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Abstract. The fault diagnosis of motorized spindle contributes to the improvement of the 
reliability of computer numerical control machine tools. Presently, numerous mechanical fault 
diagnosis technologies suffer from the drawbacks of mode mixing, non-adaptive analysis, and low 
efficiency. Therefore, adopting an effective signal processing method for fault diagnosis of 
motorized spindle is essential. A method based on modified empirical wavelet transform (EWT) 
and kernel principal component analysis (Kernel PCA) is proposed. A new method, which 
determines the proper number of the Fourier spectrum segments, is applied when using EWT. To 
improve computational efficiency, Kernel PCA is adopted to reduce dimension. The support 
vector machine optimized by genetic algorithm is introduced to accomplish fault identification. 
The performance of the proposed method is validated through single and compound fault 
experiments. Results show that the recognition rate using the proposed method reached 98.8095 % 
and 98.4375 % in terms of single and compound fault diagnoses, respectively. Moreover, 
compared with empirical mode decomposition (EMD), ensemble empirical mode decomposition 
(EEMD), local mean decomposition (LMD) and EWT, the proposed method can save much 
computing time. The proposed method can be generalized to other mechanical fault diagnoses as 
well. 
Keywords: motorized spindle, fault diagnosis, modified empirical wavelet transform (EWT), 
kernel principal components analysis (Kernel PCA). 

1. Introduction 

High-speed machining is a promising technology that drastically increases productivity and 
reduces production costs resulting in a revolutionary leap in manufacturing [1, 2]. The motorized 
spindle is crucial in implementing high-speed machining. And it is popular in manufacturing field 
because of its advantages, such as zero transmission, small vibration, precise control of rotational 
acceleration and deceleration [3, 4]. However, owing to the combination of tools and built-in 
motors, the motorized spindle is much more complex compared with the traditional spindle [5]. 
The reliability of the motorized spindle remains to be improved mainly due to the complex 
structure which recently draw attention of industry and academy. This further indicates the 
importance of seeking methods for the fault diagnosis of the motorized spindle to improve the 
performance and reliability of computer numerical control (CNC) machine tools. 

With the rapid development of signal processing technology, mechanical fault diagnosis 
technology has been intensively studied. Several approaches for mechanical fault diagnosis, 
including acoustic emission, oil monitoring, infrared temperature measurement, and vibration 
analysis, have been reported. Vibration analysis, which is extensively used in condition 
monitoring and fault diagnosis of mechanical equipment, is the most popular and effective 
approach [6-9]. The vibration signals of mechanical equipment include a large amount of 
information which is sensitive to different operation states. Therefore, signal processing 
techniques, especially in processing vibration signals, attract considerable interest over the past 
few years. However, using fast Fourier transform (FFT) for fault diagnosis present numerous 
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problems in spectrum analysis, mainly owing to the vibration signals of mechanical equipment 
are non-linear and non-stationary, meanwhile, these signals are covered by a large scale of noise 
and closely spaced frequencies [10]. To overcome these limitations, short-time Fourier transform 
(STFT) [11], Wigner-Ville distribution [12] and wavelet transform [13, 14] are widely applied as 
the most common time–frequency analysis tools. Some cases yielded desirable results with the 
use of the aforementioned methods for fault diagnosis. For example, a comparative study of FFT, 
STFT, and wavelet techniques for induction machine fault diagnostic analysis was performed by 
Mehala et al. [15]. The experimental results show that STFT and wavelet transform provide better 
results than FFT and can effectively diagnose shorted turns and broken rotor bars in non-constant 
load torque induction-motor applications. Although STFT overcomes the shortcomings of  
FFT-based methods in processing non-linear and non-stationary signal, it cannot achieve low- and 
high-frequency components analysis simultaneously because its fixed spectral resolution provides 
the predefined window length, which inadequately describes instantaneous frequency [16-18]. 
Thus, STFT is suitable for processing quasi stationary signals instead of realistic non-linear and 
non-stationary signals [13]. Wigner-Ville distribution has a high time and frequency resolution, 
but its application is restricted in multicomponent signal analysis because of cross-product term 
interferences [19, 20]. Compared with STFT, wavelet transform is a more effective tool in 
analyzing non-linear and non-stationary signals because of its property on multi-resolution 
analysis. Wavelet transform has already achieved good results in condition monitoring and fault 
diagnosis of mechanical equipment, such as bearing fault [21] and planetary gearbox fault 
detection [22]. Dyadic wavelet transform is widely used in fault diagnosis of induction motors, 
rolling bearings, and other rotary machine owing to its high efficiency [23-25]. Unfortunately, as 
a non-adaptive algorithm, wavelet transform cannot decompose signals according to its contained 
information [26, 27], and a highly noisy environment immensely influences wavelet transform 
capability. What’s more, the analysis results using wavelet transform depend on the choice of 
predefined wavelet basis, which leads to a subjective and a priori assumption on the signal 
characteristics.  

To solve shortages of wavelet, transform, namely non-adaptive and priori assumption, a 
completely different method named empirical mode decomposition (EMD) was proposed by 
Huang et al. [28]. EMD gain fruitful achievements in various application fields since its 
introduction in 1998, such as seismic exploration, fault diagnosis, voice recognition, medicine, 
and biology. The basic principle of EMD is that practical signals are decomposed into a series of 
complete and almost orthogonal components called intrinsic mode function (IMF) [26, 28-30]. 
Each IMF is considered to be a mono-component, which indicates the natural mode contained in 
the original signal [9, 26]. In comparison with STFT, Wigner-Ville distribution and wavelet 
transform, EMD is more suitable for analyzing non-linear and non-stationary signals. Nevertheless, 
EMD is well known for the deficiency in the accurate estimation of instantaneous frequencies  
[26, 31]. For example, the EMD method cause end effects, and lacks mathematical theory basis, 
besides, mode mixing is found between IMFs, wherein the IMFs are not strictly orthogonal to 
each other [26, 32, 33]. Therefore, in order to decrease the effect of mode mixing, an improved 
version of EMD, namely ensemble empirical mode decomposition (EEMD) is proposed [34]. The 
EEMD method is applied to rotor fault diagnosis of rotating machinery, and receive satisfactory 
results [35]. Unfortunately, EEMD loses the advantage of adaptive decomposition, because it is 
still an open problem for adaptively selecting the amplitude of the added noise and determining 
the number of ensemble. In addition, many methods have been widely applied in the fault 
diagnosis of mechanical equipment, such as local mean decomposition (LMD), principal 
components analysis (PCA), independent components analysis (ICA), and EMD combined with 
other techniques. A method combining wavelet packet decomposition (WPD) and EMD was 
adopted to extract fault feature frequency, and a three-layered neural network for rotating 
machinery early fault diagnosis was proposed [36]. The performance of the proposed method is 
illustrated through shaft fault experiment with lateral early crack of rotating machinery. For the 
intelligent fault diagnosis of induction motors, a method combined with ICA and support vector 
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machines (SVM) was applied, and satisfactory results are obtained [37]. The multi-variate and 
multi-scale monitoring of large-size low-speed bearings using EEMD combined with principal 
component analysis was executed [38]. The proposed method can accurately identify the local 
bearing small defects. Han et al. [39] adopted LMD combined with sample entropy and energy 
ratio to process the vibration signals of roller bearings, and then, different operation states can be 
classified using SVM. Du et al. [40] presented a method based on the combination of LMD, energy 
moment, and directed acyclic graph SVM to perform the fault diagnosis of rotating machines of 
rail vehicles. Liu et al. [41] applied EMD combined with Hilbert spectrum to analyze the working 
condition of gearbox, and the proposed method exhibited excellent performance. However, the 
above references mainly deal with single fault diagnosis, compound fault diagnosis is not 
considered. 

Feature extraction and state recognition are cores in the fault diagnosis of mechanical 
equipment, and the vibration signals collected from mechanical equipment are non-linear and 
non-stationary in general cases. Adopting powerful signal process tools benefits the revelation of 
fault characteristics. Considering the characteristic of EMD, EEMD and wavelet transform, a new 
method named empirical wavelet transform (EWT) was introduced by Gilles [42]. The main 
principle of this method is the extraction of amplitude modulated-frequency modulated (AM-FM) 
components from the original signal by building a set of suitable wavelet filters, which are 
equivalent to segmentation of the Fourier spectrum. However, EWT performance is degraded 
under substantial noise. Therefore, signal preprocessing is necessary to increase signal-to-noise 
ratio (SNR). A comparative study on wavelet threshold de-noising for rolling bearing fault 
research was performed [43], which investigated the performance of wavelet transform modulus 
local maxima de-noising and wavelet threshold de-noising through acoustic emission signal [44]. 
Satisfactory results were obtained using penalty wavelet threshold de-noising. Another problem 
with respect to the segmentation of the Fourier spectrum should be seriously considered. 
Operational modal analysis (OMA) [45] and multiple signal classification [46] were used to 
determine the support boundaries of the filter applying EWT for processing non-linear and non-
stationary signals, and the efficiency was validated. In addition, a comparative study on PCA, ICA, 
and Kernel PCA for dimensionality reduction in SVM [47] revealed that feature extraction can 
improve the generalization performance of support vector machine (SVM), and the best 
performance was obtained by Kernel PCA. 

In this paper, a method combining modified EWT with Kernel PCA is applied in the single 
and compound fault diagnosis of the motorized spindle. Penalty wavelet threshold de-noising is 
adopted for data preprocessing before executing EWT, and a new approach is proposed to 
determine the number of the Fourier spectrum segment when using EWT. The SVM optimized by 
genetic algorithm (GA-SVM) is used as the multi-fault classifier because the SVM from statistical 
learning theory has better generalization property than conventional pattern recognition [48]. The 
performance of the proposed method is validated through single and compound fault experiments 
in a motorized spindle and is better compared with that of EMD, EEMD, LMD and EWT with 
proper number of segments. The flow chart of the present scheme is presented in Fig. 1. 

 
Fig. 1. Flow chart of the present scheme 
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The paper is arranged as follows: Section 2 briefly introduces the theoretical background of 
EWT, Kernel PCA, and SVM, and a new approach to decide the number of the Fourier spectrum 
segment when using EWT is also proposed. In Section 3, the data acquisition of single and 
compound faults in a motorized spindle is described in detail. Section 4 presents the data 
processing and experimental results. Moreover, a comparative study among modified  
EWT-Kernel PCA, EMD, EEMD, LMD and EWT (the proper number of segment is selected) is 
executed. Finally, conclusions are drawn in Section 5. 

2. Methodology 

2.1. Modified empirical wavelet transform 

2.1.1. Empirical wavelet transform 

EWT is a self –adaptive algorithm appropriate for processing non-linear and non-stationary 
signals by designing a series of bandpass filters. The self-adaptive property mainly embodies the 
support of filters depends on where the information embedded in the analyzed signal is situated. 
Signal modes are extracted by EWT, which are AM-FM components that have compact support 
to the Fourier spectrum [49]. Assuming that the Fourier spectrum ሾ0, ߱ ሿ (frequencyߨ ∈ ሾ0,  ሿ) isߨ
partitioned into ܰ consecutive segments, which correspond to different modes, ߱ is defined as 
the limit between each segment (where ߱ = 0 and ߱ =  and the transition phase, which ,(ߨ
exists centered around each ߱ , is denoted as ܶ  of width 2߬ . A proportional relationship 
between ߱  and ߬  exists, namely ߱: ߬ = ߱ߛ , where 0 < ߛ < 1 . The idea used in the 
construction of both Littlewood-Paley and Meyer’s wavelets is applied on the creation of 
empirical wavelets. For ∀݊ > 0, the empirical scaling function ߶ሺ߱ሻ and the empirical wavelets ߰ሺ߱ሻ are given by the following equations: 

߶ሺ߱ሻ = ۔ە
|߱|    ,1ۓ ≤ ሺ1 − ሻ߱,cosߛ 2ߨ ߚ ൬ ߱ߛ12 ሺ|߱|ሻ − ሺ1 − ሻ߱൰൨,     ሺ1ߛ − ሻ߱ߛ ≤ |߱| ≤ ሺ1 + ,ሻ߱0,   otherwiseߛ , (1)

߰ሺ߱ሻ =
ەۖۖ
۔ۖ
ሺ1   ,1ۓۖ + ሻ߱ߛ ≤ |߱| ≤ ሺ1 − ሻ߱ାଵ,cosߛ 2ߨ ߚ ൭ ାଵ߱ߛ12 ሺ|߱| − ሺ1 − ሻ߱ାଵሻ൱൩ߛ , ሺ1 − ሻ߱ାଵߛ ≤ |߱| ≤ ሺ1 + ,ሻ߱ାଵߛ

sin 2ߨ ߚ ൭ ߱ߛ12 ሺ|߱| − ሺ1 − ሻ߱ሻ൱൩,     ሺ1ߛ − ሻ߱ߛ ≤ |߱| ≤ ሺ1 + .ሻ߱,0,    otherwiseߛ
 (2)

To obtain a tight frame, parameter ߛ satisfies following condition: ߛ < ݉݅݊ ൬߱ାଵ − ߱߱ାଵ + ߱൰. (3)

The function ߚሺݔሻ is an arbitrary ܥሺሾ0,1ሿሻ function, such that: ߚሺݔሻ = ൜0,     ݔ ≤ ሻݔሺߚ     ,0 + ݔሺߚ + 1ሻ = ݔ∀    ,1 ∈ ሾ0,1ሿ,1,     ݔ ≥ 1.  (4)

Numerous functions satisfy these properties, and the following function is frequently used [50]:  ߚሺݔሻ = ସሺ35ݔ − ݔ84 + ଶݔ70 − ଷሻ. (5)ݔ20
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Similar to wavelet transform, EWT is denoted as ܹఌሺ݊,  ሻ. Its detail coefficients are definedݐ
by the inner products of raw signals and the empirical wavelets, shown in the following equation: 

ܹఌሺ݊, ሻݐ = න ݂ሺ߬ሻ ߰ሺ߬ − ሻ݀߬. (6)ݐ

The approximation coefficients are acquired by the inner products of raw signals and the 
scaling function as in the following equation: 

ܹఌሺ0, ሻݐ = න ݂ሺ߬ሻ ߶ଵሺ߬ − ሻ݀߬. (7)ݐ

The reconstruction and the empirical mode ݂ are obtained by:  

݂ሺݐሻ = ܹఌሺ0, ሻݐ ∗ ߶ଵሺݐሻ +  ܹఌሺ݊, ሻேݐ
ୀଵ ∗ ߶ሺݐሻ, (8)

ቊ ݂ሺݐሻ = ܹఌሺ0, ሻݐ ∗ ߶ଵሺݐሻ,݂ሺݐሻ = ܹఌሺ݇, ሻݐ ∗ ߰ሺݐሻ, (9)

where ݂ is the signal, ݐ is the time, and ߬ is the time variable. 

2.1.2. Determine the number of the Fourier spectrum segment 

In order to find the limits ߱  between each segment, the method that computes the local 
maxima and then the boundaries are set as the smallest minima between consecutive maxima is 
adopted in this paper. However, the number of segments of the Fourier spectrum is difficult to 
determine because of lacking priori information for practical analysis. Excessive or less segment 
contradicts the effect of fault diagnosis. Therefore, determining the proper number of segments is 
crucial.  

 
Fig. 2. Framework of the proposed method 

EMD is well known in suffering from mode mixing. The proper number of the Fourier 
spectrum segment is believed to be less than the number of IMF using EMD in this paper, and the 
IMF number is denoted as ܯ. Afterwards, the proper number of segments is easily determined by 
comparing the recognition rate of the fault diagnosis using GA-SVM with the number of segment 
vary from 2 to ܯ. The framework of the proposed method for determining the optimal number of 
EWT segments is shown in Fig. 2. 
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2.2. Kernel principal component analysis (Kernel PCA) 

Although PCA can perform well in processing a set of linear data, it is not applicable for 
non-linear data. To deal with non-linear data, the extended version of PCA, KPCA, is introduced 
[51]. By using the kernel method, the non-linear data can be mapped into a higher dimensional 
space in which they vary linearly. Given a set of centered data ݔ, ݇ = 1, . . . , ݔ ,ܯ ∈ ܴௗ, then 
these centered data are mapped into a higher dimensional feature space ܨ by non-linear mapping ߶: ܴௗ →  :as ܨ Covariance matrix is computed in .ܨ

ܥ = ܯ1  ߶൫ݔ൯߶൫ݔ൯்ெ
ୀଵ . (10)

The eigenvalues ߣ ≥ 0 and eigenvectors ܄ satisfy the following equation: 

܄ߣ = ܄ܥ = ܯ1 ൫߶൫ݔ൯ ⋅ ܸ൯ெ
ୀଵ ߶൫ݔ൯. (11)

All solutions ܄ with ߣ ≠ 0 lie in the span of ߶ሺݔଵሻ, . . . ߶ሺݔெሻ. Hence, the following equation 
is obtained: 

۔ە
ሻݔሺ߶ሺߣۓ ⋅ ሻ܄ = ൫߶ሺݔሻ ⋅ ݇     ,൯܄ܥ = 1, . . . , ܄,ܯ =  ሻெݔ߶ሺߙ

ୀଵ ,  (12)

where ߙ ሺ݅ = 1, . . . ,  :ሻ is the coefficient. According to Eq. (12), we can obtainܯ

ߣ  ሻݔ൫߶ሺߙ ⋅ ߶ሺݔሻ൯ = ܯ1  ߙ ቌ߶ሺݔሻ ⋅  ߶൫ݔ൯ெ
ୀଵ ቍெ

ୀଵ ቀ߶൫ݔ൯ ⋅ ߶ሺݔሻቁ .ெ
ୀଵ  (13)

The kernel trick ܭ = ቀ߶ሺݔሻ ⋅ ߶൫ݔ൯ቁ is applied, and ۹ is the ܯ×ܯ kernel matrix. We can 
obtain: ߙ۹ߣܯ = ۹ଶ(14) ,ߙ

where ߙ is the column vector with entries ߙଵ, . . . ,  ெ. To find the solutions of Eq. (14), we solveߙ
the eigenvalue problem: ߙߣܯ = (15) .ߙ۹

Define ߣଵ ≤ ଶߣ ≤ ⋯ ≤ ,ଵߙ ,ெ as the eigenvalues of ۹ߣ . . . ,  ெ, which are the correspondingߙ
complete set of eigenvectors, and ߣ  is the first non-zero eigenvalue. According to a specific 
requirement, normalization processing in feature space ܨ  is executed for the corresponding 
eigenvectors ߙଵ, . . . , ܄ெ where: ሺߙ ⋅ ሻ܄ = 1,    ݇ = , . . . , (16) .ܯ

By synthesizing Eq. (12) and Eq. (15), the following equation is obtained: 
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1 =  ெߙ
,ୀଵ ߙ ቀ߶ሺݔሻ ⋅ ߶൫ݔ൯ቁ =  ெߙ

,ୀଵ ܭߙ = ߙሺߣ ⋅ ሻ. (17)ߙ

Computation of the projections onto the eigenvectors ܄  in ܨ  is necessary to extract the 
principal component: 

൫܄ ⋅ ߶ሺݔሻ൯ =  ெߙ
ୀଵ ൫߶ሺݔሻ ⋅ ߶ሺݔሻ൯. (18)

In addition, the problem on selecting the proper number of principal components has attracted 
considerable interests for the past decade. A series of criteria have been adopted in the selection 
of the number of principal components, and the most frequently used approach, that is, cumulative 
contribution limit [52], is applied in this paper. 

2.3. Support vector machine optimized by genetic algorithm 

SVM was first proposed by Vapnik et al. based on statistical learning theory [48]. Through 
time, SVM become increasingly popular in machine learning, and has been widely used in 
machine fault diagnosis because of its better generalization and higher recognition rate for analysis 
of small set of samples compared to traditional pattern recognition approaches such as artificial 
neural networks (ANN). The basic principle of SVM for typical two-class classification problems 
is described as follows. Given a set of training data ሼݔ, ሽ, 1ݕ ≤ ݅ ≤ ܳ and ݕ ∈ ሼ−1, +1ሽ, SVM 
aims to find a high dimensional space in which the training data can be separated by the hyperplane 
as accurately as possible. In the linear separable case, the hyperplane can be expressed in the 
following equation: ܟ ⋅ ܠ + ܾ = 0, (19)

where ܟ is the ܳ-dimensional vector, ܠ is the input vector, and ܾ is the scalar. 
The training data are classified into two portions, and they are referred as negative and positive 

objects by hyperplane. The positive and negative object labels are ݕ = +1  and ݕ = −1 , 
respectively. An optimal separating hyperplane, which creates the maximum distance between 
two edge lines, depended on support vectors. A linear classification is shown in Fig. 3. The slack 
variables ߞ and the penalty parameter ܥ are introduced because of considering the noise. Thus, 
the optimal problem can be expressed as: 

minimize 12 ଶ‖ܟ‖ + ܥ  ேߞ
ୀଵ ,

subject  to  ൝ݕሺݔ்ܟ + ܾሻ ≥ 1 − ߞ,ߞ ≥ 0, ݅ = 1, . . . , ܥ,ܳ ≥ 0,
 (20)

where ‖ܟ‖ is the Euclidean norm of ܟ. 
Kernel transform is applied when the original data should be mapped into a higher feature 

space facing the non-linear problem, and ܭ is the kernel function. The SVM classifier output is 
then expressed as:  

݂ሺݔሻ = ݊݃݅ݏ ൭ ேߤ
ୀଵ ,ܠሺܭݕ ሻܠ + ܾ൱, (21)
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where ߤ is the Lagrange multipliers and ܠ is the support vector. 

 
Fig. 3. Linear classification 

Radial basis function is a common kernel function, and it has been used as kernel of SVM in 
numerous articles. Hence, it is chosen as the kernel function in this study. The radial basis function 
is defined as follows: ܭሺܠ, ሻܠ = expሺ−ݔ‖ߛ − ‖ଶሻ. (22)ݔ

In which ߛ = 1 ⁄ଶߪ2  is the kernel parameter and ߪ is the width parameter of the radical basis 
function. 

It is essential to select a proper combination of parameters for achieving best prediction 
accuracy in SVM. It is well known that the GA is a global optimization algorithm based on Charles 
Darwin’s theory of natural selection and evolution, and it is a powerful tool to solve the 
optimization problem. Therefore, in order to find the best parameter combination, the GA [53] is 
applied into SVM. The steps of a simple GA are shown in Fig. 4. In this paper, population size, 
the number of iterations, crossover probability and mutation probability are set to 20, 200, 0.9 and 
0.05, respectively. GA is introduced to find a proper combination of parameters, namely ܥ and ߛ, 
and the value ranges are both set to the range of 0 to 200. In addition, the SVM recognition rate 
serves as the fitness function. The flowchart of GA-SVM is presented in Fig. 5. 

 
Fig. 4. Genetic algorithm flowchart 

3. Data acquisition of single and compound faults 

According to the statistical analysis, bearing fault contributes the largest proportion, 
accounting for 44.4 %, in the mechanical spindle of machining center [54]. Thus, execution of 
bearing fault diagnosis of the motorized spindle is necessary. In addition, rotor unbalance and bolt 
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looseness fault immensely impact the performance of motorized spindle. To verify the 
effectiveness of the proposed method, the bearing fault data, which comes from the bearing data 
center of Case Western Reserve University was utilized for single fault diagnosis [55]. As for the 
compound fault diagnosis, vibration data was acquired in different fault conditions, namely 
normal, rotor unbalance, bolt looseness, and compound fault (rotor unbalance and bolt looseness 
coexist). 

 
Fig. 5. Flowchart for GA-SVM 

3.1. Data acquisition of single faults 

Experiments for bearing single faults were conducted in a test stand. The test stand is 
composed of a three-phase induction motor, an AC electrical dynamometer, a torque sensor, and 
a control system. The 6205-2RS JEM SKF, deep groove ball bearing, was selected as test bearing, 
which supports the induction motor shaft. The localized defects were created on the inner and 
outer raceways and the ball by utilizing electro-discharge machining. The diameters of single point 
faults were 0.1778 and 0.3556 mm, and the depth of defect was consistent at 0.2794 mm. 
Accelerometers were used to acquire vibration signals, which were fixed in the drive end of the 
induction motor housing with magnetic bases, in which the laying position was at the 6 o’clock 
position. The vibration signals were acquired at a sampling frequency of 12000 Hz, and the motor 
output speed was 1772 rpm with 1 horsepower motor load.  

3.2. Data acquisition of compound faults 

Compound fault experiments in a motorized spindle were conducted in the test platform as 
shown in Fig. 6. 

The test platform consists of a data acquisition system, oil-air lubrication, cooling system, 
frequency converter, loading rod, and a motorized spindle. The loading rod was installed in the 
motorized spindle, and the eccentric mass was fixed in the loading rod, which realizes the fault 
simulation for rotor unbalance. In addition, the motorized spindle was fixed by four bolts, and 
three of them were loosened when the bolt looseness fault experiment was conducted. Considering 
safety, the speed of the motorized spindle was set to 5000 rpm. Vibration signals were collected 
in various states at a sampling frequency of 5000 Hz. Electromagnetic interference should be given 
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attention because of the frequency converter. Therefore, vibration signals were preprocessed using 
Penalty wavelet threshold de-noising, which can increase SNR. 

 
Fig. 6. Test platform of the motorized spindle 

4. Data processing and experimental results 

4.1. Single fault diagnosis 

In the experiment of single faults, vibration signals are collected in seven states, namely the 
normal condition, the inner raceway fault (two states with different fault diameters), the ball fault 
(two states with different fault diameters), and the outer raceway fault (two states with different 
fault diameters). The fault diameters are 0.1778 mm and 0.3556 mm respectively. The time 
domain waveforms of vibration signals collected in seven states are presented in Fig. 7. Single 
fault diagnosis aims to identify the seven states effectively and accurately. Vibration signals 
collected in a certain state are divided into 29 subsets with equal lengths of 4096. A detailed 
description for vibration signals is shown in Table 1.  

 
Fig. 7. Time domain waveforms of vibration signals 

The EWT-Kernel PCA method is applied to process vibration signals. To start with, the proper 
number of segment needs to be determined. EMD is initially applied to analyze vibration signals, 
and the number of intrinsic mode function obtained using EMD is between 10 and 12. Considering 
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that EMD suffers from the major shortcoming of mode mixing, the determination of the proper 
number of segment is reasonably not larger than 10. Vibration signals collected at different states 
are then decomposed using EWT, and the number of segment varies from 2 to 10. Energy, kurtosis, 
and root mean square are selected as characteristic indexes. Characteristic indexes of the signals, 
which are decomposed by using EWT, are extracted to construct Eigen-matrix which serves as 
input of GA-SVM. The recognition rate is obtained using GA-SVM, and the results are presented 
in Table 2. The proper number of segment is determined by comparing the recognition rate. 

Table 1. Detailed description of vibration signals 
Class Bearing fault Defect size (mm) Sample number 

State 1 Normal 0 29 
State 2 Inner raceway 0.1778 29 
State 3 Inner raceway 0.3556 29 
State 4 Ball 0.1778 29 
State 5 Ball 0.3556 29 
State 6 Outer raceway 0.1778 29 
State 7 Outer raceway 0.3556 29 

Table 2. Recognition rate (single faults) 
Number of segment Recognition rate (%) Time (s) 

2 98.8095 24.0550 
3 100 25.9561 
4 97.6190 26.9161 
5 95.2381 27.7974 
6 95.2381 32.0490 
7 95.2381 32.1671 
8 96.4286 32.5506 
9 94.0476 33.2683 
10 94.0476 33.7320 

According to Table 2, the highest recognition rate is easily found when the number of segment 
varies from 2 to 10. From Table 2, we can see that the highest recognition rate is 100 % when the 
number of segment is 3; therefore, the proper number of segment is 3. Kernel PCA is applied to 
extract the principal characteristics from Eigen-matrix. Furthermore, cumulative contribution 
limit is adopted to determine the number of principal characteristics. The detailed description for 
cumulative contribution is presented in Table 3. 

Table 3. Cumulative contribution 
Serial number Eigenvalue Cumulative contribution 

1 124.6073 0.6412 
2 24.2019 0.7657 
3 16.1617 0.8489 
4 9.6115 0.8984 
5 7.7455 0.9382 
6 4.9167 0.9635 
7 3.0010 0.9790 
8 2.6911 0.9928 
9 1.3953 1 

The threshold of cumulative contribution limit is set to 0.90 in this paper. According to Table 3, 
the anterior five characteristics are extracted as principal characteristics. Finally, the new 
Eigen-matrix serves as the input of GA-SVM. Table 1 shows that a total of 29 samples are obtained 
in each state, and the anterior 60 % of samples are selected as training samples. For comparison, 
EMD, EEMD and LMD are applied to decompose vibration signals collected in different states as 
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well. When using EEMD, there are two parameters are needed to be set, which are the ensemble 
number and the amplitude of the added white noise. In this study, the ensemble number and the 
amplitude of the added white noise are set to 100 and 0.2, respectively [56]. The results of 
EEMD/EWT/LMD decomposition are given in Figs. 8-13. In this paper, we only give the results 
of two states, namely State 1 (Normal) and State 7 (Outer raceway fault, the defect size is  
0.3556 mm) because of limited space. Then energy, kurtosis, and root mean square are computed 
to construct an Eigen-matrix, which is inputted in GA-SVM, and the result is shown in  
Figs. 14-17. A detailed comparison results for single fault diagnosis is presented in Table 4. 
According to Table 4, modified EWT-Kernel PCA, EWT (ܰ = 3), EEMD and LMD are superior 
to EMD in two aspects: recognition rate and computing time. In addition, modified EWT–Kernel 
PCA, EWT (ܰ = 3), EEMD and LMD can reach a high recognition rate. As for computing time, 
the modified EWT-Kernel PCA is better than EWT (ܰ = 3), EEMD and LMD. 

 
a) b) 

Fig. 8. The signal decomposition of State 1 by EEMD 

a) b) 
Fig. 9. The signal decomposition of State 7 by EEMD 

 
Fig. 10. The signal decomposition of State 1 by EWT 
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Fig. 11. The signal decomposition of State 7 by EWT 

 
Fig. 12. The signal decomposition of State 1 by LMD 

 
Fig. 13. The signal decomposition of State 7 by LMD 

 
Fig. 14. State recognition using the modified 

EWT-Kernel PCA 

 
Fig. 15. State recognition using EMD 
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Fig. 16. State recognition using EEMD 

 
Fig. 17. State recognition using LMD 

Table 4. Comparison results (single fault diagnosis) 

Method Recognition rate (%) Time (s) Optimum parameters ߛ ܥ 
Modified EWT-Kernel PCA 98.8095 20.8028 2.9676 18.6115 

EWT (ܰ = 3) 100 25.9561 21.5076 1.9846 
EMD 91.6667 32.4293 3.2776 0.7719 

EEMD 98.8095 27.3467 13.4472 0.4829 
LMD 100 27.9825 6.8211 1.0040 

4.2. Compound fault diagnosis 

In the compound fault experiment, vibration signals are collected in four states, namely  
normal, rotor unbalance, bolt looseness, and compound fault (rotor unbalance and bolt looseness 
coexist). The time domain waveforms of vibration signals, which are preprocessed using Penalty 
wavelet threshold de-noising, are presented in Fig. 18. 

To identify the four states effectively and accurately, the preprocessed vibration signals are 
segmented into 80 subsets of equal lengths of 4096. Further description is presented in Table 5. 

 
Fig. 18. Time domain waveform of vibration signals 

Table 5. Further description of the preprocessed vibration signals 
Class Fault Sample number 

State 1 Normal 80 
State 2 Bolt looseness 80 
State 3 Rotor unbalance 80 
State 4 Compound fault 80 

The processing procedures of compound fault diagnosis are the same as that of single fault 
diagnosis. EMD is initially utilized to analyze vibration signals, and the number of intrinsic mode 
function obtained using EMD is between 9 and 11. The proper number of segment is considered 
less than 9 because EMD suffers from mode mixing. Vibration signals collected in four states are 
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then decomposed using EWT, and the number of segment varies from 2 to 9. Energy, kurtosis and 
root mean square are extracted to construct Eigen-matrix, which serves as the input of GA-SVM. 
The results are presented in Table 6. The comparison results of the recognition rates of compound 
fault diagnosis revealed that the proper number of segment can be found. 

Table 6. Recognition rate (compound faults) 
Number of segment Recognition rate (%) Time (s) 

2 49.2188 24.6227 
3 75.7813 26.6460 
4 88.2813 26.4702 
5 97.6563 25.1563 
6 78.1250 27.3122 
7 95.3125 24.1459 
8 96.0938 26.7265 
9 81.2500 28.1158 

Table 6 shows that the highest recognition rate is obtained when the number of segment varies 
from 2 to 9. Hence, the proper number of segment is 5. Kernel PCA is applied to extract principal 
characteristics from Eigen-matrix. Cumulative contribution limit is adopted to determine the 
number of principal characteristics. The detailed description for cumulative contribution is 
presented in Table 7. 

Table 7. Cumulative contribution 
Serial number Eigenvalue Cumulative contribution 

1 119.2375 0.5610 
2 14.9248 0.6312 
3 14.0555 0.6973 
4 11.8911 0.7533 
5 9.2964 0.7970 
6 7.0838 0.8303 
7 6.5162 0.8610 
8 5.6663 0.8877 
9 4.9138 0.9108 
10 4.3771 0.9314 
11 3.9011 0.9497 
12 2.9933 0.9638 
13 2.7913 0.9769 
14 2.5411 0.9889 
15 2.3607 1 

According to Table 7, because the threshold of the cumulative contribution limit is set to 0.90 
in this paper, the anterior nine characteristics are extracted as principal characteristics. Finally, the 
new Eigen-matrix serves as the input of GA-SVM. Based on Table 5, a total of 80 samples are 
obtained in each state, and the anterior 60 % of samples are selected as training samples. The 
results of EEMD/EWT/LMD decomposition are given in Figs. 19-24. In this paper, we only give 
the results of two states, namely State 1 (Normal) and State 4 (Compound fault) because of limited 
space. The results of state recognition using modified EWT-Kernel PCA, EMD, EEMD and LMD 
are shown in Figs. 25-28. The result of the detailed comparison of compound fault diagnosis is 
presented in Table 8. According to Table 8, modified EWT-Kernel PCA, EWT (ܰ = 5) EEMD 
and LMD are obviously far superior to EMD in terms of recognition rate. For computing time, the 
modified EWT-Kernel PCA is better than EWT (ܰ = 5), EMD, EEMD and LMD. 
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Table 8. Comparison results (compound faults diagnosis) 

Method Recognition rate (%) Time (s) Optimum parameters ߛ ܥ 
Modified EWT-Kernel PCA 98.4375 18.0463 104.7613 1.5739 

EWT (ܰ = 5) 97.6563 25.1563 87.7794 1.8892 
EMD 94.5313 43.0471 46.9961 0.9804 

EEMD 99.2188 43.5325 100.1085 0.8619 
LMD 99.2188 20.2320 9.3590 0.5783 

 

a) 
 

b) 
Fig. 19. The signal decomposition of State 1 by EEMD 

a) b) 
Fig. 20. The signal decomposition of State 4 by EEMD 

Fig. 21. The signal decomposition of State 1 
by EWT 

Fig. 22. The signal decomposition of State 4 
by EWT 
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Fig. 23. The signal decomposition  

of State 1 by LMD 

 
Fig. 24. The signal decomposition  

of State 4 by LMD 
 

 
Fig. 25. State recognition using  

modified EWT-Kernel PCA 

 
Fig. 26. State recognition using EMD 

 
 

 
Fig. 27. State recognition using EEMD 

 
Fig. 28. State recognition using LMD 

Fei Chen conceived the idea of using modified empirical wavelet transform to analyze 
vibration data. Chao Chen applied kernel principal component analysis into reducing dimension 
and guide the writing of the whole paper. Yifeng Ye conducted the method to better diagnosis the 
single and compound fault of the motorized spindle and wrote the majority of the paper. Weizheng 
Chen Carried out the experiments. Binbin Xu processed the experimental data and analyzed the 
results. Zhaojun Yang edited the manuscript and checked the grammatical and spelling errors. 

5. Conclusions 

In this paper, a method based on modified EWT and Kernel PCA for the single and compound 
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fault diagnoses of the motorized spindle is investigated. A comparison study among EWT  
(the proper number of segment is selected), EMD, EEMD, LMD and modified EWT-Kernel PCA 
is executed. The experimental data obtained from the bearing data center of Case Western Reserve 
University are utilized for the single fault diagnosis of a motorized spindle, and as for compound 
fault diagnosis, experiments are carried out on a test platform for a motorized spindle. The analysis 
results indicate that the proposed method can effectively and correctly performs fault diagnosis. 
The recognition rate using modified EWT-Kernel PCA reach 98.8095 % and 98.4375 % in terms 
of single and compound fault diagnoses, respectively, which are higher than those in EMD. 
Moreover, for single fault diagnosis, the recognition rate using modified EWT-Kernel PCA, EWT, 
EEMD and LMD are almost the same, and as for compound fault diagnosis, modified  
EWT-Kernel PCA, EEMD and LMD are superior to EWT (ܰ = 5) and EMD. Compared with 
EWT, EMD, EEMD and LMD in the aspect of computing time, the proposed method saved 19 %, 
35 %, 24 % and 26 % for single fault diagnosis, respectively. For compound fault diagnosis, the 
proposed method saved 39 %, 58 %, 59 % and 11 %, respectively. Finally, this method can be 
generalized for another mechanical fault diagnosis. 
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