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Abstract. This paper presents a novel approach for improving the estimation accuracy of the road
profile for a vehicle suspension system. To meet the requirements of road profile estimation for
road management and reproduction of system excitation, previous studies can be divided into
data-driven and model based approaches. These studies mainly focused on road profile estimation
while seldom considering the uncertainty of parameters. However, uncertainty is unavoidable for
various aspects of suspension system, e.g., varying sprung mass, damper and tire nonlinear
performance. In this study, to improve the estimation accuracy for a varying sprung mass, a novel
algorithm was derived based on the Minimum Model Error (MME) criterion and a Kalman Filter
(KF). Since the MME criterion method utilizes the minimum value principle to solve the model
error based on a model error function, the MME criterion can effectively deal with the estimation
error. Then, the proposed algorithm was applied to a 2 degree-of-freedom (DOF) suspension
system model under ISO Level-B, ISO Level-C and ISO Level-D road excitations. Simulation
results and experimental data obtained using a quarter-vehicle test rig revealed that the proposed
approach achieves higher road estimation accuracy compared to traditional KF methods.

Keywords: road estimation, Kalman filter, minimum model error, suspension system.
1. Introduction

Road profile is the main input of a vehicle suspension system and its characteristics have a
significant effect on vehicle performance, especially on the aspects of ride comfort, road handling,
and road profile measurements, which have been performed to evaluate the ride quality of newly
constructed pavement, to monitor the condition of road networks in road management systems,
and to investigate the influence of fatigue, fuel consumption, and tire wear [1, 2]. Poor road
conditions will raise the operating costs of goods transportation, and moreover, an increase in the
dynamic axle loads will adversely affect the durability of roads [1, 2]. Therefore, the detection
and estimation of road conditions has become a topic of particular interest for road information
management, as well as vehicle dynamic control, and has increasing attracted attention [2, 3]. An
accurate knowledge of the road profile is crucial for a better understanding of vehicle suspension
system design [4].

Currently applied road estimation methods can be roughly divided into three categories [5],
i.e. direct measurement [5, 6], non-contact measurement [7, 8] and system response-based
estimation [9, 10]. Among these, due to lower costs and reduced measurement contamination (e.g.
using laser or other visual sensors), the system response-based estimation method is most
frequently used for road excitation estimation, and it can be further divided into two categories,
i.e. data-driven and model-based. The former approach usually requires comprehensive training
data. To this end, vehicle dynamic responses has been utilized to estimate the road profile in the
time domain based on a nonlinear suspension model and an Adaptive Neuro Fuzzy Inference
System (ANFIS) algorithm, and the simulation results showed that ANFIS provides better
estimation performance than other data-driven methods [11]. Knowing that a higher accuracy
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estimation of road excitation can be obtained using the ANFIS method, an artificial neural network
(ANN) approach was designed to estimate the road profile [12]. This method incorporated a
validated vehicle ADAMS model to analyze road profile data. A comparison of results from the
estimated road by ANN and the target road generated by ADAMS showed that the proposed
method is effective. However, this study did not take into account the effects of cornering. Further
to this, a data processing algorithm was proposed to estimate road profiles from the dynamic
responses measured on the vehicle and validated using experimental data obtained from
simulations and real measurements [13]. The proposed method could be applied to extract
valuable statistical information on road roughness. Accelerometers data has also been adopted to
estimate the road profile, which was accurately classified through the axles and body accelerations
[14]. On the other hand, a model-based approach can deal with unforeseen situations that are not
included in the training data set of the data-driven approach. Road profiles have been generated
using vehicle sensors to control the active suspension for improving vehicle performance [15].
Preview feedback control and signal filtering was adopted to control the actuators. The simulation
and experimental results showed that the method has a positive effect on vehicle ride comfort.
This method could also be used in unmanned vehicles. The jump-diffusion process-based state
estimator was considered along with the observer for road profile estimation and the road was
evaluated using experiments and simulations [16]. A cloud-based implementation was also
developed to facilitate information access and fast computation. The aforementioned approach
could be used in practice. Another suggested approach for estimating the road profile is the
adaptive observer based Q-parameterization [17]. Experimental results on the rear-left corner of a
1:5 scale vehicle was used to study and validate the road profile estimation. Based on the results,
accuracy of the proposed method was at least 70 %. The developed approach could be used as an
online road profile. A sliding mode observer was utilized to estimate the road profile and compared
with experimental results showing the robustness of the proposed method [18, 19]. In addition,
the Kalman Filter (KF) plays an important role in the state estimation field [20]. A real-time
estimation method was developed to estimate the road profile based on a KF and experimental
results showed high accuracy [6]. Moreover, dynamic responses were used to estimate the road
profiles based on KF in a stochastic framework and validated using experimental data obtained
from simulations and real measurements [13].

Model accuracy is an important requirement of the model-based observer. However, in
practice the suspension system model is a multi-dimensional system. The system parameters are
uncertain, due to variations in sprung mass, damping and tire stiffness. Uncertain system
parameters can cause degradation in the state estimation quality [21,22]. To improve the
estimation accuracy caused by varying system parameters, the Minimum Model Error (MME)
approach is proposed [23]. Previously, the approach was successfully used to estimate satellite
altitude [24, 25]. The MME criterion method uses an objective function to solve the MME by
using the minimum value principle [26].

In this paper, a novel method for efficient road profile estimation based on a KF and MME
algorithm is proposed by considering the sprung mass variation. This method can be described as
follows. First, the states of the suspension system at the current step and next step are estimated
using the KF approach. Second, the model error matrix is deduced by MME criterion algorithm
using information obtained from the KF. Then, the joint MME criterion and KF approach is used
to modify the suspension system model so that the state estimation of the road profile can be
achieved at the new step. Finally, the estimated road profile information at the new step is used as
the initial state for the following step. The algorithm was implemented as a simulation and
experiments were performed with a quarter-vehicle. The results showed that the proposed method
produces a more accurate road profile estimation than traditional KF.

This paper evaluates the ability of the novel algorithm to improve the state estimation accuracy
of the suspension system. Their contributions presented in this paper are:

* A novel idea to adjust the varying sprung mass depending on the MME criterion for the
modified suspension system model;
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* A proposed method of road profile estimation combining the MME criterion with the KF
algorithm;

* A quarter suspension test rig is adopted to validate the MME and KF (MME&KF).
Results showed the proposed method achieves better road estimation accuracy.

To further improve the accuracy of road estimation for the suspension system, this paper
introduces an approach to evaluate the road profile state precision within a suspension system.
The paper is organized as follows. Section 2, a quarter model of a vehicle suspension is described.
The joint state-parameter KF&MME criterion approach are derived in Section 3. Section 4 shows
the test and simulation results of proposed method. Finally, the conclusions are summarized in
Section 5.

2. Vehicle suspension model
2.1. Quarter vehicle suspension model

The quarter vehicle model, which is the most commonly used model for suspension systems,
is presented in this section. Due to the nonlinearity of the practical quarter suspension,
linearization of the quarter suspension model is used to study the quarter suspension. The linear
quarter vehicle model contains the basic vertical information related to the vehicle [3, 19, 27]. The
structure of a typical linear quarter vehicle model and road excitation model can be founded in
[28, 29].

Based on these models, a linear quarter suspension dynamic equations of the model can be
expressed as:

mbj(:'b‘l'ks(xb—xw)‘l'c(xb—xw) = 0, (1)
mch'w + kt(xw - xr) + ks(xw - xb) - C(be - J'Cw) =0,
where ¢ represents the suspension damping. kg and k, represent the suspension spring stiffness
and tire spring stiffness, respectively, and m,,, m,, represents the suspension sprung mass and
unsprung mass, respectively. The variables,x;,, X, and ¥, are the displacement, velocity, and
acceleration of the sprung mass. x,,, X,, and X,, correspond to the displacement, velocity and
acceleration of the unsprung mass, respectively. Finally, x, is the road unevenness, and the
vibration of the suspension system is rooted in the road excitation.
The system state vector and output vector are chosen as:

— . . . T — T
X = [xbtxbﬂxWwa:xrtxr] - [xl,xz,x3,x4,x5,x6] ’

y = [Ep, % ]" = 1, 21", (@)

where the six states variables are the displacement of the sprung mass, the velocity of sprung mass,
the displacement of the unsprung mass, the velocity of the unsprung mass, road unevenness and
the velocity of the road unevenness. In addition, the output variables correspond to the
accelerations.

To apply the road unevenness profile in the estimation observer, it should satisfy the
following [30]:

X, + axx, + a1x, =0, 3)

where a,; and a, are constant values.
The state space equation of the state space variables can thus be expressed as:

X=Ax+w, y=Cx+yv, 4)
where:
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k c k c
__s ___ _s _ 0 0
my my my my
A= 0 0 0 1 0 0
| ks c kg + k; c k; 0 ’
m,, m,, my, my My
0 0 0 0 0 1
] 0 0 0 —-a, —a,l
(ke o ko
C= my my my mp
| ks c ks +k; ¢kt 0 '
L m,, m,, my, my,, my

where ¢ represents the damping of the suspension, and w and v represent the process noise and
measure noise, assumed to be independent and Gaussian. Then, Q(k) = E(wwT) and
R(k) = E(vvT) are the associated process noise variance and measurement noise covariance,
respectively.

A detailed derivation of the equations can also be found in the literature [31-34]. The discrete-
time formulation of the state-space representation may be expressed as:

x(k + 1) = ox(k) + w(k),

y(k) = Hx(k) + v(k). (5)

Substituting Eq. (2) into Eq. (5), and considering the model error, the system equation can be
obtained as:

X, =X, + &,

_ ks(xy — x3) _ c(xz — x4)
my my

X3 = X4 + &3,

_ ks (1 — x3) n c(xy = x4) _ ke (xs — x5)

X2 2

X4

4
X5 = Xg + Es, (6)
Xg = —Q4 X5 — Ay Xg + &,

=Xy = f(X) + Eg + w(k),
_ ks(xy — x3) _ c(xz — x4)

i my m,
_ ks(xy — x3) i c(xz — x4) _ ki (x3 — xs)
2 mW mW mW '

= Yk = h(x) +v(k),

where the k represents the discrete-time instant kT, and T 1is the time step.
E, = {&1, 55, &5, 84,85,€4}7 is the error vector of the suspension system.

2.2. Augmented suspension system model

The uncertainty effects within suspension system result from the suspension spring
characteristic, asymmetric velocity-force characteristics of suspension damping etc. These
nonlinear behaviors are accounted for in the state-dependent damping nonlinearity c(k) and
varying spring mass m; (k). Since the estimation performance of the state observers for the
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vertical vehicle dynamics is particularly sensitive to deviations in the vehicle body mass [35, 36],
variations in the sprung mass are the main focus in this paper. The equation of motion for the
quarter vehicle suspension sprung mass is my, (k) = m;, (k) + Am(k). Here Am(k) is calculated
empirically.

Furthermore, to comprehensively investigate the effect of the KF & MME criterion on the road
profile estimation for the suspension system, the linear quarter vehicle model is utilized. The Euler
difference method is adopted to obtain the discrete version of a continuous system. Hence, the
augmented model of the quarter-vehicle can then be expressed as:

x%(k + 1) = Afx(k) + TGd (k) + Tw(k),

y(k) = Cix(k) + v(k), )

where:
r 0 1 0 0 0 0 1
ke ek o
my mp mp mp
0 0 0 1 0 0
Mk o kvke koo fTFE
m,, m,, my, my, my
0 0 0 0 0 1
L 0 0 0 0 —a1 _az_
0 1 0 0 0 0 1
B kg . ks c 0 0
frimy frimyp frimyp frimy
G = 0 0 0 1 0 0
|k e stk ke
0 0 0 0 0 1
- 0 0 0 0 —a1 _az_
[ f1i fai fai fai fai fii !
d=|— el —_ el el = ,
.mbdmb mbdmb mbdm,J mbdmb mbdmb mbdmlJ

where f;; represents the ith component of the minimum and maximum sector bounds and T is
time step. G represents the error propagation matrix, and d represents the model error matrix
(sprung mass error matrix). Referencing the system input, the system disturbance can be
approximated using the Gaussian white noise process. Model uncertainties are assumed to be a
Gaussian process as well. Each linear sub-model i is computed using bounds and the suspension
model parameters listed in Table 1.

Table 1. Parameters for quarter suspension

Suspension parameters Symbol and unit Value
Sprung mass my, (kg) 410
Unsprung mass m,, (kg) 39
Suspension spring stiffness K, (N/m) 20000
Tire stiffness K (N/m) 183000
Damping ¢ (Ns/m) 2000
Total sprung mass m (kg) ~ 400-600

The state estimation and observation processes of the discrete system of the 6-state variables

and 2-output variables are illustrated in Fig. 1.
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Fig. 1. State estimation and observation processes of the suspension system
3. Analysis for KF and MME algorithm
3.1. KF algorithm for road profile estimation

Based on Section 2, the problem of optimal estimation of X;, can be solved by minimization of
the loss function [20]:

I(ﬁk/k) = E{(ﬁk/k—l - Xk)z}, Vk, (8)

where Xy /1 represents the prediction of X, and X/, represents the prior estimation of x;.
Details of the loss function can be found in [20].
A recursive estimation form of X; may be expressed as:

Rk = Rije-1 + Kk(Yk - S\’k/k—l): )

where ¥y /1 denotes the prediction of y,, and K is the KF gain. The difference between ¥ and
Yk is called the filter innovation at the kth step. Assuming that the prior estimation Xy _1 /-4 and
the current observation y, are Gaussian random variables, the optimal solution to the problem is
given by the following procedure [20, 21]:

Initialization:

* The initial state and covariance are expressed as:

Ry = E[X0], Py = E[(Xo — Ro)(Xo —%p)"]. (10)
Time update:
* The prediction of the state and covariance are computed as:

o o T

Rijk-1 = AfRp_1 k-1, Prjk-1 = AfPr_1/k—1A7 + Q. (1D
Measurement update:
* The filter gain is determined as:

T

Ky = Ppe/k—1CF[CP /-1 CF + R]. (12)
 The state estimation is deduced as:

Rk = Riejr—1 + Kie[ye — CfRpejoa ] (13)
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* The estimated covariance is calculated as:
Pok = [1 = KgCF Py ji—1, (14)

where (.)T denotes the transpose of a vector.
Based on the analysis above, the recursive form of the road profile estimation at the step k
may be given as:

2. (k) = %, (k = 1) + K (k) (y (k) = 9(K)), s)

where y(k) — (k — 1) is the correction parameter in the estimation. Combining Eq. (10) and
Eq. (14), the flow chart of KF is given in Fig. 2.

— - 1. calculate gain matrix
Initialize suspension Obtain calculating under identification: Ki(k)
parame.ters Xy . measurements at the | 3| 2. calculate the error
and error covariance matrix moment of k: x(k) covariance matrix which is
0 A updated through recursive
least square: P(k)

Fig. 2. The flow chart of the KF algorithm
3.2. MME theory representation

The MME approach solves the system error model under the covariance constraint of the
observation Eq. (16). The objective function of the MME compensator is expressed as [23, 26]:

J[di] = 0.5[y; — §i]"R7 [y, — §i] + 0.5d," Wd,, (16)

where W represents the weight matrix of d;, and ¥, is estimated using the last time step, and can
be expressed as:

. . dh .

Vi = h(xk—l/k—l) + T—a X| f=k—1/k-1s
” X (17)

T&X = TLG(h)dk + TLf(h),

where 0h/0x represents the Jacobi matrix of the observation equation; Lg(h) and TLs (h) are the
Ist Lie derivations of h(x) about G and f(x), and are calculated as:

0h(x)

a(x)
dh
TLy(h) = %f@

X=Rp_1/k-1’

(18)

X=Rp_1/k-1"

Using the minimum value principle, based on MME, the optimal sprung mass error can be
given as:

d; = —{D"R'D + W} 'D"R[S + y?, —y,],
Dy = TLg(h),
Sk = TLy(h), (19)

ka = h(ﬁk—l/k—l)-
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The key of the MME criterion estimation is to properly choose the weight matrix W. It can be

expressed as:

1 m
E;{Y(l) —y(OHy(®) -y} =R,

where m is the time scale for approaching R.

Remark: It is difficult to choose W in practice. Due to the unpredictable white Gauss
measurement noise, an ideal W is strongly time-dependent, unpredictable and even negative
definite [26]. Such a result was adopted here, i.e. W was chosen as a constant.

:Imtlahze state variable} i

Calculate system
model error

H est1matlon and error } ¢

+1  Measurement
data

Fig. 3. The flow chart of the estimation process based on MME criterion and KF algorithm

I Model error
| weighting matrix
|

Suspension
vehicle model

| I \2 Compute a pr10r1

Model update
o iy
il model |
;,fl;,{,;(;,;;ﬁ ________
crev prov e

[N IR

 1.Calculate a priori state estimation|;

\ e

(Dnm cnew I
I

l Calculate a priori state estlmauonw

=0, X, |

e[TOr covarlance‘

\

- T T |
P =00, +HQH;

3.Calculate the gain of Kalman filter |

T T -1
K - PH]HH] [Hk+lPA+]HA+] + RHI]
4,Update a posterior error covariance
k+1 [I Kk+IHk+I]P1;+l
5.Update a posterior state estimation

R =% +Kk+1()’m Vi)
H X

3.3. KF algorithm based MME criterion

T __ Y___
3.Calculate the gain of Kalman filter }

» |
new new-yy ! new— T -1
KAH PA+I H +I[HA+]PI¢+I Hk+| +Rk+l] !

|

|

l

|

I 4.Update a posterior error covariance
} Pk+| *[I_KMHM]PM

I 5.Update a posterior state estimation
} KI’LM (ynLM y;i‘;)

! =H_ X

k+l

\
\
\
\
\
\
\
\
snewt _ anew— |
Xe =X !
\

A+I

2 new
Output estimation X,

\ 2 Compute a pr10r1 error covariancel §

(20)

The chart of the proposed algorithm in this paper is depicted in Fig. 3. The Fig. 3 can be
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described as follows. First, the initial data, i.e. system covariance matrix, measurement data etc.,
are obtained from suspension system. Second, the error of suspension system is calculated using
MME criterion after acquiring state estimation at step k. Then, combining the MME&KF
algorithms, the state at step k is updated to new state at k + 1. Finally, the estimated information
for the road profile at the new step is used as the initial state for the following step. Further details
can be found in [23].

As shown in Fig. 3, the integrated estimation MME&KF approach tries to provide a more
accurate suspension state estimation.

According to Eq. (6) and Eq. (7), the KF estimation algorithm for the discrete system may be
summarized as:

Xk/k-1 = Tf(xk—l/k—l) + Xp_1/k-1 + TGy_1dy,

Yi/k-1 = h(xk/k—l):
T
Piji-1 =AY, Pr_1/k1Af, +T?Q,

T T _
Ky = Ppi—1CF, (CF Prej—1Cf + R,
Xk = Xg/k-1 T Kf(yk - Yk/k—l):

Pese = (1- KICE, ) Prjies,

A

1)

where Xy _q k1, and Py_; /4 are considered the optimal estimated vector and error covariance
matrix of former time step; Kﬁ is the KF gain matrix; I is unit matrix.

The estimation process from k —1 to k detailed in Eq. (21) requires three types of
information, i.e., the current input and observation information; the estimation results of the last
step; and the system and measurement statistical information. Finally, the estimation returns the
KF gain, system state and error covariance matrix for the current step.

4. Analysis for simulation and test
4.1. Simulation results and analysis

In this work, we applied the MME&KF algorithm to estimate the state of the road profile for
a suspension system. The ISO Level-B, ISO Level-C and ISO Level-D were taken as examples to
illustrate the method. Also, the ISO level-B, ISO Level-C and ISO Level-D were calculated and
used as the road excitation [29]. Note that it was assumed the tire did not lose contact with the
ground [36-40].

The estimation accuracy of the MME&KF method proposed in this work was compared to the
performance of KF under ISO level-B, ISO Level-C and ISO Level-D road excitations. Details
are shown as follows.

4.1.1. Case 1: ISO level-B excitation simulation

The results for the simulation configuration based on an unchanged sprung mass are also
illustrated under ISO level-B excitation in Fig. 4. Second, an additional body load Am
(Am = 180 kg) was studied [36] under ISO level-B excitation in Fig. 5.

Figs. 5(a) and (b) illustrate the corresponding results of the KF and MME&KEF results. Fig. 6(a)
and (b) show the estimation error of the road profile for a varying sprung mass under the KF and
MME&KF algorithms.

From Figs. 6(a) and (b), we can see that the estimation error of KF clearly fluctuates as the
sprung mass changed under Level-B road excitation, and the MME&KF approach can improve
the accuracy of the road profile for a varying sprung mass (model error).
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Fig. 4. Results of road level-B excitation (v, = 40 km/h): road profile estimation
of KF and MME&KF with m;, unchanged (m;, = m,)

0.015 T T T T T T T T

Road height(m)
(=}

-0.005
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-0.01 [ = Estimated(KF)
--------- Estimated(MME&KF)
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---------- Estimated(MME&KF)

-0.015 ! : : :
0 1 2 3 4 5 6 7 8 9

Time(s)
b) KF and MME&KF achieved with altered my, (m;, = my, — Amy,,)
Fig. 5. Road profile comparison results of m,;, changed under road level-B excitation (v, = 40 km/h)

4.1.2. Case 2: ISO level-C excitation simulation

The estimation accuracy of the MME&KF method proposed in this work was compared to the
performance of the KF under ISO level-C excitation. The results for the simulation configuration
based on an unchanged sprung mass are also illustrated under ISO level-C excitation in Fig. 7.
Second, an additional body load Am (Am = 180 kg) was studied [36] under ISO level-C excitation
in Fig. 8.

The corresponding results of the KF and MME&KF methods are illustrated in Fig. 7 and show
that the higher estimation accuracy can be obtained with MME&KF. Figs. 8 and 9 show the
estimation error of the road profile for a varying sprung mass under the KF and MME&KF
algorithms. The simulation results showed that a smaller road excitation error is obtained using
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the proposed method.
0.01 T T T T T T
0.005
E
<
2
L
= ;
g -0.005 :
~ i f
H KF estimation error with mass changed
-0.01 | H === ===+ MME&KF estimation error with mass changed
KF estimation error with mass unchanged
= = + MME&KEF estimation error with mass unchanged
20015 . n I I I I T I
0 1 2 3 4 5 6 7 8 9
Time(s)
a) my, with altered (m, = my, + Amy)
0.01 T T T T T T T T
0.005

-0.005

Road height(m)

KF estimation error with mass unchanged

= == + MME&KEF estimation error with mass unchanged
=+====ee KF estimation error with mass changed
=== ===+ MME&KF estimation error with mass changed
20.015 : T T r . T

0 1 2 3 4 5 6 7 8 9

Time(s)
b) m;, with altered (m, = my, — Am,)

Fig. 6. Estimation error of KF and MME&KEF road profile on road Level-B at v,,,;, = 40 km/h
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Fig. 7. Results of road level-C excitation (v,,,, = 40 km/h): road profile estimation
of KF and MME&KF with m,, unchanged (m;, = my;)

4.1.3. Case 3: ISO level-D excitation simulation

The estimation accuracy of the MME&KF method proposed in this work was compared to the
performance of the KF under ISO level-D excitation. The results for the simulation configuration
based on an unchanged sprung mass are also illustrated under ISO level-D excitation in Fig. 10.

Second, an additional body load Am (Am = 180 kg) was studied [36] under ISO level-D
excitation in Fig. 11.
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The corresponding results of the KF and MME&KEF are illustrated in Fig. 10 and show that
higher estimation accuracy can be obtained for MME&KEF. Figs. 11 and 12 show the estimation
error of the road profile for a varying sprung mass under the KF and MME&KEF algorithms. The
simulation results show that a smaller road excitation error is obtained using the proposed method.
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Fig. 10. Results of road level-D excitation (v, = 40 km/h): road profile estimation
of KF and MME& KF with m;, unchanged (m;, = my)
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Fig. 11. Road profile estimation results of m,;, changing under road level-D excitation (v, = 40 km/h)

In addition, the error values of the estimation standard deviation (STD) were calculated under
ISO Level-B, ISO Level-C and ISO Level-D road excitation, and the simulation results are
summarized in Table 2. The error of STD is higher with the KF estimation than MME&KF under
the varying sprung mass.
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Table 2. Calculation STD estimation values of different KF variations

on road Level-B/C/D Profile at V,,,; =40 km/h

Filter state Road Filter Simulation results
estimation excitation mode m (kg) error STD (%) Remarks

KF m, 73
MME&KF m, 33
ISO level-B KF my, + Am 7.6
excitation |MME&KF| my + Am 3.7
KF m, — Am 10.3
MME&KF| m, — Am 55
KF my, 8.1

MME&KF my, 4.6 m,y, represents the sprung

X ISO level-C KF my, + Am 9.5 mass of vehicle; Am
T excitation |MME&KF| m, + Am 52 represents the changed sprung
KF m, — Am 12.1 mass of vehicle

MME&KF| m, — Am 8.3
KF my, 10.5
MME&KF m, 6.5
ISO level-D KF my, + Am 12.8
excitation |MME&KF| m, + Am 7.9
KF my, — Am 16.4
MME&KF| m, — Am 11.5

4.2. Experimental results and analysis

Because it is not easy to accurately obtain the time domain road profile, road profile is
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produced using the excitation equipment [36, 37].

The performance estimation of the KF&MME algorithm was conducted using the available
test rig for a quarter suspension system, as pictured in Fig. 13. In the road profile estimation test
process, road excitation force on the wheel was measured by a hydraulic ram, and sprung and
unsprung mass accelerometers were installed to acquire data from the road excitation. During the
experiments, the road excitation reference signal for the estimated quantity was computed off-line
using a road excitation model [28, 29] for the test rig.

The road profile estimation accuracy of the proposed MME&KF algorithm was compared to
the performance of the KF.

Fig. 13. Quarter vehicle suspension test rig for road profile estimation
4.2.1. Case 1: ISO level-B excitation measured

Based the same simulation environment, the experimental and simulation results were
compared and summarized in Figs. 14 and 15 under Level-B road excitation.
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Fig. 14. Road profile results of measured KF and MME&KF estimation

on road Level-B at v,,,;, = 40 km/h with m;, unchanged (m;, = m;,)

Figs. 15(a) and (b) illustrate the test and estimation results of KF and MME&KF methods.
Figs. 16(a) and (b) show the estimation error of the test road profile for a varying sprung mass
under the KF and MME&KF algorithms. The worst estimation accuracy occurred when using the
KF algorithm under the varying sprung mass condition, but higher estimation accuracy can be
obtained using the MME&KEF algorithm under both changing and without changing conditions.
This demonstrates that the proposed MME&KF method is most effective under both the varying
and without changing sprung mass conditions.
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4.2.2. Case 2: ISO level-C excitation measured

The same experiment was performed under the Level-C road excitation. Results of the two
estimation methods were compared and summarized in Figs. 17-19 under the Level-C road
excitation. Fig. 17 shows the test and estimation results of the KF and MME&KF approaches.
Figs. 18 and 19 illustrate that higher estimation accuracy can also be acquired using MME&KF
algorithm under a changing and unchanging sprung mass under Level-C excitation conditions,
and the proposed MME&KEF algorithm is more effective than using only the KF algorithm.
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Fig. 17. Road profile results of measured KF and MME&KF estimation
on road Level-C at v, = 40 km/h with m; unchanged (m;, = my)
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Fig. 18. Road profile results of m; changed under road level-C excitation (v, = 40 km/h)
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Fig. 19. Estimation error of KF and MME&KEF road profile on road Level-C at v,,,;, = 40 km/h

4.2.3. Case 3: ISO level-D excitation measured

The same experiment was performed under the Level-D road excitation. Results of the two
estimation methods were compared and summarized in Figs. 20-22. Fig. 20 shows the test and
estimation results of the KF and MME&KF approaches. Figs. 21 and 22 illustrate that higher
estimation accuracy can be obtained using the MME&KF algorithm under a varying sprung mass
or unchanging sprung mass under Level-D excitation conditions, and the proposed MME&KF
algorithm is more effective than using only the KF algorithm.
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Fig. 20. Road profile results of measured KF and MME&KF estimation

on road Level-D at v,,,;, = 40 km/h with m;, unchanged (m; = m;)
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Fig. 21. Road profile results of m;, changed under road level-D excitation (v,,,;, = 40 km/h)
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Fig. 22. Estimation error of KF and MME&KEF road profile on road Level-D at v,,,;, = 40 km/h
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Moreover, the test error values of the STD are listed in Table 3. The error values of the
estimation STD were calculated, and the test results are presented in Table 3. Comparing them to
the simulation results, the same conclusion can be obtained under the ISO Level-B, ISO Level-C
and ISO Level-D road excitations.

Table 3. Calculation STD estimation values of different KF variations
on road Level-B/C/D Profile at V,,,; = 40 km/h

Filter state Road Filter Estimation results
estimation excitation mode m (kg) error STD (%) Remarks

KF my, 7.8
MME&KF my, 4.5
ISO level-B KF my, + Am 8.5
excitation |MME&KF| m, + Am 4.8
KF m, — Am 12.5
MME&KF| m, — Am 6.8
KF my, 9.2

MME&KF my, 5.8 m,, represents the sprung

X 1SO level-C KF my, + Am 11.5 mass of vehicle; Am
T excitation |MME&KF| m, + Am 7.8 represents the changed
KF m, — Am 154 sprung mass of vehicle.

MME&KF| m;, — Am 9.6
KF my, 13.5
MME&KF my, 8.5
ISO level-D KF my + Am 16.8
excitation |MME&KF| m;, + Am 10.9
KF m, — Am 18.4
MME&KF| m;, — Am 14.5

Based on the analysis above, it can be seen that the estimation data from the MME&KF are
closer to the measurement data. It may be concluded that more accurate road profile estimations
can be achieved by employing the MME&KEF algorithm. It should be noted that because the
nonlinear tire characteristics are not considered during the process of road profile estimation; this
may lead to a road profile estimation error under varying conditions of the tire.

5. Conclusions

In this paper, a new approach combining the MME criterion and a KF algorithm was proposed
to estimate the road profile for a vehicle suspension system. Using the proposed method, a higher
accuracy of the road profile for the suspension system can be obtained, enabling the analysis of
road information. The main conclusions are as follows:

1) Based on the road excitation model, the influences of sprung mass variations on road profile
observer performance can be studied. Results showed that the traditional KF did not obtain
satisfactory accuracy under this condition.

2) The MME&KF algorithm was proposed to improve the estimation accuracy of the road
profile under various sprung masses and ISO Level-B, ISO Level-C and Level-D road excitations.

Finally, the simulation and experimental results showed that the proposed MME&KF
algorithm obtains a high accuracy of the state estimation for the road profile, which was validated
in MATLAB and using a test rig under ISO level-B and ISO level-C road excitations. The STD
estimation error of road profile is no more than 10 % and the STD estimation error of the road
profile is no more than 19 % under ISO level-D road excitation.

In the future, the nonlinear quarter suspension model will be used directly and the proposed
method will be applied to the full-car road profile estimations.
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