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Abstract. To solve the limited vibration consumption of the traditional tubular damping structure 
(TTDS), the tubular transition layer damping structure (TTLDS) is proposed; Based on 
viscoelastic materials and theories of thin cylindrical shells, the governing equation, the first order 
matrix differential equation describing vibration of TTLDS under harmonic excitation, is derived 
by considering the interaction between all layers and the dissipation caused by the shear 
deformation for transition layer and damping layer. By using the extended homogeneous capacity 
precision integration method to solve the control equation, a semi-analytical method for studying 
the vibration and damping characteristics of TTLDS is given. By way of comparison, the 
correctness of the method provided in paper is verified. At last, the influence of thickness, material 
and location of transition layer on damping effect is analyzed. The results show that the change 
for the thickness or material of the transition layer can make the structural damping effect change 
greatly, while the change for location of the transition layer plays only a few roles on the structural 
damping effect. 
Keywords: tubular structure, transition layer, natural frequency, loss factor, damping effect. 

1. Introduction  

The Tubular structure has a good carrying capacity and can meet those requirements not only 
with enough stiffness and strength but also with a lighter weight. It is widely used in aerospace 
engineering, marine and offshore engineering, civil construction, machinery equipment and 
nuclear industry fields. During its use, the tubular structure produces resonance and instability 
under the effect of the vibration, shock, wind load, seismic and other dynamic load, which leads 
to failure of the equipment or facilities and damage of property or people. To avoid the 
disadvantages mentioned above, the tubular structure can be treated by adding damping layer and 
constrained layer on its body to form traditional tubular damping structure (TTDS). 

Many scholars have studied the damping effect of this damping structure: M. G. Sainsbury [1] 
analyzed the tubular damping structure which covered constrained layer partially through FEM 
and discussed the influence of different covering location on damping effect by using modal 
energy density map. Yu Xiang et al. [2] analyzed the vibration of PCLD tubular structure through 
a new matrix method, which covered damping layer partially, and discussed the frequency 
response for changing the coverage percentage and location of PCLD. Xiong-tao Cao et al. [3] 
studied the free vibration characteristics of passive tubular damping structure and solved the 
vibration equation of PCLD tubular structure simply supported at both ends by using wave 
propagation method. Cheng-feng Liu et al. [4] conducted topological optimization analysis and 
experimental research on the tubular damping structure by using evolutionary structural 
optimization; Being aimed at the vibration characteristics, Hui-rong Shi et al. [5] gave the local 
tubular damping structure model, analyzed the vibration characteristics and optimized it; Tai-hong 
Chen et al. [6] analyzed the damping effect of aluminum tube with a constrained damping layer 
by using layer by layer displacement theory. They compared the natural frequency, modal loss 
factor and frequency response of the damping tube with the original one and drew the conclusion 
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that the constrained damping tubular structure could reduce vibration effectively. Based on the 
theory of Flügge shell, Mei-xia Chen et al. [7] established mathematical model of multi-cabin 
reinforcement tubular damping structure on arbitrary boundary conditions and studied its natural 
vibration and frequency response characteristics. Aimed at isolating the inner machinery vibration 
question of tubular structure, Xiao-le Wang et al. [8] gave an analytical fluctuation model for 
isolation vibration system of tubular damping structure and verified its effectiveness through  
FEM. Although traditional tubular damping structure (TTDS) can reduce the vibration energy, it 
is difficult to arrive at satisfactory effects in practice. In order to further improve the structure 
damping effect, some scholars have proposed another type tubular structure which is called tubular 
transition layer damping structure (TTLDS, see in Fig. 1(a)). It adds one more layer, which is 
called transition layer between base layer and damping layer of TTDS to form four-layer structure, 
and its material property lies in between metal material and rubber material. For the transition 
layer adding the distance between damping layer and base layer and levering the shear deformation 
of damping layer, the TTLDS can get a better damping effect than TTDS [9]. Some scholars have 
done research on four-layer damping structure: Jessica M. Yellin et al. [10] built a passive 
constrained four-layer beam model. They gave the kinematic equations and verified the results by 
related tests. Based on the FEM and ANSYS, Zhao-you Wei et al. [11] built a constrained damping 
beam with a slot strand-off layer and made modal analysis. Hui-rong Shi et al. [12] optimized the 
design of constrained damping beam with a transition layer under the help of FEM. They analyzed 
and compared the vibration characteristics with a continuous or discontinuous constrained layer 
respectively. A. W. V. Vuure et al. [13] applied strain energy method to predict damping effect of 
the multi-layer structure. Under knowing the loss factors of all layers, the multi-layer damping 
effect could be predicted by computing the distribution of stain energy with ANASYS. Sanjiv 
Kumar et al. [14] gave the kinematics equations of constrained damping structure with an active 
transition layer by adopting Hamilton principle and FEM. Cai-you Zhao et al. [15] applied the 
transition layer to damp the train tracks. They modeled the constrained damping structure with a 
slot transition layer and carried out related test. Through using simple proportional feedback 
control strategy, they gave out the numerical solution of complex eigenvalue for kinematics 
equations. Ravish S. Mastic et al. [16] analyzed the vibration characteristics of TTLDS which 
covered constrained layer partially through FEM. By using strain energy distribution map, they 
discussed the effect of location and size on vibration damping for constrained layer. After a review 
of relevant literatures, it can be seen that most of the present methods for research on transition 
layer are focused on plate structure, and a few of them on tubular structure with FEM. 

To study the dynamic features of TTLDS, the first order ordinary differential equation is 
derived by considering the basic control equation of vibration and energy dissipation of 
viscoelastic damping layer and transition layer, as well as the interaction between these layers. 
Additionally, the damping characteristics are also analyzed through using the method of extend 
homogeneous capacity precision integration [17] to solve the ordinary differential equation. 

 
a) B-T-D-C 

 
b) B-D-T-C 

Fig. 1. Tubular transitional layer damping structure:  
1. base layer, 2. transition layer, 3. damping layer, 4. constrained layer 
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2. The governing equation of TTLDS 

For simplicity, the following assumptions are made like Refs. [18-20]: 
1) The radial displacement is same for these four layers, and the radial strain is negligible. 
2) There is no slip at the interfaces between layers; that is, perfect continuity. 
3) The transverse shear deformation is neglected except in transition layer and damping layer. 
4) The bending deformations of base layer and constrained layer are consistent with the 

Kirchhoff ’s hypothesis. 
5) The effect of rotary inertia of each layer is also neglected. 
6) Only the radial vibration inertia is considered for transition layer and damping layer. 

2.1. Shear deformation and shear force in transition layer and damping layer  

Now, a micro unit of TTLDS is cut out for analyzing. The micro unit is shown in Fig. 2, where ݔ represents axial direction; ߠ represents peripheral; ݖ represents radial direction; ߮ is peripheral 
dimensions (°); ܮ is axial dimensions, ݉; ℎ is the thickness of ݅th layer. ݑ, ݒ, ݓ (݅ = 1, 2, 3, 4) 
denote the displacement amplitudes in ݖ ,ߠ ,ݔ-direction at the mid-plane of ݅th layer, ݉; ߚ and ߙ 
(݅ = 1, 2, 3, 4) denote the rotations in ݔ and ߠ-direction, respectively (°); ܴ (݅ = 1, 2, 3, 4) is 
radius of ݅th layer, ݉; 

From the deformation coordination of Fig. 2, the amplitudes of mid-plane displacement and 
rotation of the cross-section in ݔ and ߠ-direction in transition layer can be expressed as: 

۔ۖۖەۖۖ
,ݔ)ଶݑۓ (ߠ = 12 ቌ൭ݑଵ(ݔ, (ߠ + ℎଵ2 ,ݔ)ଵߚ ൱(ߠ + ൭ݑଷ(ݔ, (ߠ − ℎଷ2 ,ݔ)ଷߚ ൱ቍ(ߠ ,

,ݔ)ଶߚ (ߠ = 1ℎଶ ቌ൭ݑଷ(ݔ, (ߠ − ℎଷ2 ,ݔ)ଷߚ ൱(ߠ − ൭ݑଵ(ݔ, (ߠ + ℎଵ2 ,ݔ)ଵߚ ൱ቍ(ߠ , (1)

۔ۖۖەۖۖ
,ݔ)ଶݒۓ (ߠ = 12 ቌ൭ݒଵ(ݔ, (ߠ + ℎଵ2 ,ݔ)ଵߙ ൱(ߠ + ൭ݒଷ(ݔ, (ߠ − ℎଷ2 ,ݔ)ଷߙ ൱ቍ(ߠ ,

,ݔ)ଶߙ (ߠ = 1ℎଶ ቌ൭ݒଷ(ݔ, (ߠ − ℎଷ2 ,ݔ)ଷߙ ൱(ߠ − ൭ݒଵ(ݔ, (ߠ + ℎଵ2 ,ݔ)ଵߙ ൱ቍ(ߠ . (2)

 
Fig. 2. Micro-unit of TTLDS 

The amplitudes of mid-plane displacement and rotation of the cross-section in ݔ  and  
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 :direction in damping layer can be expressed by-ߠ

۔ۖۖەۖۖ
,ݔ)ଷݑۓ (ߠ = 12 ቌ൭ݑଶ(ݔ, (ߠ + ℎଶ2 ,ݔ)ଶߚ ൱(ߠ + ൭ݑସ(ݔ, (ߠ − ℎସ2 ,ݔ)ସߚ ൱ቍ(ߠ ,

,ݔ)ଷߚ (ߠ = 1ℎଷ ቌ൭ݑସ(ݔ, (ߠ − ℎସ2 ,ݔ)ସߚ ൱(ߠ − ൭ݑଶ(ݔ, (ߠ + ℎଶ2 ,ݔ)ଶߚ ൱ቍ(ߠ , (3)

۔ۖۖەۖۖ
,ݔ)ଷݒۓ (ߠ = 12 ቌ൭ݒଶ(ݔ, (ߠ + ℎଶ2 ,ݔ)ଶߙ ൱(ߠ + ൭ݒସ(ݔ, (ߠ − ℎସ2 ,ݔ)ସߙ ൱ቍ(ߠ ,

,ݔ)ଷߙ (ߠ = 1ℎଷ ቌ൭ݒସ(ݔ, (ߠ − ℎସ2 ,ݔ)ସߙ ൱(ߠ − ൭ݒଶ(ݔ, (ߠ + ℎଶ2 ,ݔ)ଶߙ ൱ቍ(ߠ . (4)

Applying Kirchhoff’s hypothesis and the cylindrical shell theory to base layer and constrained 
layer, the following equation can be written as: 

ߚ = − ݔ߲ݓ߲ = ߙ    ,ߚ = 1ܴ ൬ݒ − ߠ߲ݓ߲ ൰   =   1ܴ ݒ) − ݅)    ,(ߙ = 1, 4). (5)

Adopting the first-order shear deformation model, the displacement of an arbitrary point in the 
thickness direction for transition layer and damping layer can be written by: 

ቐݑ(ݔ, ,ߠ (ݖ = ,ݔ)ݑ (ߠ + ℎߚ(ݔ, ,ݔ)ݒ,(ߠ ,ߠ (ݖ = ,ݔ)ݒ (ߠ + ℎߙ(ݔ, ,ݔ)ݓ,(ߠ ,ߠ (ݖ = ,ݔ)ݓ .(ߠ           (݅ = 2, 3). (6)

According to shear force balance in ݔ  and ߠ -direction showed in Fig. 3, the following 
equations can be obtained: ܩଶߛ௭௫(ଶ) = ௭ఏ(ଶ)ߛଶܩ௭௫(ଷ), (7)ߛଷܩ = ௭ఏ(ଷ), (8)ߛଷܩ

where ܩଶ is the shear modulus of transition layer well ܩଷ is damping layer; ߛ௭௫(ଶ) and ߛ௭ఏ(ଶ) are shear 
deformation amplitudes for transition layer in ݔ  and ߠ -direction; ߛ௭௫(ଷ)  and ߛ௭ఏ(ଷ)  are shear 
deformation amplitude for damping layer in ݔ and ߠ-direction. 

 
Fig. 3. The schematic of shear force balance 

Being simultaneous Eqs. (7), (8), (1) and (2), the mid-plane displacement and rotation of the 
cross-section for transition layer in ݔ and ߠ-direction can be expressed as: 
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۔ە
,ݔ)ଶݑۓ (ߠ = ଷℎଶܩ)14 + (ଶℎଷܩ ൬ ଶℎଷܩ4) + ଵݑ(ଷℎଶܩ2 + ଶܩ)ସ+(2ℎଶℎଷݑଷℎଶܩ2 − (ଷܩ + ଷℎଶ(ℎଵܩ − ℎସ) + ൰ߚ(ଶℎଵℎଷܩ2 ,ݔ)ଶߚ, (ߠ = ଷℎଶܩ)12 + (ଶℎଷܩ ൫−2ܩଷݑଵ + ସݑଷܩ2 + ൫2ℎଷ(ܩଶ − (ଷܩ − ଷ(ℎଵܩ + ℎସ)൯ߚ൯, (9)

۔ۖەۖ
,ݔ)ଶݒۓ (ߠ = 14݃ ቆܴܽଶܴସݒଵ(4ܩଷܴଶܴଷℎଷ + ଷܴଷℎଶܩ2 + (ଷℎଶℎଷܩ + ܾℎଶݒସ+൫(ܿ − ଷܴଶℎଶܩ(݀ − ଶܴଷܴସℎଷ(ܴଵℎଶܩ4 + ܴଶℎଵ)൯ߙ ቇ ,ݔ)ଶߙ, (ߠ = 12݃ ൬ ଶܴଷℎଷܩ2)ܽ − ଷܴଶܴଷܩ2 − ସݒܾ+ଵݒଷܴଶℎଷ)ܴସܩ + ܿ)ଷܴଶܩ) + ݀) − ൰ߙ(ଶܴଷܴସℎଷܩ2ܽ ,  (10)

where: ܽ = 2ܴଵ + ℎଵ,     ܾ = (2ܴସ − ℎସ)(2ܴଷ − ℎଷ)ܩଷܴଵܴଶ,ܿ = 2ܴଵܴଷℎସ + 4ܴଵܴସℎଷ − ܴଵℎଷℎସ,     ݀ = 2ܴଷܴସℎଵ + ܴସℎଵℎଷ,݃ = ଶܴଵܴସܴଷℎଷ(2ܴଶܩ − ℎଶ) + ଷܴଵܴସܴଶℎଶ(2ܴଷܩ + ℎଷ).  
Being simultaneous Eqs. (7), (8), (3) and (4), the mid-plane displacement and rotation of the 

cross-section for damping layer in ݔ and ߠ-direction can be expressed as: 

۔ە
,ݔ)ଷݑۓ (ߠ = ଷℎଶܩ)14 + (ଶℎଷܩ ൬ ଵݑଶℎଷܩ2 + ଷℎ మܩ4) + ଶܩ)ସ+(2ℎଶℎଷݑ(ଶℎଷܩ2 − (ଷܩ + ଶℎଷ(ℎଵܩ − ℎସ) − ൰ߚ(ଷℎଶℎସܩ2 ,ݔ)ଷߚ, (ߠ = − ଷℎଶܩ)12 + (ଶℎଷܩ ൫2ܩଶݑଵ − ସݑଶܩ2 + ൫2ℎଶ(ܩଶ − (ଷܩ + ଶ(ℎଵܩ + ℎସ)൯ߚ൯, (11)

۔ۖەۖ
,ݔ)ଷݒۓ (ߠ = 14݃ ቆ ܾᇱℎଷݒଵ + ܽᇱܴଷݒସ(4ܩଷܴଶℎଶ + ଶܴଶℎଷܩ2 − ଶℎଶℎଷ)+൫(݀ᇱܩ − ܿᇱ)ܩଶܴଷℎଷ + ଷܴଵܴଶℎଶ(ܴଷℎସܩ4 + ܴସℎଷ)൯ߙቇ ,

,ݔ)ଷߙ (ߠ = − 12݃ ቆܾᇱݒଵ − ܽᇱ(2ܩଶܴଶܴଷ + ଷܴଶℎଶܩ2 − ଷܴଶℎଶܩସ+൫2ܽᇱݒ(ଶܴଷℎଶܩ − ଶܴଷℎଷ(ܿᇱܩ + ݀ᇱ)൯ߙ ቇ ,  (12)

where: ܽᇱ = (2ܴସ − ℎସ)ܴଵ,     ܾᇱ = (2ܴଶ + ℎଶ)(2ܴଵ + ℎଵ)ܩଶܴଷܴସ,ܿᇱ = 2ܴଶܴସℎଵ + ܴସℎଵℎଶ,     ݀ᇱ = 2ܴଵܴଶℎସ − 4ܴଵܴସℎଶ − ܴଵℎଶℎସ. 
By substituting Eq. (6) into the strain-displacement relationship [21], the shear strains in 

transition layer and damping layer [22] can be written by: ߛ௭௫(ଶ) = ଶߚ + ௭ఏ(ଶ)ߛ    ,ߚ = ଶߙ − ଶܴଶݒ + 1ܴଶ ௭௫(ଷ)ߛ(13)      ,ߙ = ଷߚ + ௭ఏ(ଷ)ߛ    ,ߚ = ଷߙ − ଷܴଷݒ + 1ܴଷ (14)    .ߙ

Inserting Eqs. (5), (9) and (10) into Eq. (13) and applying the Hooke’s law, the amplitude of 
shear stress for transition layer in ݔ and ߠ-direction can be obtained as follows: 

۔ە
௭௫(ଶ)߬ۓ = ௭௫(ଶ)ߛଶܩ  = ଶℎଷܩ)ଶ2ܩ + (ଷℎଶܩ ଵݑଷܩ2−) + ସݑଷܩ2 − ଷ(2ℎଶܩ + 2ℎଷ + ℎଵ + ℎସ)ߚ),߬(ଶ)௭ఏ = ௭ఏ(ଶ)ߛଶܩ = ଶ4݃ܩ ൫ܩଷ(ݒଵ݁(2ܴଵ + ℎଵ) − ସ݂(2ܴସݒ − ℎସ) − (ℎଵ݁ + ℎସ݂ + .൯(ߙ(ܫ (15)

Inserting Eqs. (5), (11) and (12) into Eq. (14) and applying the Hooke’s law, the amplitude of 
shear stress for damping layer in ݔ and ߠ-direction can obtained as follows: 



2761. THE SEMI-ANALYTICAL METHOD FOR DAMPING OF TUBULAR TRANSITION LAYER DAMPING STRUCTURE.  
WENJUN ZHANG, DAGANG SUN, BIJUAN YAN, ZHANLONG LI, SHIZHONG LIU 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. FEB 2018, VOL. 20, ISSUE 1. ISSN 1392-8716 29 

۔ە
௭௫(ଷ)߬ۓ = ௭௫(ଷ)ߛଷܩ = − ଶℎଷܩ)ଷ2ܩ + (ଷℎଶܩ ଵݑଶܩ2) − ସݑଶܩ2 + ଶ(2ℎଶܩ + 2ℎଷ + ℎଵ + ℎସ)ߚ),߬ଷ௭ఏ = ௭ఏ(ଷ)ߛଷܩ = ଷ4݃ܩ ൫ܩଶ(ݒଵ݁(2ܴଵ + ℎଵ) − ସ݂(2ܴସݒ − ℎସ) − (ℎଵ݁ + ℎସ݂ + ,൯(ߙ(ܫ (16)

where: ݁ = (2ܴଷ + ℎଷ)(2ܴଶ + ℎଶ)ܴସ,     ݂ = (2ܴଷ − ℎଷ)(2ܴଶ − ℎଶ)ܴଵ,ܫ = 8ܴଵܴସ(ܴଶℎଷ + ܴଷℎଶ).  
The shear stresses must be considered in discussing the equilibrium equations of the base layer 

and constrained layer. 

2.2. Matrix differential equation of first order of state vector for base layer and constrained 
layer 

Under harmonic excitation, the equilibrium equations for base layer and constrained layer can 
be written as: 

ەۖۖ
ۖۖۖ
۔ۖ
ۖۖۖۖ
߲ۓ ௫ܰ()߲ݔ + ߲ ఏܰ௫()ܴ߲ߠ + ݑℎ߱ଶߩ + ௫() = 0,߲ ௫ܰఏ()߲ݔ + ߲ ఏܰ()ܴ߲ߠ + ߲ܳఏ()ܴ + ݒℎ߱ଶߩ + ఏ() = 0,߲ܳ௫()߲ݔ + ߲ܳఏ()ܴ߲ߠ − ఏܰ()ܴ + ݒℎ߱ଶߩ + ௭() = ݔ߲௫ఏ()ܯ߲,0 + ߠఏ()ܴ߲ܯ߲ − ܳఏ() = ݔ߲௫()ܯ߲,0 + ߠఏ()ܴ߲ܯ߲ − ܳ௫() = 0,

                (݅ = 1, … ,4), (17)

where ௫ܰ() , ఏܰ() , ఏܰ௫() ௫()ܯ , ఏ()ܯ , , ܳ௫()  and ܳఏ()  ( ݅ =  1,…,4) denote the amplitudes of the 
membrane internal force and the bending internal force in the unit length of the ݅ th layer, 
respectively; ߩ denotes mass density of ݅th layer; ௫(ଵ), ఏ(ଵ) and ௭(ଵ) are the amplitudes of surface 
forces on the base layer which include the external excitation and the interaction forces between 
base layer and transition layer; ௫(ସ) ఏ(ସ) ,  and ௭(ସ)  are the amplitudes of surface forces on 
constrained layer which include the external excitation and the interaction forces between 
damping layer and constrained layer; ߱ denotes the natural frequency or angular frequency of 
external excitation. 

According to Kelvin-Kirchhoff’s equivalent, the amplitudes of in-plane shear force and 
transverse shear force can be expressed by: 

ܵ௫() = ௫ܰఏ() + 1ܴ ௫ఏ(),     ௫ܸ()ܯ = ܳ௫() + 1ܴ ߠ߲௫ఏ()ܯ߲ ,    (݅ = 1, … ,4). (18)

Adopting Reissner model, the internal force-displacement relationship for base layer and 
constrained layer [21] can be written as: 
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ەۖۖ
۔ۖۖۖ
ۖۖۖ
ۓ ௫ܰ() = ()ܭ ൭߲ݑ߲ݔ + ߤ ൬ ߠܴ߲ݒ߲ + ൰൱ݓܴ ,

ఏܰ() = ()ܭ ൬ ߠܴ߲ݒ߲ + ݓܴ + ߤ ݔ߲ݑ߲ ൰ ,
௫ܰఏ() = ఏܰ௫() = ()ܭ ൬1 − 2ߤ ൰ ൬ ߠܴ߲ݑ߲ + ݔ߲ݒ߲ ൰ ௫()ܯ, = ()ܦ ൬߲ݔ߲ߚ + ߤ ఏ()ܯ    ,൰ߠܴ߲ߙ߲ = ()ܦ ൬ߤ ݔ߲ߚ߲ + ൰ߠܴ߲ߙ߲ ௫ఏ()ܯ, = ఏ௫()ܯ = 1)()ܦ − (ߤ ݔ߲ߙ߲ = 1)()ܦ − (ߤ ൬߲ݒ߲ݔ + ݅)     ,൰ߠ߲ߚ߲ = 1, … ,4),

 (19)

where: 

ߚ = − ݔ߲ݓ߲ ߙ    , = 1ܴ ݒ − ݔ߲ݓ߲ ൨,   ܭ() = ℎ1ܧ − ଶߤ ()ܦ    , = ℎଷ12(1ܧ −  .(ଶߤ
Using Fourier expansions in the circumferential direction, the assumed distributions of the 

displacements and internal force in the ݅th layer can be expressed as: 

ەۖۖ
ۖۖۖ
ۖۖۖ
۔ۖۖۖ
ۖۖۖ
ۖۖۖ
ۖۖۖ
,ݑ)ۓ (ݓ = ܮ  ቀݑ(), ቁݓ cos(݊ߠ),

ݒ = ܮ  (ߠ݊)()sinݒ ,
ߚ =  (ߠ݊)cosߚ ,
൫ ௫ܰ(), ఏܰ(), ܳ௫(), ௫ܸ()൯ = ()ܭ  ቀܰ௫(), ܰఏ(), ܳ௫(), ܸ௫()ቁ cos(݊ߠ) ,
൫ ௫ܰఏ(), ఏܰ௫(), ܳఏ(), ܵ௫()൯ = ()ܭ  ቀܰ௫ఏ(), ܰఏ௫(), ܳఏ(), ܵ௫()ቁ sin(݊ߠ)൫ܯ௫(), ఏ()൯ܯ = ൫ܭܮ()൯  ቀܯ௫(), ఏ()ቁܯ cos(݊ߠ) ,
൫ܯ௫ఏ(), ఏ௫()൯ܯ = ൫ܭܮ()൯  ቀܯ௫ఏ(), ఏ௫()ቁܯ sin(݊ߠ) ,
൫௫(), ௭()൯ = ൫௫(), (ߠ݊)௭()൯cos ,
ఏ() =  (ߠ݊)ఏ()sin ,     (݅ = 1, … ,4),

,          

where the labeled “ ഥ ”variables stand for undermined dimensionless state variables, which only 
are functions of non-dimension coordinates, ߜ =  For convenience, the summation subscript .ܮ/ݔ
n would be omitted in the back derivation. 

Combining Eqs. (17)-(19) and eliminating the variables ഥܰ௫(), ഥܰఏ(), ഥܰఏ௫(), ܯഥ௫(), ܯഥఏ(), തܳ௫() and തܳఏ() (݅ = 1,…,4), the first order differential state equation of the ݅th layer can be yielded as: 
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ߦ݀݀
ەۖۖ
۔ۖۖۖ
ۖۖۖ
ߚܰݓ()ݒ()ݑۓ

௫()ܵ௫()ܸ௫()ܯ௫()ۙۖۖ
ۖۘۖ
ۖۖۖۖ
ۗ

=
ێێۏ
ێێێ
ێێێ
0ۍ ଵ݃ଶ() ଵ݃ଷ() 0 ଵ݃ହ() 0 0 0݃ଶଵ() 0 0 ݃ଶସ() 0 ݃ଶ() 0 00 0 0 ݃ଷସ() 0 0 0 00 ݃ସଶ() ݃ସଷ() 0 0 0 0 ݃ସ଼()݃ହଵ() 0 0 ݃ହସ() 0 ݃ହ() 0 00 ݃ଶ() ݃ଷ() 0 ݃ହ() 0 0 ଼݃()0 ݃ଶ() ݃ଷ() 0 ݃ହ() 0 0 ଼݃()଼݃ଵ() 0 0 ଼݃ସ() 0 ଼݃() ଼݃() 0 ۑۑے

ۑۑۑ
ۑۑۑ
ې

•
ەۖۖ
۔ۖۖۖ
ۖۖۖ
ߚܰݓ()ݒ()ݑۓ

௫()ܵ௫()ܸ௫()ܯ௫()ۙۖۖ
ۖۘۖ
ۖۖۖۖ
ۗ

 

       − ܭܮ
ەۖۖۖ
۔ۖ
௭()0ఏ()௫()0000ۓۖۖ ۙۖۖۖ

ۘۖ
ۖۗۖ ,     (݅ = 1, … ,4). 

(20)

The values of ݃(ଵ) and ݃(ସ)
 (݅ = 1, 2,…, 8; ݆ = 1, 2,…, 8) can be seen in the Appendix. 

2.3. Equilibrium equation in the radial direction for transition layer and damping layer 

As previous assumptions, ignoring the tensile rigidity, flexural rigidity and in-plane inertia for 
transition layer and damping layer, their equilibrium equations in the radial direction (see Fig. 4) 
can be can be written as: ௭(ଵଶ) − ௭(ଶଷ) + ݓଶℎଶ߱ଶߩ = ௭(ଶଷ)(21) ,0 − ௭(ଷସ) + ݓଷℎଷ߱ଶߩ = 0. (22)

Combining Eqs. (20) and (21), the following equation can be obtained as follows: ௭(ଵଶ) − ௭(ଷସ) + ݓଶℎଶ߱ଶߩ + ݓଷℎଷ߱ଶߩ = 0, (23)

where ௭(ଵଶ)  is the radial interaction between base layer and transition layer, ௭(ଶଷ)  is the radial 
interaction between transition layer and damping layer, ௭(ଷସ)  is the radial interaction between 
damping layer and constrained layer. 

 
Fig. 4. The radial interactions between layers 
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2.4. Force action on base layer and constrained layer 

In the state vector Eq. (20), ௫(), ఏ() , ௭() (݅ = 1,.., 4) which is called acting forces include 
interactions forces between all layers and external excitation force. The expressions of shear forces 
for transition layer and damping layer have been given in Eqs. (15) and (16). Applying the Fourier 
expansions in circumferential direction to Eqs. (15) and (16) and introducing dimensionless 
variables, ߬̃௭௫(ଶ), ߬̃௭ఏ(ଶ), ߬̃௭௫(ଷ) and ߬̃௭ఏ(ଷ) (see Fig. 5) can be written as: 

ቊ߬̃௭௫(ଶ) = ߬̃௭௫(ଷ) = ௭௫(ଶ)ߛଶܩ = ௭௫(ଷ)ߛଷܩ = ଵܶݑଵ + ଶܶߚ + ଷܶݑଷ,߬̃௭ఏ(ଶ) = ߬̃௭ఏ(ଷ) = ௭ఏ(ଶ)ߛଶܩ = ௭ఏ(ଷ)ߛଷܩ = ସܶݒଵ + ହܶݓ + ܶݒଷ, (24)

where: 

ଵܶ = − ଶℎଷܩଷܩଶܩ + ଷℎଶܩ ଶܶ    ,ܮ = − ଷ(2ℎଶܩଶܩ + 2ℎଷ + ℎଵ + ℎସ)2(ܩଶℎଷ + (ଷℎଶܩ ,     
ଷܶ = ଶℎଷܩଷܩଶܩ + ଷℎଶܩ ସܶ     ,ܮ = − ଷ݁(2ܴଵܩଶܩ + ℎଵ)4݃      ,ܮ
ହܶ = (ଷܩଶܩ݊ܮ−) ݁ℎଵ + ݂ℎସ + 4݃ܫ ,     ܶ = ଷ(2ܴସܩଶܩ − ℎସ)݂4݃     .ܮ

 

a) Transition layer b) Damping layer 
Fig. 5. Shear forces in transition layer and damping layer 

Considering the interactions between layers and the external excitation mentioned above, the 
forces ௫(ଵ) , ఏ(ଵ) , ௭(ଵ) , ௫(ସ) , ఏ(ସ)  and ௭(ସ)  can be obtained as follows: 

൞௫(ଵ) = ሚ݂௫(ଵ) + ߬̃௭௫(ଶ), ఏ(ଵ) = ሚ݂ఏ(ଵ) + ߬̃௭ఏ(ଶ),௭(ଵ) = ሚ݂௭(ଵ) − ௭(ଵଶ) + ቀ݁ଵܮ ቁ ݀߬̃௭௫(ଶ)݀ߦ + ݊ ൬݁ଵܴଵ൰ ߬̃௭ఏ(ଶ), (25)

൞௫(ସ) = ሚ݂௫(ସ) − ߬̃௭௫(ଷ), ఏ(ସ) = ሚ݂ఏ(ସ) − ߬̃௭ఏ(ଷ),௭(ସ) = ሚ݂௭(ସ) + ௭(ଷସ) + ቀ݁ସܮ ቁ ݀߬̃௭௫(ଷ)݀ߦ + ݊ ൬݁ସܴସ൰ ߬̃௭ఏ(ଷ). (26)

In which, ݁ଵ = (ℎଵ + ℎଶ + ℎଷ)/2, ݁ସ = (ℎଶ + ℎଷ + ℎସ)/2. ሚ݂௫(ଵ), ሚ݂ఏ(ଵ), ሚ݂௭(ଵ) and ሚ݂௫(ସ), ሚ݂ఏ(ସ), ሚ݂௭(ସ)  are amplitudes of external excitation on base layer and constrained layer along ݔ ߠ ,   directions, respectively. In case of free vibration, they are equal zero. It can be seen from-ݖ  ,
Eqs. (25) and (26) that the effect of shear force eccentricity on the radial acting forces has been 
considered. 
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3. Integrated first-ordinary matrix differential equation of TTLDS 

It is obvious that the differential Eq. (20) cannot be solved directly for the unknown radial 
interaction ௭(ଵଶ) and ௭(ଷସ) in Eqs. (25) and (26). Therefore, it needs to eliminate them from  
Eq. (20). By substituting Eq. (25) and (26) into Eq. (20) respectively and using Eq. (23) eliminate 
the unknown radial interaction and numbers of non-independent variable, the integrated first order 
ordinary matrix differential equation of TTLDS can be expressed by: 

۰ ߦ݀݀ ܈ = ܈ۯ + ۴, (27)

where ܈ = ቄݑ(ଵ), ,(ଵ)ݒ ,ݓ ,ߚ ܰ௫(ଵ), ܵ௫(ଵ), ቀܸ௫(ଵ) + (ర)(భ) ܸ௫(ସ)ቁ , ,௫(ଵ)ܯ ,(ସ)ݑ ,(ସ)ݒ ܰ௫(ସ), ܵ௫(ସ)ቅ்,  is 
called the integration state vector of TTLDS; ۯ and ۰ are the coefficient matrices with the order 
12×12 and has been listed in the Appendix.  ۴ = ൜0,0,0,0, ,௫(ଵ) ,ఏ(ଵ) ,௭(ଵାସ) 0,0,0, ,௫(ସ) ఏ(ସ)ൠ்

is the vector of non-dimension external 

excitation. The elements of ۴ are the follows: 

۔ۖەۖ
௫(ଵ)ۓ = − ൬ ൰(ଵ)ܭܮ ሚ݂௫(ଵ),     ఏ(ଵ) = − ൬ ൰(ଵ)ܭܮ ሚ݂ఏ(ଵ),௫(ସ) = − ൬ ൰(ସ)ܭܮ ሚ݂௫(ସ),     ఏ(ସ) = − ൬ ൰(ସ)ܭܮ ሚ݂ఏ(ସ),௭(ଵାସ) = − ൬ ൰(ଵ)ܭܮ ቀ ሚ݂௭(ଵ) + − ሚ݂௭(ସ)ቁ .  (28)

Since ห۰ห > 1 and ൣ۰൧ିଵ
 exists, the matrix differential Eq. (26) can be solved. 

4. The semi-analytical solution to vibration and damping characteristics of TTLDS 

Eq. (27) can be solved effectively by using homogeneous high precise integration method. 
When TTLDS is in free vibration, which means the external excitation ۴ in Eq. (27) being zero, 
the relationship of the state vectors between ݔ = 0 and ݔ = (ܮ)܁ :can be found ܮ = ܂ ⋅ (29) ,(0)܁

where (0)܁ and (ܮ)܁ denote the integration state vectors at ݔ = 0 and ݔ =  is the ܂ ,respectively ܮ
transfer matrix. 

Usually, there are six state variables undetermined and six boundary conditions given at  ݔ = 0 and ݔ =  Substituting the boundary conditions given into Eq. (29), the equation that to be .ܮ
solved can be expressed by: ܂ ⋅ (0)܁ = (30) ,۽

where (0)܁  are the six undetermined state variables at ݔ =  0. Since six undetermined state 
variables can’t be all zeros, the coefficient determinant is zero. The characteristic equation can be 
written by: ݀݁ݐ൫܂൯ = 0. (31)

By solving Eq. (31), the ݅th mode complex eigenvalue ݏ of the TTLDS
 
can be achieved. 
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The ݅th mode natural frequency and loss factor of TTLDS can be written as: 

݂ = ߨ2(ݏ)ܴ݁ ߟ(32) , = (ݏ)݉ܫ2 ට൫ܴ݁(ݏ)൯ଶ + ൫݉ܫ(ݏ)൯ଶൗ . (33)

5. Model validation 

To illustrate the correctness of the paper method, the TTLDS that simply supported at two 
ends is considered. The geometric and physical parameters are: ܴଵ =  0.3 m, ܮ =  0.1 m,  ℎଵ = 3 mm, ℎଶ = 0.5 mm, ℎଷ = 0.5 mm, ℎସ = 2 mm, ܧଵ = ସܧ =70 GPa, ߩଵ = ସߩ = 2700 kg/m3, ߤଵ = ସߤ = ଶߩ ,0.3  =  1300 kg/m3, ߩଷ =  999 kg/m3, ܩଶ =  52.5(1+0.3862i) MPa,  ܩଷ = 0.896(1+0.9683i) MPa. 

Using the paper method and FEM solve the TTLDS, the results comparison between the 
proposed method and FEM are shown in Table 1. 

It can be seen from Table 1 that the error of natural frequency and loss factor between paper 
method and FEM is less than 3 %. The result comparison shows that semi-analytical method is 
reliable and can be used analyze the damping characteristics of TTLDS. 

Table 1. The results comparison between paper method and FEM 

Circumferential wave number 
(݊) 

Natural frequency Hz Loss factor % 
Paper 

method FEM  Error 
(%) 

Paper 
method FEM Error 

(%) 
9 2306.94 2333.31 1.13 0.491 0.497 1.19 
8 2294.1 2345.24 2.18 0.796 0.804 0.89 
10 2302.1 2350.05 2.04 0.902 0.911 0.89 
7 2344.07 2386.06 1.76 0.622 0.629 0.96 
11 2352.14 2394.04 1.75 0.963 0.974 1.03 
6 2420.28 2455.15 1.42 0.545 0.551 1.04 

6. The parameters analysis for transition layer 

6.1. The thickness parameter analysis 

Taking a TTLDS which being clamped at both ends into account, its geometric and physical 
parameters are ܮ =  100 mm, ܴଵ =  143 mm, ℎଵ =  2 mm, ℎଷ =  0.5 mm, ℎସ =  0.5 mm,  ܧଵ =  212 GPa, ܧସ =  70 GPa, ߤଵ = ସߤ ,0.3  = ଵߩ ,0.3  =  7850 kg/m3, ߩଶ =  1350 kg/m3,  ߩଷ = 999 kg/m3, ߩସ = 2700 kg/m3, ܩଶ = 5.25(1+0.3862) MPa, ܩଷ = 0.896(1+0.9683i) MPa. 

The thicknesses of transition layer ℎଶ are 0.2, 0.4, 0.6 and 0.8 mm respectively. The trends of 
natural frequency and damping factor are shown in Fig. 6. 

From Fig. 6, it can be seen that with the thickness increasing, the natural frequency of structure 
shows a gradual downward trend and the loss factor shows a gradual upward trend. So, on the 
premise of meeting structure size and weight, the structural damping effect can be improved by 
increasing the thickness of transition layer. The changing trends of natural frequency and loss 
factor for structure under different thickness of transition layer are shown in Fig. 6. 

6.2. The analysis of material properties 

The shear modulus ܩଶ  for four different materials are 8.582×106(1+0.5478i), 
5.72×107(1+0.4258i), 2.9×108(1+0.3478i) and 6.58×109(1+0.1028i) respectively, and remaining 
parameters are the same as the mode in section 6.1. The trend of natural frequency and loss factor 
for structure are shown in Fig. 7.  
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a) The comparison of natural frequency 

 
b) The comparison of loss factor 

Fig. 6. The comparison of natural frequency and damping factor  
for transition layer with different thicknesses 

From Fig. 7, it can be seen that with hardness of material increasing for transition layer, the 
natural frequency of structure presents the first decreasing then increasing trend, and the loss factor 
of structure presents the first increasing then deceasing trend. The trends indicate that the structure 
damping effect can be changed by changing the material of transition layer. In general, the material 
property of transition layer is between the material of base layer and damping layer. When the 
elastic modulus ratio ܧଶ/ܧଷ  is 1000, the best damping effect can be achieved. The trends of 
natural frequency and loss factor for structure are shown in Fig. 7. 

6.3. The analysis of transition layer’s location 

As described in the beginning of the paper, in order to increase structural damping effect, we 
added one more layer which called transition layer between base layer and damping layer of TTDS 
to form TTLDS (B-T-D-C). Now supposed that transition layer is located between damping layer 
and constraining layer of TTDS, which plays a similar constrained role like the constrained layer 
on increasing the shear deformation and shear stress of damping layer on consuming more 
vibration energy, and formed another TTLDS (B-D-T-C) (see Fig. 1(b)), which effect is better? 

Aimed at this problem, the paper takes two different materials as transition layer respectively 
and compares their effects. The shear modulus of two materials are ܩଶ = 8.582× 106(1+0.5478i) 
and ܩଶ =  2.9×108(1+0.3478i). Other parameters still are the same as the model above. The 
comparisons of natural frequency and loss factor for structure between B-T-D-C and B-D-T-C are 
shown in Table 2 and Table 3. 
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a) The comparison of natural frequency 

 
b) The comparison of loss factor 

Fig. 7. The comparison of natural frequency and damping factor for transition layer with different materials 

Table 2. The comparison of natural frequency and loss factor for first material between two models 

Circumferential wave number (݊) Natural frequency Loss factor 
B-D-T-C B-T-D-C B-D-T-C B-T-D-C 

3 4051.84 4045.53 3.521×10-4 3.543×10-4 
4 3493.78 3490.44 4.980×10-4 5.012×10-4 
5 3104.12 3098.74 7.362×10-4 7.565×10-4 
6 2868.98 2861.58 1.042×10-3 1.245×10-3 
7 2776.78 2698.33 1.362×10-3 1.464×10-3 
8 2817.76 2809.23 1.261×10-3 1.384×10-3 

Table 3. The comparison of natural frequency and loss factor for second material between two models 

Circumferential wave number (݊) Natural frequency Loss factor 
B-D-T-C B-T-D-C B-D-T-C B-T-D-C 

3 4040.83 4035.15 3.831×10-4 3.934×10-4 
4 3484.35 3480.6 5.552×10-4 5.654×10-4 
5 3095.82 3091.25 8.213×10-4 8.435×10-4 
6 2861.58 2857.51 1.161×10-3 1.193×10-3 
7 2769.58 2761.52 1.512×10-3 1.615×10-3 
8 2810.58 2805.31 1.312×10-3 1.394×10-3 

From Table 2 and Table 3, it can be seen that for the same material in different position, 
damping effect of B-T-D-C is better than that of B-D-T-C, which means the transition layer 
located between base layer and damping layer can increase shear deformation of the damping 
layer more than that of located between damping layer and constrained layer. 

Wenjun Zhang performed the data analyses and wrote the manuscript. Dagang Sun contributed 
to the conception of the study. Bijuan Yan contributed to the conception of the study. Zhanlong 
Li contributed to the paper revision. Shizhong Liu helped perform the analysis with constructive 
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discussions. 

7. Conclusions 

The paper presents a type tubular transition layer damping structure which added a transition 
layer between base layer and damping layer of TTDS. Based on the basic equation of TTLDS, 
considering the influence of energy dissipation for transition layer and damping layer and the 
interaction between layers, the integration of first order differential equation of TTLDS is derived 
firstly under external excitation. To obtain the characteristics of frequency and loss factor for 
TTLDS, the homogeneous high precise integration method is applied to solve the differential 
equations. Finally, the paper discusses the effects of parameters for transition layer on the 
structural damping and achieves the following conclusions: 

1) The thickness of transition layer can play a significant role on structural damping effect. On 
the premise of meeting the structure size and weight, the structural damping effect can be 
improved by increasing the thickness of transition layer. 

2) The material of transition layer can make a great influence on damping effect of the  
structure. In practice, the damping effect can be improved by changing the material of transition 
layer. When the elastic modulus ratio of the two materials ܧଶ ⁄ଷܧ  is 1000, the damping effect will 
be the best. 

3) The location of transition layer can play some role on damping effect. For the same material, 
the damping effect located in between base layer and damping layer is better than that of located 
in between damping layer and constrained layer. 
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Appendix 

1. The non-zero elements in coefficient matrix ݃(ଵ). 
ଵ݃ଶ(ଵ) = − ൬ߤଵܴ݊ܮଵ ൰,   ݃ଵଷ(ଵ) = − ൬ߤଵܴܮଵ ൰,   ݃ଵହ(ଵ) = 1,

݃ଶଵ(ଵ) = ൬ܴ݊ܮଵ൰ ଵ,   ݃ଶସ(ଵ)ܣ = ቆℎଵଶ݊6ܴଵଶቇ ଵ,   ݃ଶ(ଵ)ܣ = ൬ ଵ1ܣ2 − ଵ൰,   ݃ଷସ(ଵ)ߤ = 1,
݃ସଶ(ଵ) = − ቆߤଵ݊ܮଶܴଵଶ ቇ,   ݃ସଷ(ଵ) = − ቆߤଵ݊ଶܮଶܴଵଶ ቇ,   ݃ସ଼(ଵ) = ቆ12ܮଶℎଵଶ ቇ ,
݃ହଵ(ଵ) = ቆ݊ଶܮଶ2ܴଵଶ (1 − ଵ)(1ߤ − (ଵܣ − ଵଶቇ,   ݃ହସ(ଵ)ߣ = − ݊ଶℎଵଶ12ܴܮଵଷ (1 − ,ଵܣ(ଵߤ
݃ହ(ଵ) = − ൬ܴ݊ܮଵ൰,   ݃ଶ(ଵ) = ݊ଶܮଶ(1 − (ଵߤ ቆℎଵଶ + 12ܴଵଶ12ܴଵସ ቇ − ,ଵଶߣ
݃ଷ(ଵ) = (1 − ଶܮ(ଵଶߤ ቆℎଵଶ݊ଷ + 12ܴଵଶ݊12ܴଵସ ቇ,   ݃ହ(ଵ) = ൬ߤଵܴ݊ܮଵ ൰,   ଼݃(ଵ) = ቆߤଵ݊ܮଶܴଵଶ ቇ ,

 

݃ଶ(ଵ) = (1 − ଶܮ(ଵଶߤ ቆ݊ଷℎଵଶ + 12ܴ݊ଵଶ12ܴଵସ ቇ, 
݃ଷ(ଵ) = (1 − ଶܮ(ଵଶߤ ቆ݊ସℎଵଶ + 12ܴଵଶ12ܴଵସ ቇ −  ,ଵଶߣ
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݃ହ(ଵ) = ൬ߤଵܴܮଵ ൰,   ଼݃(ଵ) = ቆߤଵ݊ଶܮଶܴଵଶ ቇ,   ଼݃ଵ(ଵ) = −(1 − (ଵߤ ቆ݊ଶℎଵଶ6ܴܮଵଷ ቇ  ,ଵܣ
଼݃ସ(ଵ) = (1 − (ଵߤ ቆ݊ଶℎଵଶ6ܴଵଶ ቇ ቆ1 − ℎଵଶ6ܴଵଶ ଵቇ,    ଼݃(ଵ)ܣ = − ݊ℎଵଶ3ܴଵଶ ଵ,   ଼݃(ଵ)ܣ = 1, 
where ܣଵ = ோభమோభమାభమ and ߣଵଶ = ఘభభఠమమ(భ) . 

2. The non-zero elements in coefficient matrix ݃(ସ). 
ଵ݃ଶ(ସ) = − ൬ߤସܴ݊ܮସ ൰,   ݃ଵଷ(ସ) = − ൬ߤସܴܮସ ൰,   ݃ଵହ(ସ) = 1, ݃ଶଵ(ସ) = ൬ܴ݊ܮସ൰ ସ,   ݃ଶସ(ସ)ܣ = ቆℎସଶ݊6ܴସଶቇ ସ,   ݃ଶ(ସ)ܣ = ൬ ସ1ܣ2 − ସ൰,   ݃ଷସ(ସ)ߤ = 1, ݃ସଶ(ସ) = − ቆߤସ݊ܮଶܴସଶ ቇ,   ݃ସଷ(ସ) = − ቆߤସ݊ଶܮଶܴସଶ ቇ,   ݃ସ଼(ସ) = ቆ12ܮଶℎସଶ ቇ, 

݃ହଵ(ସ) = ቆ݊ଶܮଶ2ܴସଶ (1 − ସ)(1ߤ − (ସܣ − ସଶቇ,   ݃ହସ(ସ)ߣ = − ݊ଶℎସଶ12ܴܮସଷ (1 −  ,ସܣ(ସߤ
݃ହ(ସ) = − ൬ܴ݊ܮସ൰,   ݃ଶ(ସ) = ݊ଶܮଶ(1 − (ସߤ ቆℎସଶ + 12ܴସଶ12ܴସସ ቇ −  ,ସଶߣ
݃ଷ(ସ) = (1 − ଶܮ(ସଶߤ ቆℎସଶ݊ଷ + 12ܴସଶ݊12ܴସସ ቇ,   ݃ହ(ସ) = ൬ߤସܴ݊ܮସ ൰,   ଼݃(ସ) = ቆߤସ݊ܮଶܴସଶ ቇ, 
݃ଶ(ସ) = (1 − ଶܮ(ସଶߤ ቆ݊ଷℎସଶ + 12ܴ݊ସଶ12ܴସସ ቇ, 
݃ଷ(ସ) = (1 − ଶܮ(ସଶߤ ቆ݊ସℎସଶ + 12ܴସଶ12ܴସସ ቇ −  ,ସଶߣ
݃ହ(ସ) = ൬ߤସܴܮସ ൰,   ଼݃(ସ) = ቆߤସ݊ଶܮଶܴସଶ ቇ,   ଼݃ଵ(ସ) = −(1 − (ସߤ ቆ݊ଶℎସଶ6ܴܮସଷ ቇ  ,ସܣ
଼݃ସ(ସ) = (1 − (ସߤ ቆ݊ଶℎସଶ6ܴସଶ ቇ ቆ1 − ℎସଶ6ܴସଶ ସቇ,    ଼݃(ସ)ܣ = − ݊ℎସଶ3ܴସଶ ସ,   ଼݃(ସ)ܣ = 1, 
where: 

ସܣ = 6ܴସଶ6ܴସଶ + ℎସଶ ସଶߣ   , = (ସ)ܭଶܮସℎସ߱ଶߩ . 
3. The nonzero elements in matrix ۯ .ۯଵ,ଶ = ଵ݃ଶ(ଵ),   ۯଵ,ଷ = ଵ݃ଷ(ଵ),   ۯଵ,ହ = ଵ݃ହ(ଵ),   ۯଶ,ଵ = ݃ଶଵ(ଵ),   ۯଶ,ସ = ݃ଶସ(ଵ), ۯଶ, = ݃ଶ(ଵ),   ۯଷ,ସ = ݃ଷସ(ଵ),   ۯସ,ଶ = ݃ସଶ(ଵ),   ۯସ,ଷ = ݃ସଷ(ଵ),   ۯସ,଼ = ݃ସ଼(ଵ), ۯହ,ଵ = ݃ହଵ(ଵ) − ൬ ଵܶܭܮ(ଵ)൰,   ۯହ,ସ = ݃ହସ(ଵ) − ൬ ଶܶܭܮ(ଵ)൰,   ۯହ, = ݃ହ(ଵ),   ۯହ,ଽ = − ൬ ଷܶܭܮ(ଵ)൰, ۯ,ଶ = ݃ଶ(ଵ) − ൬ ସܶܭܮ(ଵ)൰,   ۯ,ଷ = ݃ଷ(ଵ) − ൬ ହܶܭܮ(ଵ)൰,   ۯ,ହ = ݃ହ(ଵ),   ۯ,଼ = ଼݃(ଵ), ۯ,ଵ = − ൬ ܶܭܮ(ଵ)൰,   ۯ,ଶ = ቈ݃ଶ(ଵ) + (ଵ)ܭ(ସ)ܭ ⋅ ଼݃(ସ)݃ସଶ(ଵ)݃ସ଼(ସ) − ܮ݊ ସܶܭ(ଵ) ൬݁ଵܴଵ + ݁ସܴସ൰, 
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,ଷۯ = ቈ݃ଷ(ଵ) + (ଵ)ܭ(ସ)ܭ ݃ଷ(ସ) − ൫ߣଶଶ + ଷଶ൯ߣ + (ଵ)ܭ(ସ)ܭ ݃ସଷ(ଵ) − ݃ସଷ(ସ)݃ସ଼(ସ) ଼݃(ସ) − ହܶ݊ܭܮ(ଵ) ൬݁ଵܴଵ + ݁ସܴସ൰, ۯ,ହ = ݃ହ(ଵ),   ۯ,଼ = ቈ଼݃(ଵ) + (ଵ)ܭ(ସ)ܭ ଼݃(ସ) − ݃ସ଼(ଵ)݃ସ଼(ସ) , ۯ,ଵ = ቈܭ(ସ)ܭ(ଵ) ቆ݃ଶ(ସ) − ଼݃(ସ)݃ସଶ(ସ)݃ସ଼(ସ) ቇ − ܶ݊ܭܮ(ଵ) ൬݁ଵܴଵ + ݁ସܴସ൰, ۯ,ଵଵ = (ଵ)ܭ(ସ)ܭ ݃ହ(ସ),   ଼ۯ,ଵ = ଼݃ଵ(ଵ),   ଼ۯ,ସ = ቈ଼݃ସ(ଵ) + ቆܭ(ସ)ܭ(ଵ)ቇ ቆ଼݃(ଵ)଼݃ସ(ସ)଼݃(ସ) ቇ,   ଼ۯ, = ଼݃(ଵ), ଼ۯ, = ଼݃(ଵ),   ଼ۯ,ଽ = ቆܭ(ସ)ܭ(ଵ)ቇ ቆ଼݃(ଵ)଼݃ଵ(ସ)଼݃(ସ) ቇ,   ଼ۯ,ଵଶ = ቆܭ(ସ)ܭ(ଵ)ቇ ቆ଼݃(ଵ)଼݃(ସ)଼݃(ସ) ቇ,    ۯଽ,ଷ = ଵ݃ଷ(ସ),     ۯଽ,ଵ = ଵ݃ଶ(ସ),   ۯଽ,ଵଵ = ଵ݃ହ(ସ),   ۯଵ,ସ = ݃ଶସ(ସ),   ۯଵ,ଽ = ݃ଶଵ(ସ),    ۯଵ,ଵଶ = ݃ଶ(ସ),     ۯଵଵ,ଵ = ൬ ൰(ସ)ܭܮ ଵܶ,   ۯଵଵ,ସ = ݃ହସ(ସ) + ൬ ൰(ସ)ܭܮ ଶܶ,    ۯଵଵ,ଽ = ݃ହଵ(ସ) + ൬ ൰(ସ)ܭܮ ଷܶ,     ۯଵଵ,ଵଶ = ݃ହ(ସ),   ۯଵଶ.ଶ = ൬ ൰(ସ)ܭܮ ସܶ + ቆ଼݃(ସ)݃ସଶ(ଵ)݃ସ଼(ସ) ቇ, ۯଵଶ.ଷ = ݃ଷ(ସ) + ଼݃(ସ) ቆ݃ସଷ(ଵ) − ݃ସଷ(ସ)݃ସ଼(ସ) ቇ + ൬ ൰(ସ)ܭܮ ହܶ,   ۯଵଶ.଼ = ቆ଼݃(ସ)݃ସ଼(ଵ)݃ସ଼(ସ) ቇ, ۯଵଶ.ଵ = ݃ଶ(ସ) − ቆ଼݃(ସ)݃ସ଼(ଵ)݃ସ଼(ସ) ቇ + ൬ ൰(ସ)ܭܮ ܶ,    ۯଵଶ.ଵଵ = ݃ହ(ସ). 
4. The nonzero elements in matrix ۰. ۰ଵ,ଵ = ۰ଶ,ଶ = ۰ଷ,ଷ = ۰ସ,ସ = ۰, = ۰, = ۰, = ۰ଽ,ଽ = ۰ଵ,ଵ = ۰ଵଵ,ଵଵ = ۰ଵଶ,ଵଶ = 1,۰,ଵ = ቆ ଵܶ݁ଵ + ଵܶᇱ݁ସܭ(ଵ) ቇ,   ۰,ସ = ቆ ଶܶ݁ଵ + ଶܶᇱ݁ସܭ(ଵ) ቇ,   ۰,ଽ = ቆ ଷܶ݁ଵ + ଷܶᇱ݁ସܭ(ଵ) ቇ ,

۰଼,ଶ = ቆܭ(ସ)ܭ(ଵ)ቇ ቆ଼݃(ଵ)଼݃(ସ)ቇ ቆ݃ସଶ(ଵ)݃ସ଼(ସ)ቇ,   ۰଼,ଷ = ቆܭ(ସ)ܭ(ଵ)ቇ ቆ଼݃(ଵ)଼݃(ସ)ቇ ቆ݃ସଷ(ଵ) − ݃ସଷ(ସ)݃ସ଼(ସ) ቇ ,
۰଼,଼ = ൭1 + ቆܭ(ସ)ܭ(ଵ)ቇ ቆ଼݃(ଵ)଼݃(ସ)ቇ ቆ݃ସ଼(ଵ)݃ସ଼(ସ)ቇ൱,   ۰଼,ଵ = ቆܭ(ସ)ܭ(ଵ)ቇ ቆ଼݃(ଵ)଼݃(ସ)ቇ ቆ݃ସଶ(ସ)݃ସ଼(ସ)ቇ .
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