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Abstract. The article considers dynamic processes mathematical modeling in a mechanical 
system, consisting of an elastic hollow cylinder, surrounded by an elastic medium and containing 
viscous liquid and vibrating coaxial rigid cylinder. The amplitude frequency characteristic for 
investigating bending cylinder oscillations as one-mass system is defined. It is shown, that the 
constructed amplitude characteristic makes it possible to define the considered system resonance 
frequencies oscillations. The calculations demonstrated the significance of taking into account 
viscous liquid inertia and the surrounding elastic medium.   
Keywords: hydroelasticity, viscous liquid, elastic medium, hollow cylinder, oscillations, 
amplitude frequency characteristic, one-mass system. 

1. Introduction 

The problems of mathematical modeling of elastic construction elements interaction with 
liquid are of theoretical and practical interest [1]. For example, [2-8] deal with hydroelasticity 
problems of homogeneous plates, interacting with viscous liquid layer in various settings. 
Reference [9] considers the bending oscillations of a flat channel wall, interacting with pulsating 
viscous liquid. References [10-12] investigate the hydroelastic oscillations of three-layered plates, 
interacting with viscous pulsating liquid, as well as under inertial excitation. References [13-18] 
research in the axis-symmetric problem of geometrically regular and ribbed cylinder shells, as 
well as the ones, forming an annular channel. The non-linear longitudinal deformation wave 
propagation in cylinder shells, filled with viscous liquid and in axis-symmetric setting is presented 
in [19, 20]. Reference [21] considers membrane oscillations on an elastic foundation on the pool 
bottom, the pool being filled with an ideal incompressible liquid with a free surface. References 
[22, 23] are devoted to the plate oscillation investigation, the plate standing on the elastic 
foundation and interacting with viscous liquid layer.  

However, mathematical modeling of hydroelastic oscillations of a hollow cylinder, surrounded 
by an elastic medium and containing a viscous liquid and an oscillator, remained beyond the 
framework of the sources, mentioned above. Therefore, the problem under consideration is of 
undoubted interest for the research.  

2. Mathematical formulation 

Let us consider an elastic hollow cylinder, surrounded by an elastic medium (Fig. 1). The 
cylinder length is ݈, its thickness ℎ଴ is significantly less than inner radius ܴଵ. The elastic cylinder 
is simply supported at its edges. The rigid cylinder with radius ܴ is inside the elastic cylinder, 
mentioned above. The inner and outer cylinders surfaces are parallel to each other. The radial 
clearance between the cylinders is filled with viscous incompressible liquid. The seals, hindering 
the liquid leakage out of radial clearance, are supposed to exist on the edges. The rigid cylinder 
produces harmonic oscillations according to the set law in the plane, being normal to its axis. The 
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hollow cylinder, surrounded by elastic medium, makes bending oscillations, caused by inner 
cylinder vibrations. Cylinders oscillations amplitudes are considerably less, than liquid layer 
thickness ߜ. The elastic medium, surrounding the inner cylinder, can be considered as Winkler 
foundation. 

 
Fig. 1. A schematic diagram of an elastic hollow cylinder, surrounded by an elastic medium and  

containing viscous liquid and vibrating coaxial rigid cylinder 

Let us introduce Cartesian coordinate system ݖݕݔ and cylindrical coordinate system ݕߠݎ. We 
place coordinate systems centers in inner cylinder geometric centre in unperturbed state.  

The absolute rigid cylinder displacement law has the form of: ݖ = (ݐ߱)݂   ,(ݐ߱)௠݂ݖ = sin߱(1) ,ݐ 

where ݖ௠ is the rigid cylinder oscillations amplitude, ߱ is the frequency, ݐ is the time. 
The damping at the expense of viscous incompressible liquid is present in the considered 

oscillation system. As result, transient processes will go out in the course of time. That is why, we 
will restrict to the consideration the stationary harmonic oscillations study [24]. 

In accordance with the approach, suggested in [18], we study the deflection of a hollow 
cylinder, surrounded by an elastic medium, by means of one-mass system. In so doing we consider 
it in the form of a hollow rigid cylinder with equivalent mass ݉∗ and an elastic connection with 
equivalent stiffness coefficient ݊ . We find the equivalent mass ݉∗  under the condition of 
distributed and one-mass systems kinematic energy coincidence, the equivalent stiffness 
coefficient ݊ being defined by means of hollow cylinder maximal deflection ݓ௠௔௫ under uniform 
loading, equivalent to one Newton force (i.e. ܨ∗ = 1 N): 

݉∗ = ଶି(௔ݓ) න ݉௖ݓଶ݀ݕ௟/ଶ
ି௟/ଶ ,    ݊ =  ௠௔௫. (2)ݓ∗ܨ

Here ݓ is the hollow cylinder deflection form function, ݓ௔ is the hollow cylinder deflection 
function value at the mass concentration point of one-mass system, ݉௖ is the distributed mass per 
hollow cylinder length unit. 

Let us choose the bending oscillations form to be sufficiently close to the expected one and 
satisfying the boundary conditions at the edges. The deflection of an annular cross section beam, 
based on Winkler foundation under the uniformly distributed load is chosen as such a form. To 
define this deflection, we present it in the form of a trigonometric series by longitudinal coordinate, 
limited by its first member. By taking into account that the equivalent mass is concentrated in the 
centre (i.e. at the point ݕ = 0), we obtain: 
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݉∗ = ℎ଴݈ߨ଴ߩ ൬ܴଵ + ℎ଴2 ൰ ,    ݊ = ହ4݈ଷߨܬܧ ቆ1 + ܬܧ݇ ݈ସߨସቇ ܬ    , = ൫(ܴଵߨ + ℎ଴)ସ − ܴଵସ൯ 4 , (3)

where ߩ଴  is the hollow cylinder material density, ܬ  is the moment of inertia of hollow  
cylinder-beam cross-section, ܧ is the Young’s modulus of outer cylinder material, ݇ is the elastic 
coefficient of Winkler foundation. 

The transition to one-mass system allows to write down the hollow cylinder motion equation 
in the form of: 

ሷଵݖ∗݉ + ଵݖ݊ = ܰ,    ܰ = න න ௟/ଶ,ݕ݀ߠଵܴ݀(ߠ)cos݌
ି௟/ଶ

ଶగ
଴  (4)

where ܰ  is the force, acting on the hollow cylinder from liquid; ݖଵ = ଵ௠ݖ ଵ݂(߱ݐ)  is the 
displacement law of hollow cylinder, surrounded by elastic medium (within the frameworks of 
one-mass model); ݌ is the liquid pressure. 

Viscous incompressible liquid dynamic equations, presented by Navier-Stocks equations and 
continuity equation, as well [25] have the form of: ߲ ௥ܸ߲ݐ + ௥ܸ ߲ ௥ܸ߲ݎ + ఏܸݎ ߲ ௥ܸ߲ߠ + ௬ܸ ߲ ௥ܸ߲ݕ − ఏܸଶݎ        = − ߩ1 ݎ߲݌߲ + ߥ ቆ߲ଶ ௥ܸ߲ݎଶ + ݎ1 ߲ ௥ܸ߲ݎ + ଶݎ1 ߲ଶ ௥ܸ߲ߠଶ + ߲ଶ ௥ܸ߲ݕଶ − ଶݎ2 ߲ ఏܸ߲ߠ − ௥ܸݎଶቇ, ߲ ఏܸ߲ݐ + ௥ܸ ߲ ఏܸ߲ݎ + ఏܸݎ ߲ ఏܸ߲ߠ + ௬ܸ ߲ ఏܸ߲ݕ + ௥ܸ ఏܸݎ     = − ݎߩ1 ߠ߲݌߲ + ߥ ቆ߲ଶ ఏܸ߲ݎଶ + ݎ1 ߲ ఏܸ߲ݎ + ଶݎ1 ߲ଶ ఏܸ߲ߠଶ + ߲ଶ ఏܸ߲ݕଶ + ଶݎ2 ߲ ௥ܸ߲ߠ − ఏܸݎଶቇ , ߲ ௬ܸ߲ݐ + ௥ܸ ߲ ௬ܸ߲ݎ + ఏܸݎ ߲ ௬ܸ߲ߠ + ௬ܸ ߲ ௬ܸ߲ݕ = − ߩ1 ݕ߲݌߲ + ߥ ቆ߲ଶ ௬ܸ߲ݎଶ + ݎ1 ߲ ௬ܸ߲ݎ + ଶݎ1 ߲ଶ ௬ܸ߲ߠଶ + ߲ଶ ௬ܸ߲ݕଶ ቇ, ߲ ௬ܸ߲ݎ + ௥ܸݎ + ݎ1 ߲ ఏܸ߲ߠ + ߲ ௬ܸ߲ݕ = 0. 

(5)

Here ݒ is the kinematical coefficient of the liquid viscosity; ߩ is the liquid density, ௥ܸ, ௬ܸ, ఏܸ 
is the liquid velocity vector projection on coordinate axis. 

The boundary conditions of Eq. (5) are the no-slip conditions for viscous liquid and the ones 
for the pressure in the absence of leakage at the edges [18, 25]: 

௥ܸ = cosݖߠଵ௠ ݐ݂݀݀ ,    ఏܸ = −sinݖߠଵ௠ ݐ݂݀݀ ,    ௬ܸ = ݎ   ,0 = ܴ +  ,ߜ
௥ܸ = cosݖߠ௠ ݐ݂݀݀ ,    ఏܸ = −sinݖߠ௠ ݐ݂݀݀ ,    ௬ܸ = ݎ   ,0 = ݕ߲݌߲ ,ܴ = ݕ   ,0 = ± 2݈. (6)

3. Solutions and discussions 

Let us introduce dimensionless variables and the small parameters: 
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ߦ = ݎ − ߜܴ ߞ    , = ݕ2݈ ߠ    , = ߬    ,ߠ = ߣ    ,ݐ߱ = ߜ௠ݖ ≪ 1,   ߰ = ߜܴ ≪ 1,    ௥ܸ = ௠߱ݖ కܷ,
ఏܸ = ௠߱߰ݖ ܷఏ,   ௬ܸ = ௠߱߰ݖ 2݈ܴ ఍ܷ,    ݌ = ଴݌ + ଶ߰߱ߣߥߩ ߪ    ,ܲ = 2݈ܴ .  (7) 

Here ߰, ߣ are the small parameters. 
As in the considered setting ߰ = ߣ ,(1)݋ = о(1) and ݖଵ௠ ⁄௠ݖ = ܱ(1), the member at ߰ and ߣ can be omitted in the liquid dynamics Eq. (5) and in the corresponding boundary conditions 

Eq. (6), written down in variables Eq. (7). As a result, we obtain liquid dynamics problem: ߲߲ܲߦ = ߥଶ߱ߜ    ,0 ߲ܷఏ߲߬ = − ߠ߲߲ܲ + ߲ଶܷఏ߲ߦଶ ߥଶ߱ߜ    , ߲ ఍ܷ߲߬ = − ଶߪ1 ߞ߲߲ܲ + ߲ଶ ఍ܷ߲ߦଶ , ߲ కܷ߲ߦ + ߲ܷఏ߲ߠ + ߲ ఍ܷ߲ߞ = 0. (8) 

With boundary conditions: 

కܷ = ൬ݖଵ௠ݖ௠ ൰ ൬݀ ଵ݂݀߬ ൰ cosߠ,   ܷఏ = 0,   ఍ܷ = ߦ   ,0 = 1,       
కܷ = ൬݂݀݀߬൰ cosߠ,     ܷఏ = 0,     ఍ܷ = ߦ   ,0 = ߞ߲߲ܲ   ,0 = ߞ   ,0 = ±1. (9) 

The solution of the problem Eq. (8) with boundary conditions Eq. (9) for the established 
harmonic oscillations regime takes the form of: 

ܷఏ = ଶߝ12 ߠ߲߲ ൤߲߲ܲ߬ ൫1 + Ψഥ(ߦ)൯ + ܲΦഥ(ߦ)൨,   ఍ܷ = ଶߪଶߝ12 ߞ߲߲ ൤߲߲ܲ߬ ൫1 + Ψഥ(ߦ)൯ + ܲΦഥ(ߦ)൨, 
కܷ = ଶߝ12 ቈ ߲߲߬ ቆ߲ଶ߲ܲߠଶ + ଶߪ1 ߲ଶ߲ܲߞଶ ቇ (Ψഥଵ(ߦ) − (ߦ + ቆ߲ଶ߲ܲߠଶ + ଶߪ1 ߲ଶ߲ܲߞଶ ቇ Φഥଵ(ߞ)቉ + ݂݀݀߬ cosߠ, ܲ = ߙଶߝ2 ቆ݀ଶ݂݀߬ଶ − ௠ݖଵ௠ݖ ݀ଶ ଵ݂݀߬ଶ ቇ cosߠ + ߛ12 ൬݂݀݀߬ − ௠ݖଵ௠ݖ ݀ ଵ݂݀߬ ൰ cos(10) .ߠ 

Here we introduce the symbols: 

(߱)ߛ = 16 ߝଷ(shߝ − sinߝ(ߝଶ(chߝ + cosߝ) − 2ε(shߝ + sinߝ) + 2(chߝ − cosߙ ,(ߝ(߱) = ε൫ε(chߝ + cosߝ) − (shߝ + sinߝ)൯ߝଶ(chߝ + cosߝ) − ߝsh)ߝ2 + sinߝ) + 2(chߝ − cosߝ), Ψഥ(ߦ) = ଵܦ(ߦߝ)ଶܨ − (ߦߝ)ଵܨ − (ߦ)ଶ,   Φഥܦ(ߦߝ)ସܨ2 = (ߦߝ)ଷܨ2 − ଶܦ(ߦߝ)ଶܨ − ଵ(εξ)ܨ ,ଵܦ(ߦߝ)ସܨ2 = chߦߝcosܨ   ,ߦߝଶ(ߦߝ) = 12 ሾchߦߝsinߦߝ + shߦߝcosߦߝሿ,   ܨଷ(ߦߝ) = 12 shߦߝsinܨ ,ߦߝସ(ߦߝ) = 14 ሾchߦߝsinߦߝ − shߦߝcosߦߝሿ,   ܦଵ = shߝ − sinߝcosߝ + chߝ ଶܦ   , = sinߝ + shߝcosߝ + chߝ, 
(߱)ߝ =  ඨߜଶ߱2ߥ ,      Ψഥଵ(ߦ) = ߝ12 ൤shߦߝsinߦߝ(sinߝ − shߝ) − chߦߝcosߦߝ(sinߝ + shߝ)chߝ + cosߝ       + sinߝ + shߝchߝ + cosߝ + chߦߝsinߦߝ + shߦߝcosߦߝ൨, 
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Φഥଵ(ߦ) = ߝ12 ቈshߦߝsinߦߝ(sinߝ + shߝ) + chߦߝcosߦߝ(sinߝ − shߝ)chߝ + cosߝ       − sinߝ − shߝchߝ + cosߝ − chߦߝsinߦߝ + shߦߝcosߦߝ൨. 
In special cases we have Ψഥଵ(0) =  0, Φഥଵ(0) =  0, Ψഥ(1) =  –1, Ψഥ(0) =  –1, Φഥ(0) =  0,  Φഥ(1) = 0.  
Let us note that in the case of strongly viscous liquid, we can omit inertia members in the  

Eq. (8). In this case we must take ߙ = 0 and ߛ = 1 at the pressure expression. As a result, the 
expressions for vector velocity liquid movement component have the form: 

కܷ = ௠ݖଵ௠ݖ ݀ ଵ݂݀߬ cosߠ + ቆߦଶ4 − ଷ6ߦ − 112ቇ ቆ߲ଶ߲ܲߠଶ + ଶߪ1 ߲ଶ߲ܲߞଶ ቇ,    ܷఏ = 12 ߠ߲߲ܲ ଶߦ) − ఍ܷ   ,(ߦ = ଶߪ12 ߞ߲߲ܲ ଶߦ) −  .(ߦ
By substituting Eq. (10) into Eq. (7), we obtain the expression for dimensional pressure. With 

taking into account the obtained expression for dimensional pressure, Eq. (4) will take the  
form of: (݉∗ + ሷଵݖ(ܯ + ሶଵݖܭ + ଵݖ݊ = ሷݖܯ + ሶ, (11)ݖܭ

where ܯ = ܭ ,ߙଶߝଵ2ି(ଷߜ߱)ଵܴߥ݉ = ݉ ,ߛଷ12ିߜଵܴߥ݉ =  .ߩଶ݈ܴߨ
We write down Eq. (11) solution for the stationary harmonic oscillations regime in the  

form of: ݖଵ = ݐsin(ω(ω)ܣ௠ݖ + ߮). (12)

Here ܣ(߱) = ඥ(ܯଶ߱ସ + (ଶ߱ଶܭ (݊ − ܯ) + ݉∗)߱ଶ)ଶ⁄ + ଶ߱ଶܭ  is the amplitude frequency 
characteristic of a hollow cylinder, surrounded by an elastic medium and containing viscous liquid, 
as well as vibrating cylinder, ߮ = arctg(߱ܭ ܯ)) + ݉∗)߱ଶ − ݊)⁄ ) − arctg(ܭ ⁄߱ܯ ). 

We introduce the result of the hollow cylinder amplitude frequency characteristics with the 
following parameters, for example: ܴଵ =  5∙10–2 m, ݈ =  6∙10–1 m, ℎ଴ =  4∙10-3 m, ߩ =1.84∙103 kg/m3, ݒ =  2.5·10–4 m2/s, ܧ =  1.96∙1011 Pa, ߩ଴ =  7.87∙103 kg/m3. In the cases of 
taking into account surrounding elastic medium we adopt elastic coefficient of Winkler foundation ݇ = 108 N/m3. While in the cases of elastic medium neglecting we adopt ݇ = 0. In the course of 
calculation, the cases of neglecting inertia members in liquid dynamics equations we take ߙ = 0 
and ߛ =  1 consequently ܯ = 0 ܭ , = ߛଷିߜଵܴߥ12݉ . The calculation results are presented in 
Fig. 2. 

The solid blue line is the model for ݇ = 108 N/m3 with inertia of viscous liquid being taken 
into account; the dash blue line is the model for ݇ = 0 with inertia of viscous liquid being taken 
into account; the solid black line is the model for ݇ = 108 N/m3 and without inertia of viscous 
liquid being taken into account; the dash black line is the model for ݇ = 0 and without inertia of 
viscous liquid being taken into account. 

4. Comparison with the experimental data 

Reference [26] presents the data of experimental research of the amplitudes of oscillation rigid 
cylinder interacting with viscous liquid. This cylinder has an elastic suspension and is inside the 
elastic cylinder filled with a viscous fluid. In other words, the rigid cylinder forms an inner wall 
of the annular channel, while an elastic one forms its outer wall. The annular channel formed by 
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the cylinders is set on the foundation vibrating in the vertical plane. By using our approach, we 
can work out the mathematical model and make the comparison of model calculation and 
experimental data. To do this, we consider outer elastic cylinder in the form of a rigid one with 
equivalent mass and an elastic connection with equivalent stiffness coefficient. The equivalent 
mass and equivalent stiffness coefficient are defined by Eqs. (2), (3). Then the scheme of 
mechanical system which was investigated in [26] can be presented as in Fig. 3. 

 
Fig. 2. The calculation results 

 
Fig. 3. Scheme of mechanical system 

Within this calculation scheme the equations of the annular channel walls movement take the 
form of: ݉ଵ(ݖሷ଴ + (ሷଵݖ + ݊ଵݖଵ = ܰ,   ݉ଶ(ݖሷ଴ + (ሷଶݖ + ݊ଶݖଶ = −ܰ. (13) 

Here ݖሷ଴ is the vibrating foundation acceleration; ݖଵ is the outer cylinder movement law; ݖଶ is 
the inner cylinder movement law; ݉ଵ is equivalent mass of outer cylinder, calculated according 
to Eq. (3); ݉ଶ is the inner cylinder mass; ݊ଵ is the equivalent stiffness coefficient of outer cylinder 
suspension, calculated according to Eq. (3) where ݇ = 0; ݊ଶ is the stiffness coefficient of inner 
cylinder suspension (electronic spring); ܰ is the viscous liquid layer between cylinder reaction 
defined by Eq. (4). 

Taking into consideration foundation acceleration ݖሷ଴  we write down the expression for 
pressure in Eq. (7) as ݌ = ଴݌ + ଶܲି߰߱ߣߥߩ −  Further, we find expression for ܰ out .ߠሷ଴cosݖଶܴߩ
of the solutions of hydrodynamics Eq. (10) in the form of: ܰ = ሷ଴ݖ݉− − ሷଵݖܯ − ሶଵݖܭ + ሷଶݖܯ +  ሶଶ. (14)ݖܭ

Here the expressions for ݉, ܭ ,ܯ coincide with Eq. (11). 
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By substituting Eq. (14) into Eq. (13) and solving them for stationary harmonic oscillations 
regime under ݖሷ଴ =  :we find the inner cylinder movement law ,ݐ଴௠߱ଶsin߱ݖ−

ଶݖ = ݐ߱)ଶ(߱)sinܣ଴௠߱ଶݖ + ߮ଶ),   ܣଶ(߱) = ඨܽଶଶ + ܾଶଶܽଶ + ܾଶ ,   ߮ଶ = arctg ൬ܾܽଶ − ܾܽଶܽܽଶ + ܾܾଶ൰, ܽ = (݊ଵ − ݉ଵ߱ଶ)(݊ଶ − (݉ଶ + (ଶ߱(ܯ − (݊ଶ − ݉ଶ߱ଶ)߱ܯଶ, ܾ = ଵ݊)߱ܭ + ݊ଶ − (݉ଵ + ݉ଶ)߱ଶ), ܽଶ = (݉ଶ − ݉)(݊ଵ − ݉ଵ߱ଶ) − ଶ(݉ଵ߱ܯ + ݉ଶ),   ܾଶ = ଶ݉)߱ܭ + ݉ଵ). 
(15)

Here ݖ଴௠߱ଶ is the acceleration amplitude of vibrating foundation. 
Fig. 4 presents the amplitude oscillations of the inner cylinder under various frequencies of the 

foundation vibrations; the latter being defined in experimentally in [26] and calculated by Eq. (15) 
under the foundation vibroacceleration amplitude ݖ଴௠߱ଶ = 1 g. In the course of calculating the 
following parameters we defined according to [26]: ߩ଴ =  8.4·103 kg/m3, ߩ =  2·103 kg/m3, ߥ =  3.5·10-6 m2/s, ܧ =  9.81·1010 Pа, ݈ =  0.08 m, ߜ଴/݈ =  6.25·10-3, ℎ଴/݈ =  1.25·10-1,  ܴଶ/݈ = 3.125·10-1, ܴଵ/݈ = 31.875·10-2, ݉ଶ = 225·10-3 kg, ݊ଶ = 1.75·104 kg/s2. 

The comparison of experimental data with calculation ones by the mathematical model worked 
out by authors presents a good coincidence. This fact proves that the suggested approach to the 
consideration of the cylinder elastic properties on the basis of one-mass model with equivalent 
mass and stiffness coefficient is quite legitimate. 

 
Fig. 4. The curve 1 is calculation data by Eq. (15); the curve 2 is experimental data from [26] 

5. Conclusions 

Thus, mathematical model for investigating bending oscillations of a hollow cylinder, 
surrounded by an elastic medium, filled with viscous liquid and containing vibrating rigid cylinder 
is suggested. The calculations showed that taking into account only the surrounding elastic 
medium leads to increasing oscillation resonance frequencies. The resonance frequencies reduce, 
and amplitude oscillations increase at resonance frequencies are caused by taking into account 
only liquid movement inertia. Taking into account medium elasticity and viscous incompressible 
liquid movement inertia simultaneously, leads to further increase resonance frequencies values 
and the corresponding oscillations amplitudes. Therefore, in the course of modeling real 
mechanical systems it is necessary to take into consideration viscous incompressible liquid inertia 
inside hollow cylinder, as well as surrounding elastic medium presence. 
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