃ᇱ = ᇱ܃ + ଵ, (31)܊܃

where ܃ᇱ = −۵்  :ଵ can be determined by܊  and the off-diagonal elements of܃்′܅

ܾଵ = ᇱߣଶݑ − ᇱ, (32)ߣ

where: ݑଶ = −0.5 ்ܷ ோ܃′′܅ − Λ(ଵ)܃் ோ܃۶′ − (Λ′)ଶ܃் ோ܃ۻ −  .ோ܃்′܅(ଵ)܃
Differentiating both sides of Eq. (6) and letting  →  :, we get

ܾଵ = ோܝ்۶ܝ− − ோܝۻ்ܝᇱߣ2 − ோܝ்۶′ܝ − 
ୀଵ,ஷ ܾܝ்۶ܝோ. (33)

Then, we complete the process for computing derivatives of eigenvectors when the 
eigenvalues of Eq. (14) are distinct. 

Case 2. Eq. (14) has repeated eigenvalues. Suppose that the eigenvalues of Eq. (14) are ߣ௦ᇱ  with 
multiplicity is ݉௦, (ݏ = 1, ⋯ , ℎ), then ∑௦ୀଵ ݉௦ = The right and left eigenvectors is defined: Γோ .ݎ = ൫Γோభ, Γோమ, ⋯ , Γோ൯,    Γ = (Γభ, Γమ, ⋯ , Γ). (34)
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Because the eigenvectors are not uniquely determined when eigenvalues have repeated roots, Γோ and Γ, and then ܃ோ and ܃ , are not uniquely defined. Let: ܃ோ = ൫܃ோభ, ,ோమ܃ ⋯ , ܃    ,ோ൯܃ = ൫܃భ, ,మ܃ ⋯ , ோೞ܃൯, (35)܃ = ΦோΓோೞۿோೞ,     ܃ೞ = ΦΓೞۿೞ, (36)

where ۿோೞ  and ۿೞ  are coefficient matrices. Dividing Eq. (26) into ݉௦ × ݉௧  block forms and 
substituting Eqs. (34) and (35) into it, one obtains: ((ߣ௧ᇱ − ௦ᇱߣ ଵ௦௧܌( + 0.5Λ′′ߜ௦௧) = ோೞ்܃) ଶ௧ۯோ), (37)܃ଶ௧ۯ = ′′܅0.5− + ′܅۵′܅ − ௧ᇱߣ ۶′ − ௧ᇱߣ) )ଶ(38) ,ۻ

where: 

௦௧ߜ =ୣୢ ൜۷ೞ, ݏ = ,ೞ,ݐ ݏ ≠ ′′Λ ,ݐ = diag(Λଵᇱᇱ , ⋯ , Λ௦ᇱᇱ , ⋯ , Λᇱᇱ ). (39)

Premulitiplying each side of Eq. (37) by ۶ோೞ with ݏ = ଶ௦ۯ :yields a standard eigenvalue problem ,ݐ ⋅ ோೞۿ = ோೞۿ ⋅ Λ௦ᇱᇱ,    ۯଶ௦ =ୣୢ 2Γೞ்Φ் ݏ   ,ଶ௧ΦோΓோೞۯ = 1,2, ⋯ , ℎ. (40)

Suppose the eigenvalues of Eq. (40) are distinct, Λ′′ and ۿோೞ are uniquely determined to the 
extent of an non-zero constant multiplier by Eq. (40), then ܃ோ = ,ோభ܃) ⋯ , ோ), ܷோೞ܃ = ΦோΓோೞۿோೞ 
are uniquely determined by the normalized condition Eq. (7). By the relation ۿೞ்ۿோೞ = ۷ೞ, ۿೞ 
are also determined, and then ܃, ܃ோ(ଵ) = −۵܃′܅ோ are also uniquely identified by Eqs. (36) and 
(17). So, the result of ܃ோᇱ = ோ(ଵ)܃ + ଵ܌ோ܃  also becomes determination of the off-diagonal 
elements of ܌ଵ because the relation Eq. (30) is also right. On both sides of Eq. (37), we take ݏ  :ݐ≠

ଵ௦௧܌ = ௧ᇱߣோ܃ଶ௧ۯೞ்܃ − ௦ᇱߣ ݏ     , ≠ (41) .ݐ

To extra the off-diagonal elements of ܌ଵ௦௦ and use the third derivative of Eq. (2), we obtain 
following relation by Eqs. (17), (26), (31): ܌ଶΛᇱ − Λᇱ܌ଶ + ଵΛᇱᇱ܌ − Λᇱᇱ܌ଵ + 13 Λᇱᇱᇱ = ଵΛᇱ܌)2۸ − Λᇱ܌ଵ) − ଵΛᇱ܌)2 − Λᇱ܌ଵ)܌ଵ − (42) ,܂

where: ܂ = ்܃ ′ோ(ଵ)Λ܃2۶′ൣ + ′ோΛ܃۶′′ + ோ(ଶ)܃′܅ + ′′ோΛ܃۶′ + ோ(Λ′)ଶ܃′ۻோ(ଵ)(Λ′)ଶ          +2܃ۻ2 + ோ(ଵ)܃′′܅ + ′′ோΛ′Λ܃ۻ2 + 13 ோ൨ , ۸܃′′′܅ = ்܃− ۶ᇱ܃ோ,     ۶ᇱᇱ = ᇱᇱۻߣ2 + ′′′܅      ,ᇱᇱ܋ = ′′′ۻଶߣ + ′′′܋ߣ +  .′′′ܓ
Taking out the diagonal block equation, one has: 
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ଵ௦௦Λ௦ᇱᇱ܌ − Λ௦ᇱᇱ܌ଵ௦௦ + 13 Λ௦ᇱᇱᇱ = ௦௦܂− + 2 
௧ஷ௦ ௧ᇱߣ) − ௦ᇱߣ )(۸௦௧ + ଵ௧௦܌(ଵ௦௧܌ =ୣୢ ൫ܞ௦൯. (43)

Then: ቀߣ௦ᇱᇱ  − ௦ᇱᇱߣ  ቁ ଵ௦௦܌ + 13 ߜ ௦ᇱᇱᇱߣ = ௦, (44)ܞ

where ߣ௦ᇱᇱ  is the ݆th diagonal element of Λ௦ᇱᇱ . From Eq. (44), one has: 

ᇱᇱᇱߣ = ݅     ,௦ݒ3 = 1,2, ⋯ , ݉௦,      ݏ = 1,2, ⋯ , ݇,    ݀ଵ௦௦ = ௦ᇱᇱߣ௦ݒ − ௦ᇱᇱߣ  ,    ݅ ≠ ݆. (45)

The derivatives of left eigenvectors can be computed by similar method. Then, we complete 
the process of computing the derivatives of eigenvectors in two cases. Formally, an algorithm 
based on the above procedure can be designed as following. 

Algorithm procedure for computing the eigenpair derivatives: 
Step 1. Input: Matrices ۹ ,۱ ,ۻ and the first to third order derivatives of ۹ ,۱ ,ۻ, the repeated 

eigenvalue ߣ and corresponding right and left normalized eigenvectors matrices Φோ, Φ ∈  .×ܥ
Step 2. Compute: ܅ = ۻଶߣ + ۱ߣ + ′܅      ,ࡷ = ′ۻଶߣ + ۱′ߣ + ۶ ,′ࡷ = ۻߣ2 + ۱, ۲ = −Φ்  .Φோ′܅

The generalized inverse ۵ of ܅ and ۵݁ = (۷ − ΦோΦ் ۶)۵(۷ − ۶ΦோΦ் ). 
Step 3. Obtain the eigenvalue derivatives Λᇱ   by computing the eigenproblem ۲Γோ = ΓோΛ′. 
Step 4. When the eigenvalue derivatives ߣᇱ   are distinct, then obtain ܃ோ ܃ ,  and ܃ோ(ଵ)  by 

Eqs. (8) and (17), then get ܌ଵ, by Eqs. (29) and (32). 
Step 5. If the eigenvalues of ۲Γோ = ΓோΛ′ have repeated roots, calculate: ۯଶ௧ = ′′܅0.5− + ′܅۵′܅ − ௧ᇱߣ ۶′ − ௧ᇱߣ) )ଶۯ ,ۻଶ௦ =ୣୢ 2Γೞ்Φ் ,ଶ௧ΦோΓோೞۯ ݏ = 1,2, ⋯ , ℎ. 

Solve the eigenproblem ۯଶ௦ ⋅ ோೞۿ = ோೞۿ ⋅ Λ௦ᇱᇱ , compute ܃ோ ܃ ,  and ܃ோ(ଵ) by Eqs. (35) and (17) 
and ܌ଵ, by Eqs. (41) and (45), (30). 

Step 6. Calculate ܃ோᇱ = ோ(ଵ)܃ +  .ଵ܌ோ܃
Step 7. Output: Λᇱ ᇱ܀܃ ,  .  
The computational cost of the Algorithm is ܱ(݊ଷ), where the generalized inverse ۵ of matrix ܅ is calculated by the singular value decomposition of ܅. 

4. Numerical illustration  

To illustrate the effectiveness of the proposed algorithm, we carried out one numerical example 
shown in Fig. 1. All the following calculations used MATLAB2015b. 

In Fig. 1, there are five springs, four damping and three disks. In order to obtain asymmetric 
damped system, we suppose that the system is rotated with high speed in a container. From  
Fig. 1, we can get the mass, stiffness and damping matrices of the system: 
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ۻ = ൭݉ଵ 0 00 ݉ଶ 00 0 ݉ଷ൱ ,   ۹ = ൭݇ଵ + ݇ଶ −݇ଶ 0−݇ଶ ݇ଶ + ݇ଷ + ݇ହ −݇ଷ0 −݇ଷ ݇ଷ + ݇ସ൱, 
۲ = ൭ܿ + ܿଶ + ܿଷ −ܿ −ܿଶ−ܿ 2ܿ + ܿଵ −ܿ−ܿଶ −ܿ 2ܿ + ܿଶ൱. (46) 

We assume that the system has the following gyroscopic matrix: 

۵ = ൭ 0 −2ܿ −ܿଶ2ܿ 0 −ܿܿଶ −ܿ 0 ൱. (47)

  
Fig. 1. An asymmetric damped system 

Then, we can get the damped matrix of the asymmetric system by the relation: 

۱ = ۲ + ۵ = ൭ܿ + ܿଶ + ܿଷ −3ܿ −2ܿଶܿ 2ܿ + ܿଵ −2ܿ0 0 2ܿ + ܿଶ൱. (48)

Setting ݉ଵ = ݉ଶ = ݉ଷ =  1 kg, ݇ଵ = ݇ସ = ݇ହ =  1000 N/m, ݇ଶ = ݇ଷ =  0 N/m,  ܿଵ = ܿଶ = ܿଷ = 10 N s/m. We select ܿ as the design parameter and consider ܿ = 0. Then: 

ۻ = ൭1 0 00 1 00 0 1൱ ,    ۹ = ൭1000 0 00 1000 00 0 1000൱ ,    ۱ = ൭ܿ + 20 −3ܿ −20ܿ 2ܿ + 10 −2ܿ0 0 2ܿ + 10൱, 
ᇱۻ = ۹ᇱ = 0,   ۱′ = ൭1 −3 01 2 −20 0 2 ൱. (49)

The eigenvalues of the damped system are ߣଵ = ଶߣ =– 5– 31.225݅  at  =  0 and the 
corresponding eigenvectors are: 

Φோ = ൭ 1 01 10.5 0൱,    Φ = ൭ 0 00 0.0160݅0.0320݅ −0.0320݅൱. (50)

By Eq. (12) we have: Λᇱ = ቀ−1.0000 + 0.1601݅ 00 −1.0000 + 0.1601݅ቁ,   Γோ = Γ = ቀ1 00 1ቁ.  (51)

This means the derivatives of eigenvalues are equal. Using Eq. (40), we get: 
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Λᇱᇱ = ቀ0 + 0.0328݅ 00 −0.3000 + 0.0809݅ቁ. (52)

Then we derive the adjacent right and eigenvectors ܄ ,܃ and the right eigenvectors derivatives ܃′ோ as following: 

܃ = ൭0 11 −0.33330 0.5 ൱ ܄   , = ൭ 0 00.1601݅ 00.0107݅ 0.0320݅൱,    ܃ோᇱ = ൭0.3000 00 00 0൱.  (53)

To examine the correctness of the above results, we give the parameter ܿ a small perturbation ∆ܿ = 0.1. We compute the eigenpair of perturbed system at ܿ = ܿ + ∆ܿ and compare the result 
with the linear approximation of perturbed system by Taylor series. Table 1 and Table 2 show the 
comparisons of the eigenvalues and eigenvectors.  

Table 1. Comparison of eigenvalues 
Original eigenvalue Approximated eigenvalues Perturbed eigenvalues Errors 

–5–31.225݅ –5.1–31.2088݅ –5.1–31.2088݅ 8.5e-8 
 –5.1015–31.2086݅ –5.1015–31.2086݅ 1.5e-5 

Table 2. Comparison of right eigenvectors 
Original eigenvectors Approximated eigenvectors Perturbed eigenvectors Errors  

1.0000  1.0000 1.0000 0 
–0.3333 –0.3333 –0.3333 8e-14 

5000 0.5000  0.5000 0 
0 0.0300 0.0303 3e-4 

1.0000  1.0000 1.0000 0 
0 0 0 3e-11 

5. Conclusions 

Derivatives of eigenvalues and eigenvectors of parameter-dependent matrix eigenproblems 
play a key role in the optimum design of structures in engineering. In this paper, we extend the 
method of [21] to asymmetric damped system and develop a numerical algorithm for computing 
the eigenpair derivatives by adopting a new normalization to guarantee the uniqueness of the 
eigenvectors. The proposed algorithm divides the eigenvectors derivatives into a particular 
solution and a homogeneous solution, where the particular solution to the governing equations is 
constructed by using the generalized inverse matrix. The present study is the first step for the 
research of eigensensitivity of damped systems. The higher order derivatives of eigenvalues and 
eigenvectors will be challenges for further research.  
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