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Abstract. The polynomial dimensional decomposition (PDD) method is applied to study the 
amplitude-frequency response behaviors of dynamical system model in this paper. The first two 
order moments of the steady-state response of a dynamical random system are determined via 
PDD and Monte Carlo simulation (MCS) method that provides the reference solution. The 
amplitude-frequency behaviors of the approximately exact solution obtained by MCS method can 
be retained by PDD method except the interval close to the resonant frequency, where the 
perturbations may occur. First, the results are shown on the two degrees of freedom (DOFs) spring 
system with uncertainties; the dynamic behaviors of the uncertainties for mass, damping, stiffness 
and hybrid cases are respectively studied. The effects of PDD order to amplitude-frequency 
behaviors are also discussed. Second, a simple rotor system model with four random variables is 
studied to further verify the accuracy of the PDD method. The results obtained in this paper show 
that the PDD method is accurate and efficient in the dynamical model, providing the theoretical 
guidance to complexly nonlinear rotor dynamics models. 
Keywords: polynomial dimensional decomposition, Monte Carlo simulation, order reduction, 
dynamical characteristic, rotor, uncertainty. 

1. Introduction 

The dynamical analysis of multiple DOF (MDOF) nonlinear system has become one central 
issue of concerns in dynamics, attracting the significant attention of researchers in many areas. 
The calculating quantity of the MDOF system is extremely huge and the qualitative analysis can’t 
provide comprehensive guidance, so the reduced models obtained by order reduction methods are 
necessary. Then the numerical simulation and theoretical analysis on the reduced model will be 
less expensive and more clearly. A series of efficient order reduction methods can be applied in 
actual high-dimensional system. For example, center manifold method [1, 2], inertial manifold 
method [3], POD method [4-8], Galerkin method [9, 10], Lyapunov-Schmidt method [11, 12], and 
other order reduction methods [13], which were summarized by Rega [14] and Steindle [15] in 
dynamic research. These methods are usually valid in deterministic systems and will be out of 
action in uncertain systems.  

The physical parameters of engineering systems may change in an uncertain way because of 
considering design uncertainty and the variance of system response is also uncertain. The goal is 
to allow an estimate of dynamic responses generated by these considerations on physical 
parameters. There are a variety of methods in a view of uncertainties for this type of issues: such 
as the perturbation method [16, 17], Neumann method [18, 19], MCS method [20-22], polynomial 
chaos expansion (PCE) method [23-25], and PDD method [26-28]. The perturbation method is 
based on the expansion of random quantities into Taylor series [29], and the Neumann method is 
on the basis of Neumann series [30, 31], they can both solve the small random fluctuations 
problems but do not fit for the case close to the resonant frequency. Monte Carlo simulation is an 
exact method to obtain approximately accurate solutions of the uncertain system. But the MCS’s 
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calculated amount is very large in case of corresponding large samples [32]. The PCE and PDD 
are both efficient uncertain quantification methods, which are widely used in the high-dimensional 
complex systems [33, 34].  

The PCE approximation commits a larger error than the PDD approximation for identical 
expansion orders when the cooperative efforts of input variables on an eigenvalue attenuate 
rapidly or vanish altogether [35]. The accuracy and efficiency of PDD is verified by some 
numerical results in comparison to PCE [36, 37]. The PDD method is a good way to study 
uncertain problems, so the PDD method is chosen to solve dynamical systems with uncertainties 
in this paper.  

The motivation of this paper is to generalize the PDD method to dynamical system models 
with uncertainties. The random dynamic system response and brief introduction to PDD method 
are provided in Section 2. A spring model of two DOF is established in Section 3. In Section 4, 
the amplitude frequency behaviors of the spring system model with uncertainties of design 
parameters are discussed to verify the efficiency of the PDD method via comparing with the Monte 
Carlo simulation method, and the influence of the PDD’s approximation order is highlighted. The 
PDD method is generalized to linear system model in Section 5. Finally, the conclusions and 
outlooks are drawn in Section 6. 

2. Response of random dynamic system with harmonic excitation 

The dynamical system with uncertainties will be introduced in this section, and then the PDD 
method will be used to solve the dynamical equation. 

2.1. Design uncertainties in a dynamical system 

In general, the ݊ × ݊ mass matrix ۻ, damping matrix ۱, and stiffness matrix ۹ can describe 
the dynamical system, where ݊ is the DOF number. The external excitation force of the system 
can be denoted as ۴ሺݐሻ, and ܡሺݐሻ is DOF vector. 

We consider that the mass, damping and stiffness matrices are uncertain, which can be 
expressed as: ۻ = ሺ1ۻ + ெሻ, (1)۱ߜெݒܿ = ۱ሺ1 + ሻ, (2)۹ߜݒܿ = ۹ሺ1 + ሻ. (3)ߜݒܿ

The parameters in Eqs. (1-3) are shown as follows: ܿݒெ – cov of mass, ߜெ – standard normal 
deviate of mass, ܿݒ – cov of damping, ߜ – standard normal deviate of damping, ܿݒ – cov of 
stiffness, ߜ – standard normal deviate of stiffness.  

The system is deterministic when the coefficient of variance (cov) is zero. We choose simple 
uncertainty to show the motivation of this paper. On the basis of the PDD method, the dynamic 
behaviors around the resonant frequencies will be highlighted. It should be specified that the PDD 
method is generalized to solve the dynamical problems for the first time. On account of actually 
physical significance, Gaussian distribution may lead to negative values of the design parameters, 
so the control parameters are considered to be very small, design parameters won’t be negative. 
The PDD method can also be applied in other distribution (Uniform, Beta distribution, etc.), we 
don’t discuss in details here. 

In general, dynamical equation can be expressed as: ܡۻሷሺݐሻ + ሻݐሶሺܡ۱ + ሻݐሺܡ۹ = ۴ሺݐሻ. (4)

We consider the external excitation to be harmonic ۴ሺݐሻ = ۴݁ఠ௧, the steady state response 
of system is assumed to be ܡሺݐሻ = ݅ ,ఠ௧݁܇ = √−1, and ܇ is the solution of Eq. (5):  
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ሺ−߱ଶۻ + ݅߱۱ + ۹ሻ܇ = ۴. (5)

The matrixes ۹ ,۱ ,ۻ and ܇ are random, which can be described by the moments of the system. 
The mean and standard deviation (SD) of the system response are calculated. The calculating 
formulas of the first two order moments are provided in Ref. [38]. The amplitude of the amplitude-
frequency response function can be denoted as |܇ଵ + ଵ܇ ଶ|, where܇݅  and ܇ଶ  are the real and 
imaginary part of ܇ respectively.  

Actually, both MCS and PDD methods can be applied to derive these moments. The results 
obtained by MCS method can provide reference solutions and the PDD method will be used to 
compare with the MCS method in this paper. 

The PDD method is an efficient uncertain quantification method for order reduction in the 
stochastic systems [26], an ܵ-variate approximation PD of the response ݕሺܠሻ, described by [39]: 

ሻܠௌሺݕ = ݕ +  ሻேݔሺݕ
ୀଵ +  ,భݔభమ൫ݕ మ൯ேݔ

భ,మୀଵ;భழమ +  ,భݔభమయ൫ݕ ,మݔ య൯ேݔ
భ,మ,యୀଵ;భழమழయ     + ⋯ +  ,భݔభ…ೄ൫ݕ … , ೄ൯ேݔ

భ,…,ೄୀଵ;భழ⋯ೄ .  (6)

Eq. (6) can be regarded as a finite hierarchical expansion of an output function in terms of the 
input variables with the increasing dimensions, and ݕ  is a constant, ݕሺݔሻ  is a univariate 
component function that represents individual contribution to ݕሺܠሻ by input variable ݔ  acting 
alone. In a similar way, ݕభమ൫ݔభ, ,భݔభమయ൫ݕ ,మ൯ is a bivariate component functionݔ ,మݔ  య൯ isݔ
trivariate and ݕభ…ೄ൫ݔభ, … ,  ೄ൯ is an ܵ-variate component function. The response converges toݔ
the exact function ݕሺܠሻ, when ܵ → ܰ. 

The approximate expressions of the first three variate component functions are given, which 
are described by: 

ሻݔሺݕ ≅  ሻ,ݔ߰ሺߙ
ୀଵ  (7)

,భݔభమ൫ݕ మ൯ݔ ≅   మ൯,ݔభ൯߰మమ൫ݔభమభమ߰భభ൫ߚ
భୀଵ


మୀଵ  (8)

,భݔభమయ൫ݕ ,మݔ య൯ݔ ≅    య൯.ݔమ൯߰యయ൫ݔభ൯߰మమ൫ݔభమయభమయ߰భభ൫ߛ
భୀଵ


మୀଵ


యୀଵ  (9)

The corresponding coefficients are the parameters ߙ భమభమߚ , భమయభమయߛ , , you can see 
details in Ref. [26]. 

2.2. Dynamical equation on the basis of PDD 

As above, ܡሺݐሻ is the random DOF vector, which is a solution of the Eq. (4), and ۹ ,۱ ,ۻ are 
expressed as Eqs. (1) to (3). An ܵ-variate approximation of the PDD of response ݕሺ܆ሻ can be 
described by: 
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ሻ܆ௌሺݕ ≅ ݕ +   ߰ሺߙ ܺሻ
ୀଵ

ே
ୀଵ +    భమభమ߰భభ൫ߚ ܺభ൯߰మమ൫ ܺమ൯

భୀଵ


మୀଵ
ே

భ,మୀଵ;భழమ     +     భమయభమయ߰భభ൫ߛ ܺభ൯߰మమ൫ ܺమ൯߰యయ൫ ܺయ൯
భୀଵ


మୀଵ


యୀଵ

ே
భ,మ,యୀଵ;భழమழయ     + ⋯ +   ⋯  భ,…,ೄభ,…,ೄܥ ෑ ߰ೖೖ൫ ܺೖ൯ௌ

ୀଵ


భୀଵ


ೄୀଵ
ே

భ,…,ೄୀଵ;భழ⋯ழೄ .
 (10)

In the case of ܵ = ܰ, Eq. (10) will converge to ݕሺ܆ሻ in the mean square sense as ݉ → ∞. We 
apply the dimension reduction integration method [40] to calculate 0ݕ and 1݆ܵ݅,…,1݅ܥ,…,݆ܵ. We use 
only the univariate method to study the simple models in this paper. So, the corresponding 
coefficients are: 

ݕ = න ூோಿܠ൯݀ܠ൯߶൫ܠ൫ݕ ≅  න ,ሺ0ݕ ⋯ ,0, ,ݔ 0, ⋯ ,0ሻ߶ሺݔሻାஶ
ିஶ ݔ݀ −ே

ୀଵ ሺܰ − 1ሻݕ൫൯, (11)

ߙ = න ூோಿܠ൯݀ܠሻ߶൫ݔ൯߮ሺܠ൫ݕ ≅ න ,ሺ0ݕ ⋯ ,0, ,ݔ 0, ⋯ ,0ሻ߮ሺݔሻାஶ
ିஶ . (12)ݔ݀

The dynamical systems in this manuscript are linear and contain at most four random variables, 
so the univariate method is enough. 

The calculating formulas of response moments of the PDD method are written as Eqs. (13) 
and (14). In this paper, we only use the first and second order moment, so the formulas of first two 
order moments are listed as follows: ܧሾݕௌሺ܆ሻሿ = ሻ܆ௌሺݕሾܧ, (13)ݕ − ሿଶݕ =  ቌ  ⋯   ⋯  భ,⋯,ೞభ,⋯,ೞଶܥ

ೞୀଵ


భୀଵ
ே

ೞୀೞషభାଵ
ேି௦ାଵ

భୀଵ ቍௌ
௦ୀଵ . (14)

As mentioned above, the PDD components can satisfy the form of Eq. (15): ۻഥഥ തሷܠ ሺݐሻ + ۱തതܠതሶ ሺݐሻ + ۹ഥഥܠതሷ ሺݐሻ = ۴തതሺݐሻ. (15)

So, the dynamical system with uncertainty can be regarded as the deterministic one. Then we 
can apply PDD method to study the stochastic moments of the amplitude-frequency response of 
the dynamical system. 

Remark 1. The common design uncertainties of general dynamic system are listed, such as the 
mass, damping, stiffness. We use the simple uncertainty (normal distribution) to highlight the 
specially dynamical characteristics close to resonant frequencies obtained by the PDD method. In 
the previous studies of other researchers, they all use the PCE method, but the PCE method has a 
larger error than the PDD method. This paper generalizes the PDD method to solve the dynamical 
problems. 

3. Two-DOF spring system model 

A two-DOF spring system model will be established which is shown in Fig. 1, the PDD and 
MCS methods will be applied to calculate the first two order moments of steady state response. 
The total cost of MCS method is more expensive than the PDD method, the advances of the PDD 
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method will be discussed briefly in Section 4.  

 
Fig. 1. Two-DOF spring model 

The dynamical equation of the spring system model is similar as Eq. (4), the parameters are 
expressed as follows: ۻ = ൬݉ଵ ݉ଶ൰ ,   ۱ = ቀܿଵ + ܿଶ −ܿଶ−ܿଶ ܿଶ + ܿଷቁ ,   ۹ = ൬݇ଵ + ݇ଶ −݇ଶ−݇ଶ ݇ଶ + ݇ଷ൰ ,   ۴ሺݐሻ = ൬ܨଵܨଶ൰. (16)

The design parameters are all assumed to be uncertain and they are considered to be equal to 
each other. The stiffness, damping and the mass are denoted as ݇, ܿ and ݉ respectively. See the 
values in details in Table 1. 

The formulas of uncertain parameters are written as Eqs. (15)-(17): ݉ = ഥ݉ሺ1 + ܿሻ, (17)ߜݒܿ = ܿ̅ሺ1 + ݇ሻ, (18)ߜݒܿ = ത݇ሺ1 + ሻ. (19)ߜݒܿ

The parameters ܿݒ, ܿݒ, ܿݒ are the cov parameters and ഥ݉ , ܿ̅, ത݇ are the mean values.  
Remark 2. The 2-DOF spring model is selected to study dynamic behaviors of the stochastic 

system. We consider that the response and external excitation are harmonic, see details in 
Section 2. So, we can study the analytical behaviors to highlight the efficiency of the PDD method. 
We will also choose a linear rotor system model to further verify the accuracy of the PDD method. 

Table 1. Corresponding values ݉ (kg) ܿ (Nm-1s-1) ݇ (Nm-1) ܿݒ ܿݒ ܿݒ 1ܨ (N) 2ܨ (N) 
1 1 15000 3 % 4 % 5 % 1 0 

4. Dynamical characteristics of the spring system 

The sole design (stiffness, damping or stiffness) uncertainty is studied first in this section. Then 
the amplitude-frequency response characteristics of the hybrid uncertainty cases are discussed. 
The DOF vector is calculated for 1001values of ߱/ሺ2ߨሻ in the domain from 15 Hz to 40 Hz. 

The MCS results are obtained with 10000 samples of the random variables ߜ, ߜ, ߜ. The 
first two order moments are plotted in Fig. 2 to Fig. 8. The PDD order is calculated in the cases of 
2 and 9 to verify the effects of PDD order. 

We discuss the advances of the PDD method briefly here. We need to call the response of the 
system 10000 times via using the MCS method. In comparison to MCS method, the times (PDD 
method) you call the response are ∑ ቀ ܴܰ − ݇ቁ݇=ܴ݇=0 ሺ݊ − 1ሻܴ−݇ , etc., the univariate PDD is ሺ݊ − 1ሻܰ + 1, where ܰ is the number of uncertain quantities and ݊ is the number of integration 
points. The MCS method is more expensive than the univariate PDD, so we choose PDD method 
to study the response of the stochastic dynamics systems [26].  
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4.1. Stiffness uncertainty 

In case of PDD order 2 and 9, the first two order moments of the system are plotted in Fig. 2, 
the mean reserves the amplitude-frequency trend of the MCS result, and the SD meets well with 
the MCS result. Both mean and SD calculated by PDD have oscillations close to the resonance. 
As the PDD order increases, the curves oscillate more and the vibration amplitude decreases. 

 
a) Mean of PDD 

 
b) SD of PDD 

Fig. 2. Amplitude frequency curves of PDD2 (red line), PDD9 (black line) and MCS (blue line)  

4.2. Damping uncertainty 

In Fig. 3, the spring system model with damping uncertainty is discussed. The PDD results of 
mean are in good agreement with the MCS results, and the oscillations disappear. Compared with 
the mean results, the SD values agree well with the MCS results, the higher PDD order has little 
effect to the dynamical characteristics. 

As usual, variation of damping has little effect to the position of resonant frequency of 
dynamical system, so the resonant frequencies of mean and SD values keep almost the same. 
Amplitude usually varies as the damping in dynamical system, and the results in Fig. 3 verify this 
case. At present, the cause leads to the disappearing of PDD oscillations is not clear, we can regard 
this as a research topic in the future. 

 
a) Mean of PDD 

 
b) SD of PDD 

Fig. 3. Amplitude frequency curves of PDD2 (red line), PDD9 (black line) and MCS (blue line)  

4.3. Mass uncertainty 

Similar as the stiffness and damping uncertainties, the amplitude-frequency curves of the mass 
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uncertainty case are plotted in Fig. 4. The SD values obtained by the PDD method are in great 
agreement with the MCS results. In the case of higher PDD order (the order is 9), the PDD results 
can approximate to the exact results better than the order 2 case. 

 
a) Mean of PDD 

 
b) SD of PDD 

Fig. 4. Amplitude frequency curves of PDD2 (red line), PDD9 (black line) and MCS (blue line)  

Remark 3. The dynamic behaviors of spring system model with three cases of uncertain design 
parameters are studied. The first two order moments of the system are calculated by the PDD 
method to compare with the MCS results so as to verify PDD method’s accuracy. The oscillations 
of PDD results occur near the frequency of resonance and increase as the PDD order increase. In 
the case of higher PDD order, the amplitude decreases, the PDD method reserves the 
amplitude-frequency characteristics better. The damping uncertainty of the PDD results has 
minimum effect compared with the mass and stiffness uncertainties, there is almost no oscillation, 
and the SD curves have perfect agreement with the MCS results. 

4.4. Hybrid uncertainty 

The hybrid uncertainty case of spring system model will be discussed in this section. See the 
uncertain parameter values and the order number in Table 2. 

Table 2. Corresponding uncertain parameters and the order 
Case ߜ ߜ ߜ Order Order 

1 0.05 0.04  2 9 
2 0.05  0.03 2 9 
3  0.04 0.03 2 9 
4 0.05 0.04 0.03 2 9 

4.4.1. Case 1 

Similar as the previous discussion, the SD curves based on the PDD method have good 
agreement with the MCS results except for the frequencies around the resonant frequency (see 
Fig. 5). The amplitude values decrease as PDD order increases, the approximation of the PDD 
results to the MCS results are better. The mean and SD oscillate more than the sole damping 
uncertainty (Section 4.2). 

4.4.2. Case 2 

In Fig. 6(a), the amplitude frequency response behaviors of PDD results of the mean reserve 
the dynamical trend of the MCS results, and the PDD order 9 approximates better than the order 
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2. The PDD results of the SD can also reserve amplitude-frequency characteristics of the MCS 
results better in Fig. 6(b), but the results oscillate more than the sole mass or stiffness uncertainty, 
the amplitude-frequency characteristics are more complex than the cases we previously discussed. 
So, we can draw a conclusion that the hybrid uncertainties (both mass and stiffness) are more 
sensitive than the sole uncertainty (Sections 1 and 3). On the basis of such complex uncertainties, 
the PDD results can also have perfect agreement with the MCS results and the results are better 
when the PDD order increases. 

 
a) Mean of PDD 

 
b) SD of PDD 

Fig. 5. Amplitude frequency curves of PDD2 (red line), PDD9 (black line) and MCS (blue line)  

 
a) Mean of PDD 

 
b) SD of PDD 

Fig. 6. Amplitude frequency curves of PDD2 (red line), PDD9 (black line) and MCS (blue line)  

4.4.3. Case 3 

Both damping and mass uncertainties are discussed here. We want to compare case 3 with the 
sole damping uncertainty (Section 4.2). In Fig. 7, the mean and SD of PDD results oscillate more 
than those in Fig. 3. To compare the case 3 with case 1 and 2, both the stiffness (compare case 2 
with 3) and mass (compare case 1 with 2) uncertainties affect more than the damping uncertainty.  

4.4.4. Case 4 

In Fig. 8, it is clear that the first two order moments obtained by PDD method are almost the 
same as those of case 2. The PDD results can meet the exact solutions very well. The results based 
on three uncertain variables all reveal that the damping uncertainty have little effect to the system. 

Remark 4. The amplitude frequency response behaviors of the spring system model with 
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hybrid uncertainties are studied in four cases (1-4). In case 1 and 3, the stiffness and mass 
uncertainties have larger effect compared with the solely damping uncertainty (Section 4.2), the 
oscillation occur around the resonance. The case 4 contains three uncertain variables (mass, 
damping and stiffness), which oscillates more than case 1 and 3, the damping uncertainty has little 
effect to the system. Meanwhile, the PDD results can agree better with the MCS ones as the PDD 
order increases. The mass and stiffness uncertainties are more sensitive than the damping 
uncertainty. 

 
a) Mean of PDD 

 
b) SD of PDD 

Fig. 7. Amplitude frequency curves of PDD2 (red line), PDD9 (black line) and MCS (blue line)  

 
a) Mean of PDD 

 
b) SD of PDD 

Fig. 8. Amplitude frequency curves of PDD2 (red line), PDD9 (black line) and MCS (blue line)  

5. Dynamic behaviors of the linear rotor system 

The PDD method will be used to study amplitude frequency behaviors of the linear rotor 
system with uncertain quantities preliminarily in this section. We will only discuss the amplitude 
frequency response behaviors of the system in the case of PDD order 2, and other complex cases 
will be studied in details in the authors’ future work. 

5.1. HB method in rotor system 

The rotor system model in this paper is similar as one of the authors’ previous work, see details 
in Ref. [8]. The nonlinear stiffness term is neglected, so the model we discussed as follows is a 
linear case, the dynamical equation can be expressed as Eq. (1) in Ref. [8], and we don’t provide 
the equation here. We will use the HB-1 method to solve the response of the rotor system when 



2639. APPLICATION OF THE POLYNOMIAL DIMENSIONAL DECOMPOSITION METHOD IN A CLASS OF RANDOM DYNAMICAL SYSTEMS.  
KUAN LU, LEI HOU, YUSHU CHEN 

4836 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. NOV 2017, VOL. 19, ISSUE 7. ISSN 1392-8716  

the Fourier series order is 1. The response is considered as follows: ܡ = ۯ + ݐଵcos߱ۯ + ۰sin߱۴(20) ,ݐሺݐሻ = ۴ + ۴ଵcos߱ݐ + ۴ଶsin߱(21) .ݐ

Hence, we can get the equations as follows: ܡሶ = ݐଵ߱sin߱ۯ− + ۰߱cos߱ܡ(22) ,ݐሷ = ݐଵ߱ଶcos߱ۯ− − ۰߱ଶsin߱(23) ,ݐ

where: ۴ = ሺ0 −݉ଵ݃ 0 −݉ଶ݃ 0 −݉ଷ݃ሻ்,   ۴ = ሺ0 0 ݉ଶ݁߱ଶ 0 0 0ሻ், ۴ଶ = ሺ0 0 0 ݉ଶ݁߱ଶ 0 0ሻ். 
Substitute Eqs. (20)-(23) into Eq. (4), we can get: ۹ۯ = ۴, (24)۹ۯଵ + ۱۰߱ − ߱ଶۯۻ = ۴, (25)۹۰ଵ − ߱ۯ۱ − ۰ଵ߱ଶۻ = ۴ଶ. (26)

We neglect the static part, and we can obtain the Eq. (27): 

ቆ۹ − ଶ߱ۻ ۱߱−۱߱ ۹ − ଶቇଵଶ×ଵଶ߱ۻ ൬ۯ۰൰ଵଶ×ଵ = ൬۴۴ଶ൰ଵଶ×ଵ. (27)

In Eq. (27): ۯ = ሺܣଵଵ ଵଶܣ ଵଷܣ ଵସܣ ଵହܣ ଵሻ்,    ۰ଵܣ = ሺܤଵଵ ଵଶܤ ଵଷܤ ଵସܤ ଵହܤ  .ଵሻ்ܤ
The response can be obtained via calculating Eq. (27), then we can get the amplitude in  

Eq. (28): 

ܡ = ටۯଵଶ + ۰ଵଶ,    ሺ݅ = 1,2, ⋯ ,6ሻ. (28)

5.2. Four random variables case 

In this section, we discuss the four random variables case. The uncertain values and the 
parameters are shown in the Table 3. 

Table 3. The parameter values of the rotor system ݉ଵ ݉ଶ ݉ଷ ܿଵ ܿଶ ܿଷ ݇ଵ ݇ଶ ݁ (mm) ߦ ۹ߦ ۱ߦ ۻߦ 
4 30 4 1050 2100 1050 2×106 2×106 0.01 10 % 10 % 10 % 10 % 

The mass matrix ۻ, stiffness matrix ۹, damping matrix ۱ each contains one random variable 
respectively, and the eccentricity ݁  contains one random variable. So, there are four random 
variables in this six-DOF rotor system, we don’t write in details in this paper. 

The PDD is calculated in the case of polynomial order 2, and the results are reflected in Fig. 9. 
The mean and SD values for PDD agree well with results of MCS method. It seems that the PDD 
results will approximate to the approximately exact results better as the polynomial order  
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increases. The results in the rotor system with four random variables further verify the accuracy 
of the PDD method. 

 
a) Mean of PDD 

 
b) SD of PDD 

Fig. 9. Amplitude frequency curves of PDD (red line) and MCS (blue line)  

6. Conclusions 

The PDD method has been used to study the amplitude frequency response behaviors of the 
dynamical system with uncertainties for the first time. A two DOF spring system has been 
established by the Newton’s second law, and the amplitude-frequency characteristics of different 
system design parameters with uncertainties have been respectively discussed. The results show 
that both the stiffness and mass uncertainties are more sensitive than the damping uncertainty. The 
accuracy and efficiency of the PDD method has been verified in comparison to MCS method. The 
effects of PDD order to order reduction accuracy have also been discussed. A linear rotor system 
model has been applied to further verify the efficiency of the PDD method. Further work on this 
subject will be carried out by the authors in three aspects: the first is to eliminate the perturbations 
around the resonant frequency and the cause of damping leads to the disappearing of PDD 
oscillations; the second is to generalize the PDD method to the nonlinear rotor systems; the third 
is to combine the POD and PDD method to reduce the dimension and order of the complex 
nonlinear rotor systems. 
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