
 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. JUN 2017, VOL. 19, ISSUE 4. ISSN 1392-8716 2873 

2504. Free vibration of basalt fiber reinforced polymer 
(FRP) laminated variable thickness plates with 
intermediate elastic support using finite strip transition 
matrix (FSTM) method 

Wael A. Altabey 
International Institute for Urban Systems Engineering, Southeast University, Nanjing, 210096, China 
Department of Mechanical Engineering, Faculty of Engineering, Alexandria University,  
Alexandria, 21544, Egypt 
E-mail: wael.altabey@gmail.com 
Received 5 January 2017; received in revised form 29 January 2017; accepted 12 March 2017 
DOI https://doi.org/10.21595/jve.2017.18154 

Abstract. This paper presents a semi-analytical method to investigate the effect of intermediate 
elastic support on the natural frequencies of basalt fiber reinforced polymer (FRP) laminated, 
variable thickness plates based on the finite strip transition matrix (FSTM) method. The plate has 
a uniform thickness in ݔ direction and varying thickness ℎ(ݕ) in ݕ direction. A singular value 
decomposition algorithm is employed at the intermediate support to eliminate the dependence of 
the solution of the first span on another span. By a new treatment of the intermediate line support, 
the dimension of the final matrix of the general solution will be the same as that of plates without 
intermediate support. Numerical results for different combinations of classical boundary 
conditions at the plate edges with different elastic restraint coefficients (்ܭ) for intermediate 
elastic support are presented to obtain the first six frequency parameters. The illustrated results 
are in excellent agreement with solutions available in the literature, thus validating the accuracy 
and reliability of the proposed technique. 
Keywords: free vibration, finite strip transition matrix, variable thickness plate, basalt FRP. 

1. Introduction 

Continuous plates and plates with intermediate stiffeners are very common in many 
engineering fields such as aerospace industries, civil engineering and marine engineering. Exact 
solutions of such plates are available only for some boundary conditions. For example, if two 
opposite sided are simply supported and the other sides may be any combinations of elastic, 
clamped and free, a Levy-type solution can be obtained for rigid stiffners [1].  

In general, a numerical approach or an approximate method must be employed to find the 
natural frequencies and the mode shapes for different combinations of the boundary conditions. 
The vibration of plates with intermediate support attracts many researchers. 

Xiang and Liew [1] presented an exact (Levy-type) solution for multi-span rectangular mindlin 
plates with two opposite edges simply supported. Abrate and Foster [2] used Rayleigh-Ritz 
method to investigate the free vibrations of rectangular composite plates with arbitrary number of 
intermediate line supports. Cheung and Zhou [3] used Rayleigh-Ritz method to study vibrations 
of symmetric laminated rectangular plates with intermediate supports. Liew and Wang [4] studied 
vibration of skew plates with internal line support using the pb-2 Rayleigh-Ritz method. Cheung 
and Zhou [5] used a set of static beam functions to analyze the vibration of orthotropic rectangular 
plates with intermediate elastic support. Xiang et al. [6] reported free vibration behavior of 
laminated seven composite plates based on the ݊th order shear deformation theory and this theory 
satisfies the zero transverse shear stress boundary conditions. Thai and Kim [7] examined the free 
vibration responses of laminated composite plates using two variables refined plate theory. Ovesy 
and Fazilati [8] employed the third order shear deformation theory for buckling and free vibration 
finite strip analysis of composite plates with cutout based on two different modeling approaches 
(semi-analytical and spline method). Dozio [9] presented accurate upper-bound solutions for free 
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in-plane vibrations of single-layer and symmetrically laminated rectangular composite plates with 
an arbitrary combination of clamped and free boundary conditions. He used Rayleigh-Ritz method 
to calculate in-plane natural frequencies and modes shapes with a simple, stable and 
computationally efficient set of trigonometric functions. Asadi et al. [10] investigated the vibration 
analysis of axially moving functionally graded plates with internal line supports and temperature-
dependent properties using harmonic differential quadrature method. They studied plate vibration 
which was subjected to static in-plane forces while out-of-plane loading was dynamic. Al-Tabey 
[11] presented the finite strip transition matrix technique (FSTM) and semi-analytical method to 
obtain the natural frequencies and mode shapes of symmetric angle-ply Graphite/Epoxy laminated 
composite variable thickness rectangular plate with classical boundary conditions (SSFF). Thinh 
et al. [12] examined the bending and vibration analysis of multi-folding laminate composite plate 
using finite element method based on the first order shear deformation theory (FSDT). They 
investigated the effect of folding angle on deflections, natural frequencies and transient 
displacement response for different boundary conditions of the plate. Ducceschi [13] studied the 
nonlinear vibrations of thin rectangular plates by developing of a numerical code able to simulate 
without restrictions. He described the large spectrum of dynamical features by the von Kármán 
equations. Yadav et al. [14] presented the free vibration analysis of stiffened isotropic plate by 
means of finite element method. They studied the effect of different boundary conditions, 
stiffeners location, thickness ratio, stiffener thickness to plate thickness and aspect ratio on the 
vibration analysis of stiffened isotropic plate, and calculated natural frequencies using 
Block-Lanczos algorithm. Küçükrendeci and Morgül [15] investigated the effects of elastic 
boundary conditions on the linear free vibrations. They found that frequency parameters increase 
when boron/epoxy used. 

Semi-analytical methods are welcomed in the literature as an alternative to the exact solution. 
In this paper a semi-analytical method, the finite strips transition matrix (FSTM) method [16] has 
been employed to investigate the free vibration of basalt fiber reinforced polymer (FRP) laminated 
variable thickness rectangular plates with intermediate elastic support as shown in Fig. 1. A new 
treatment of the elastic intermediate boundary conditions using a singular values decomposition 
algorithm is introduced in this paper. Four different classical boundary conditions are considered 
in the analysis with different elastic restraint coefficients (்ܭ) for intermediate elastic support to 
obtain the first six frequency parameters, some new data which can serve as the benchmark for 
further research are presented in this work. 

2. Theory and formulation 

2.1. Governing equations 

The partial differential equation governing the vibration of symmetrically, angle-ply  
laminated, variable thickness, rectangular plates under the assumption of the classical deformation 
theory in terms of the plate deflection ݓ(ݔ, ,ݕ  :is given by [17] (ݐ

ଵଵܦ ߲ସݓ߲ݔସ + ଵܦ4 ߲ସݓ߲ݔଷ߲ݕ + ଵଶܦ)2 + (ܦ2 ߲ସݓ߲ݔଶ߲ݕଶ + ଶܦ4 ߲ସݓ߲ݕ߲ݔଷ + ଶଶܦ ߲ସݓ߲ݕସ         = −݉ ℎ(ݕ)ℎ ߲ଶݓ߲ݐଶ . (1)

Or in contraction form: ܦଵଵ ௫ܹ௫௫௫ + ଵܦ4 ௫ܹ௫௫௬ + ଵଶܦ)2 + (ܦ2 ௫ܹ௫௬௬ + ଶܦ4 ௫ܹ௬௬௬ + ଶଶܦ ௬ܹ௬௬௬        = −݉ ℎ(ݕ)ℎ ௧ܹ௧, (2)
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where: ݉ =  : of the plate are given byܦ ℎ, the flexural rigiditiesߩ

ܦ = 13 ℎଷ(ݕ)ℎଷ  ቂ(ܳ)ቃ (ℎଷ − ℎିଵଷ ),
ୀଵ        ݅, ݆ = 1, 2, 3. (3)

where ℎ is the distance from the middle-plane of the plate according to ℎ to the bottom of the ℎ௧  layer as shown in Fig. 1. And ܳ  are the plane stress transformed reduced stiffness 
coefficients of the lamina in the laminate cartesian coordinate system. They are related to reduce 
stiffness coefficients of the lamina in the material axes of lamina ܳ  by proper coordinate 
relationships they can be expressed in terms of the engineering notations as: 

ܳ = ܳଵଵ ܳଵଶ ܳଵଷܳଵଶ ܳଶଶ ܳଶଷܳଵଷ ܳଶଷ ܳ൩ = ێێۏ
ۍێ ଵଵ(1ܧ − ߭ଵଶ߭ଶଵ) ߭ଶଵܧଵଵ(1 − ߭ଵଶ߭ଶଵ) 0߭ଶଵܧଵଵ(1 − ߭ଵଶ߭ଶଵ) ଶଶ(1ܧ − ߭ଶଵ߭ଵଶ) 00 0 ۑۑےଵଶܩ

(4) ,ېۑ

where: ܧଵଵ, ܧଶଶ are the longitudinal and transverse Young’s moduli parallel and perpendicular to 
the fiber orientation, respectively and ܩଵଶ is the plane shear modulus of elasticity, ߭ଵଶ and ߭ଶଵ are 
the Poisson coefficients. 

 
Fig. 1. The geometrical model of Basalt FRP laminated variable thickness rectangular plate  

with intermediate elastic support 

The substitution of Eq. (3) into Eq. (2) and after some derivation steps [18], the governing 
Partial differential equation can be written in form: 
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ଵଵܦ ℎଷ(ݕ)ℎଷ ௫ܹ௫௫௫ + ൬2(ܦଵଶ + )ℎଷܦ2 ൰ ߲ℎଷ(ݕ)߲ݕ ௫ܹ௫௬ + ൬2(ܦଵଶ + )ℎଷܦ2 ൰ ℎଷ(ݕ) ௫ܹ௫௬௬        +ܦଵ ℎଷ(ݕ)ℎଷ ௫ܹ௫௫௬ + ቆ4ܦଶℎଷ ߲ଶℎଷ(ݕ)߲ݕଶ ቇ ௫ܹ௬ + ଶℎଷܦ4 ℎଷ(ݕ) ௫ܹ௬௬௬ + ଶℎଷܦ8 ߲ℎଷ(ݕ)߲ݕ ௫ܹ௬௬        + ቆܦଶଶℎଷ ߲ଶℎଷ(ݕ)߲ݕଶ ቇ ௬ܹ௬ + ଶଶℎଷܦ ℎଷ(ݕ) ௬ܹ௬௬௬ + ଶଶℎଷܦ2 ߲ℎଷ(ݕ)߲ݕ ௬ܹ௬௬ = −݉ ℎ(ݕ)ℎ ௧ܹ௧. (5)

The equation of motion Eq. (5) can be normalized using the non-Dimensional variables ߦ and ߟ as follows: 

߰ଵ 1ܽସ కܹకకక + 2߰ଶℎଷ(ߟ) 1ܽଶܾ ߲ℎଷ(ߟ)߲ߟ కܹకఎ + 2߰ଶ 1ܽଶܾଶ కܹకఎఎ + ߰ଷ 1ܽଷܾ కܹకకఎ        +4߰ସ 1ܾܽଷ కܹఎఎఎ + 1ܾܽ 4߰ସℎଷ(ߟ) ߲ଶℎଷ(ߟ)߲ߟଶ కܹఎ + 8߰ସℎଷ(ߟ) 1ܾܽଶ ߲ℎଷ(ߟ)߲ߟ కܹఎఎ        + 1ܾଶ 1ℎଷ(ߟ) ߲ଶℎଷ(ߟ)߲ߟଶ ఎܹఎ + 1ܾସ ఎܹఎఎఎ + 2ℎଷ(ߟ) 1ܾଷ ߲ℎଷ(ߟ)߲ߟ ఎܹఎఎ = − ݉ܦଶଶ ℎଶℎଶ(ߟ) ௧ܹ௧, (6)

where ߚ = ܽ ܾ⁄  is the aspect ratio, and: 

ߦ = ݔܽ ߟ     , = ݕܾ ,     ߰ଵ = ଶଶܦଵଵܦ ,     ߰ଶ = ଵଶܦ) + ଶଶܦ(ܦ2 ,     ߰ଷ = ଶଶܦଵܦ ,     ߰ସ =  .ଶଶܦଶܦ
2.2. Boundary conditions 

In this paper, the boundary conditions along the ݔ-direction and ݕ-direction are considered by 
any combinations of the classical boundary conditions such as simply supported, clamped, or free. 
For the purpose of clarity, the symbol SFSC for example, means a plate having simply supported, 
free, simply supported and clamped edges at the boundaries, ݔ ݕ ,0 = = ݔ ,ܾ = ܽ, and ݕ = 0, 
respectively (start anticlockwise from the left edge of the plate). In the numerical computations, 
four different classical boundary conditions are considered in the analysis SSSS, CCCC, SSFF 
and CCFF as shown in Fig. 2. 

 
Fig. 2. Representation of different support condition for the analysis 
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Simply supported edges: 

|కୀ,ଵݓ = 0,     1ܽଶ ߲ଶݓ߲ߦଶ ቤకୀ,ଵ = |ఎୀ,ଵݓ       ,0 = 0,      1ܾଶ ߲ଶݓ߲ߟଶ ቤఎୀ,ଵ = 0. (7)

Clamped supported edges: 

|కୀ,ଵݓ = 0,     1ܽ ߦ߲ݓ߲ ฬకୀ,ଵ = |ఎୀ,ଵݓ      ,0 = 0,     1ܾ ߟ߲ݓ߲ ฬ௬ୀ,ଵ = 0. (8)

Free edges: 1ܽଷ ߲ଷݓ߲ߦଷ ቤకୀ,ଵ = 0,     1ܽଶ ߲ଶݓ߲ߦଶ ቤకୀ,ଵ = 0,      1ܾଷ ߲ଷݓ߲ߟଷ ቤఎୀ,ଵ = 0,     1ܾଶ ߲ଶݓ߲ߟଶ ቤఎୀ,ଵ = 0. (9)

2.2.1. Intermediate elastic line support 

Since the treatment of the intermediate elastic line support conditions are the main objective 
of this paper we presented it in more details. At the intermediate elastic line support, ݕ = ܾ 2⁄ , the 
displacement must vanish and the moment must be continuous, i.e.: 

ݓ்ܭ = −2߰ଷ 1ܽଷ ߲ଷݓ߲ߦଷ − 1ܾଷ ߲ଷݓ߲ߟଷ − ߰ହ 1ܽଶܾ ߲ଶݓ߲ߦଶ߲ߟ − 4߰ସ 1ܾܽଶ ߲ଷݓ߲ߟ߲ߦଶ, (10)1ܾ ฬఎୀଵష/ଶ ߟ߲ݓ߲ = 1ܾ ฬఎୀଵశ/ଶ, (11)−2߰ଷ ߟ߲ݓ߲ 1ܽଷ ߲ଷݓ߲ߦଷ − 1ܾଷ ߲ଷݓ߲ߟଷ − ߰ହ 1ܽଶܾ ߲ଶݓ߲ߦଶ߲ߟ − 4߰ସ 1ܾܽଶ ߲ଷݓ߲ߟ߲ߦଶቤఉୀଵష ଶ⁄  
       = −2߰ଷ 1ܽଷ ߲ଷݓ߲ߦଷ − 1ܾଷ ߲ଷݓ߲ߟଷ − ߰ହ 1ܽଶܾ ߲ଶݓ߲ߦଶ߲ߟ − 4߰ସ 1ܾܽଶ ߲ଷݓ߲ߟ߲ߦଶቤఉୀଵశ ଶ⁄ , (12)

where: ்ܭ  is the elastic restraint coefficient given by: ்ܭ = ܶ ଶ⁄ ܾଷ ⁄ଶଶܦ , ܶ  is translational 
stiffness per unit length, ߰ହ = ଵଶܦ) + (ܦ4 ⁄ଶଶܦ . 

2.3. Finite strip transition matrix (FSTM) method 

The method is made when such a shape function is not conveniently obtained in case of 
discussing the plate problems by series. The plate may be divided into ܰ discrete longitudinal 
strips spanning between supports as shown in Fig. 3. Simple basic displacement interpolation 
functions may then be used to represent displacement field within and between individual strips. 

For a plate striped in the ߦ-direction as shown in Fig. 3, the shape function ܹ(ߦ, ,ߟ  may be (ݐ
assumed in the form: 

,ߦ)ܹ ,ߟ (ݐ =  ܺ(ߦ) ܻ(ߟ)ே
ୀ ݁ఠ, (13)

where: ܻ(ߟ) is unknown function to be determined and ܺ(ߦ) is chosen a priori, the basic function 
in ߦ-direction. The most commonly used is the Eigen function obtained from the solution of the 
differential equation of a beam vibration under the prescribed conditions of the stripe at ߦ = 0 and 
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ߦ = 1. By substituting of Eq. (13) into Eq. (6), multiplying both sides by ܺ(ݔ) and after some 
derivatives, we can find: 

  ସߚ
ଷ݂(ߟ) ܻ,ఎఎఎఎ + ଷܽߚ2 ଵ݂(ߟ)ଷ݂(ߟ) ܻ,ఎఎఎெ

ୀ
ே

ୀ  
       + ቆ2߰ଶߚଶ

ଷ݂(ߟ) ܿܽ + 8߰ସߚଶܽ ଵ݂(ߟ)ଷ݂(ߟ) ܾܽ + ଶܽଶߚ ଶ݂(ߟ)ଷ݂(ߟ)ቇ ܻ,ఎఎ        + ቆ2߰ଶܽߚ ଵ݂(ߟ)ଷ݂(ߟ) ܿܽ + ߰ଷߚଷ݂(ߟ) ݀ܽ + 4߰ସܽߚଶ ଶ݂(ߟ)ଷ݂(ߟ) ܾܽ + 4߰ସߚଷ
ଷ݂(ߟ) ܾܽቇ ܻ,ఎ        + ቆ ߰ଵଷ݂(ߟ) ݁ܽ − Ωଶቇ ܻ = 0, 

(14)

where: 

Ωଶ = ݉ℎ(ߟ)߱ଶܽସℎܦଶଶ ,     ଵ݂(ߟ) = 1ℎଷ(ߟ) ߲ℎଷ(ߟ)߲ߟ ,     ଶ݂(ߟ) = 1ℎଷ(ߟ) ߲ଶℎଷ(ߟ)߲ߟଶ , 
ଷ݂(ߟ) = ℎଶℎଶ(ߟ),     ܽ = න ܺ ܺ݀ߦଵ

 ,     ܾ = න ܺ ܺ,క݀ߦଵ
 , 

ܿ = න ܺ ܺ,కక݀ߦଵ
 ,     ݀ = න ܺ ܺ,కకక݀ߦଵ

 ,     ݁ = න ܺ ܺ,కకకక݀ߦଵ
 . 

 
Fig. 3. Finite strip simulation on plate 

From the beam Eigen function orthogonality, ܽ = ݁ = 0 for ݅ ≠ ݆, this agree for all types 
of boundary conditions except for plates having free edges in the ߦ-direction. The governing 
differential Eq. (14) can be written in form: 

  ܧ ܻᇱᇱᇱᇱ + ( ଵܷ)(ܷ) ܻᇱᇱᇱ + (ܷଶ)(ܷ) ܻᇱᇱ + (ܷଷ)(ܷ) ܻᇱ + (ܷସ) − ଶ(ܷ)ߣ ܻெ
ୀ = 0,ே

ୀ  (15)

where:  (ܷ) = )      ,ܧ(ߟ)ଵݐସߚ ଵܷ) = , (ܷଶ)ܧ(ߟ)ଶݐଷܽߚ2 = ൭2߰ଶߚଶݐଵ(ߟ) ܿܽ + 8߰ସߚଶܽݐଶ(ߟ) ܾܽ +  ,൱(ߟ)ଷݐଶܽଶߚ
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(ܷଷ) = ቆ2߰ଶݐܽߚଶ(ߟ) ܿܽ + ߰ଷݐߚଵ(ߟ) ݀ܽ + 4߰ସܽߚଶݐଷ(ߟ) ܾܽ + 4߰ସߚଷݐଵ(ߟ) ܾܽቇ, (ܷସ) = ߰ଵݐଵ(ߟ) ݁ܽ, 
and [ܧ] = ݅×݆ unit matrix. 

A system of coupled fourth order equations are obtained which can be reduced to a system of 
first order differential equation: ݀݀ߟ ሼ ܻሽ = ሼ[ܣ] ܻሽ, (16)

where: ݇ = 1, 2, 3,…, ܰ, ݅ = 1, 2, 3,…, ܰ, ݆   in[ܣ] coefficients of the matrix ,ܯ ,…,3 ,2 ,1 =
equation, in general, are functions of ߟ and the eigenvalue parameter Ω. The vector ܻ is given by: 

ܻ = ൫ܻଵ ܻଶ … ܻ … ܻே൯, (17)

where:   ܻ = ( ܻ ܻᇱ ܻᇱᇱ ܻᇱᇱᇱ). (18)

The relation under which the continuity conditions between the striped plates are satisfied may 
be expressed as: ሼ ܻሽ = [ ܶ]ሼ ܻିଵሽ, (19)

where: [ ܶ]  is called the transition matrix of the strip ݅  while ሼ ܻሽ  and ሼ ܻିଵሽ  are the nodal 
vectors of the boundaries ݅ and ݅ − 1. The solution is found using 2ܰ-number of initial vectors ሼ ܻሽ at ߟ = 0. The transition matrix, Eq. (19) is applied across the stripped plate until just before 
the intermediate support at ݕ = ߟ ,2/ܾ = 1/2 is reached. Thus, 2ܰ-number of solutions ܵ can be 
obtained. The true solutions [ܵ] can be written as a linear combination of these solutions as: 

[ܵ] =  ܥ ܵଶே
ୀଵ , (20)

where ܥ are arbitrary constants, these constants can be determined by satisfying 2ܰ-number of 
boundary conditions at ߟ = 1/2 in Eqs. (10) and (12) of the intermediate elastic line support. And 
the matrix [ܵ] forms a standard eigenvalue problem. The natural frequencies of the system can be 
obtained from the conditions that the detainment of the ܵ must vanish. An iteration algorithm is 
implemented to compute the natural frequency of the system and hence the constants ܥ ,  ݅ = 1, 2, 3,…, 2ܰ. 

3. Results and discussion 

In this section, the finite strip transition matrix (FSTM) approach is employed to investigate 
the free vibration of symmetrically laminated, angle-ply, variable thickness rectangular plates with 
intermediate elastic support in one direction with different elastic restraint coefficient (்ܭ). The 
basalt FRP laminate composite plate was manufactured using five symmetrically, angle-ply, 
laminates with the fiber orientations [45°/–45°/45°/–45°/45°] of basalt fiber and a polymer resin 
matrix. The corresponding elastic modulus values were ܧଵ = 96.74 GPa, ܧଶ = ଷܧ = 22.55 GPa, 
and the Shear modulus values were ܩଵ = ଷܩ = 10.64 GPa, ܩଶ = 8.73 GPa. Poisson coefficients 
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were ߭ଵ = ߭ଷ = 0.3, ߭ଶ = 0.6 and the density was 2700 kg/m3.  
The frequency parameter Ω is evaluated in non-dimensional form, expressed as: 

Ω = ඨ݉ℎ(ߟ)߱ଶܽସℎܦଶଶ . (21)

The plate with linear variable thickness, ℎ(ݕ) is used (see Appendix) in non-dimensional form: ℎ(ߟ) = 1 + Δ(22) ,ߟ

where: Δ is the tapered ratio of plate given by Δ = (ℎ − ℎ) ℎ⁄ , (ℎ) is the thickness of the plate 
at ߟ = 0 and (ℎ) is the thickness of the plate at ߟ = 1.  

3.1. Convergence study and accuracy  

In this subsection, a convergence investigation is carried out for the proposed method, first six 
frequencies are calculated and compared with available results in literatures. Table 1 presents a 
convergence and comparison study for isotropic, square (ߚ = 1.0), uniform thickness (Δ = 0) 
plates with a mid-line support in each direction, the plate material has mechanical properties of ߭ଵ = ߭ଶ = ଵଵܦ ,0.3  = ଶଶܦ = ܦ = ℎଷܧ [12(1 − ߭ଶ)]⁄ ܦ , = (1 − ܦ(߭ 2⁄ . In this study the 
non-dimensional frequency parameter Ω become Ω = ℎ߱ଶܽସߩ) ⁄ܦ )ଵ ଶ⁄ . Two different classical 
boundary conditions are considered in the computational SSSS and CCCC. The computational 
results which are compared with values available from literatures [5, 19-21]. A very close 
agreement is observed. 

Table 2 presented a convergence and comparison study for fully simply supported (SSSS) and 
fully clamped (CCCC) square (ߚ = 1.0), uniform thickness (Δ = 0) plates with elastic foundation 
support. The elastic coefficient is taken equal to 500, 1390.2 for SSSS and CCCC respectively. 
The plates are manufactured from E-glass/ epoxy material with the following properties are  ߭ଵ = ߭ଷ ܦ ,0.23= = ℎଷܧ [12(1 − ߭ଶ)]⁄ ܦ , = (1 − ܦ(߭ 2⁄ . In this study the non-dimensional 
frequency parameter Ω  become Ω = ℎ߱ଶܽସߩ) ⁄ܦߨ )ଵ ଶ⁄  and foundation elastic restraint 
coefficient is given by ்ܭ = ݇ܽସ ⁄ܦ . From Table 2 it can be observed that the computational 
results are in an excellent agreement with exact frequency parameters presented in References  
[22, 23] and stable and fast convergence can be achieved with only a few terms of series solution 
(ܰ = 3 to 7). This validates the precision of the semi-analytical finite strip transition matrix 
(FSTM) technique. 

Table 1. Convergence study of the first six frequency parameters of the isotropic square plates  
with a mid-line support in each direction 

 ܰ Ωଵ Ωଶ Ωଷ Ωସ Ωହ Ω 

SSSS 

1 78.866 94.506 94.506 108.125 197.311 197.311 
2 78.887 94.529 94.529 108.159 197.324 197.324 
4 78.910 94.546 94.546 108.184 197.350 197.350 
6 78.928 94.568 94.568 108.211 197.369 197.369 

Ref [5]  78.957 94.590 94.590 108.240 197.392 197.392 
Ref [19]  78.96 94.68 94.72 108.44 197.40 198.96 
Ref [20]  78.958 94.826 94.826 108.41 197.50 197.50 
Ref [21]  78.957 94.585 94.585 108.22 197.39 197.33 

CCCC 

2 108.222 127.346 127.346 144.026 242.386 242.386 
4 108.243 127.365 127.365 144.048 242.758 242.758 
5 108.259 127.382 127.382 144.071 242.773 242.773 
7 108.282 127.398 127.398 144.099 242.801 242.801 

Ref [5]  108.299 127.417 127.417 144.109 242.818 243.778 
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Table 2. Convergence study of the first four frequency parameters  
of the isotropic square plates with elastic foundation 

்ܭ ܰ   Ωଵ Ωଶ Ωଷ Ωସ 

SSSS 

2 500 3.0210 5.4828 5.4828 8.3017 
3 500 3.0211 5.4836 5.4836 8.3019 
4 500 3.0212 5.4842 5.4842 8.3023 
7 500 3.0213 5.4847 5.4847 8.3029 

Ref [22]  500 3.0214 5.4850 5.4850 8.3035 
Ref [23]  500 3.0216 5.4846 5.4846 8.3051 

CCCC 

2 1390.2 5.2515 8.3785 8.3785 11.506 
3 1390.2 5.2538 8.3811 8.3811 11.528 
6 1390.2 5.2554 8.3843 8.3843 11.553 
7 1390.2 5.2573 8.3879 8.3879 11.568 

Ref [22]  1390.2 5.2588 8.4322 8.4322 11.674 
Ref [23]  1390.2 5.2438 8.3129 8.3129 11.546 

3.2. Laminated variable thickness plate with intermediate elastic line support 

The results from the numerical computations using FSTM approach will be discussed here. 
Table 3 presents the first six frequencies of a symmetrically, angle-ply, laminated, variable 
thickness rectangular plate with intermediate elastic line support in one direction as shown in 
Fig. 1. The aspect ratio of the plate is ߚ = 0.5 and tapered ratio of the plate thickness is Δ = 0.5. 
Four type of classical boundary conditions (SSSS, CCCC, SSFF and CCFF) as shown in Fig. 2 
and different elastic restraint coefficients ்ܭ of intermediate elastic line support are considered in 
the computations to study the effect of intermediate elastic support on the natural frequencies of 
basalt (FRP) laminated variable thickness rectangular plate. The locations of the intermediate 
elastic line support is at mid-line of the plate.  

 
Fig. 4. Variation of non-dimensional frequencies parameter (Ω) with elastic restraint coefficient (்ܭ) 

The effect of intermediate elastic support on the non-dimensional frequencies of laminated 
variable thickness rectangular plate is computed and plotted in Figs. 4 and 5. From this figures, it 
is observed that the first six frequencies increase with the increasing of the value of elastic restraint 
coefficient (்ܭ) as shown in Fig. 4. Fig. 5 shows the vibration behaviour of the variable thickness 
rectangular plate under varying elastic restraint coefficient (்ܭ). As shown in the Fig. 5, the 
increasing values of frequencies with small elastic restraint coefficient (்ܭ) are higher than the 
increasing values of frequencies with highest one, and the frequencies at high values of elastic 
restraint coefficient are almost constant. 

After the value of ்ܭ increases from 50 onwards, the non-dimensional frequencies parameter 
are fast raised till value of ்ܭ reached 104 and after this value there is almost negligible change in 
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value of Non-dimensional frequencies parameter. 

 
Fig. 5. Variation of non-dimensional frequencies parameter (Ω) with different mode number  

and elastic restraint coefficient (்ܭ) 

 
Fig. 6. Variation of non-dimensional frequencies parameter (Ω)  
with elastic restraint coefficient (்ܭ) and boundary conditions 

 
Fig. 7. Variation of non-dimensional frequencies parameter (Ω)  

with different mode number and boundary conditions 

Influence of four different support conditions (SSSS, CCCC, SSFF and CCFF) on the vibration 
behavior of a symmetrically, angle-ply, laminated, variable thickness rectangular plate is 
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computed and plotted in Figs. 6 and 7, From this figures, it can be seen that the frequencies are 
showing higher and lower value at fully clamped (CCCC) and semi-simply supported (SSFF) 
condition, respectively. The other two boundary conditions (SSSS and CCFF) are showing an 
intermediate value. As shown in the Fig. 6, the non-dimensional frequencies increase with the 
increase of the elastic restraint coefficient (்ܭ) for all kind of support conditions (SSSS, CCCC, 
SSFF and CCFF). 

Table 3. The first six frequencies of symmetrically, angle-ply, laminated, variable thickness rectangular 
plate with intermediate elastic line support for different elastic restraint coefficients, (Δ ߚ) ,(0.5 = = 0.5) 

்ܭ   Ωଵ Ωଶ Ωଷ Ωସ Ωହ Ω 

SSSS 

50 22.1450 36.2210 53.5870 78.2360 105.5870 138.6970 
150 34.6580 48.7340 66.1000 90.7490 118.1000 151.2100 
400 45.8453 59.9213 77.2873 101.9363 129.2873 162.3973 
750 55.0692 69.1452 86.5112 111.1602 138.5112 171.6212 
1500 62.4709 76.5469 93.9129 118.5619 145.9129 179.0229 
2500 67.5270 81.6030 98.9690 123.6180 150.9690 184.0790 
5000 70.7832 84.8592 102.2252 126.8742 154.2252 187.3352 

10000 72.7065 86.7825 104.1485 128.7975 156.1485 189.2585 
1E+06 73.1195 87.1955 104.5615 129.2105 156.5615 189.6715 

CCCC 

50 28.4310 46.5025 68.7979 100.4437 135.5584 178.0668 
150 40.9440 59.0155 81.3109 112.9567 148.0714 190.5798 
400 52.1313 70.2028 92.4983 124.1440 159.2587 201.7672 
750 61.3551 79.4267 101.7221 133.3678 168.4826 210.9910 
1500 68.7569 86.8284 109.1239 140.7696 175.8843 218.3928 
2500 73.8130 91.8845 114.1800 145.8257 180.9404 223.4489 
5000 77.0692 95.1407 117.4361 149.0819 184.1966 226.7050 

10000 78.9925 97.0640 119.3594 151.0052 186.1199 228.6283 
1E+06 79.4055 97.4770 119.7724 151.4182 186.5329 229.0413 

SSFF 

50 12.2750 20.0773 29.7033 43.3663 58.5270 76.8799 
150 24.7880 32.5903 42.2163 55.8793 71.0400 89.3929 
400 35.9753 43.7777 53.4036 67.0666 82.2273 100.5802 
750 45.1992 53.0015 62.6275 76.2905 91.4511 109.8041 
1500 52.6009 60.4033 70.0293 83.6922 98.8529 117.2058 
2500 57.6570 65.4594 75.0853 88.7483 103.9090 122.2619 
5000 60.9132 68.7155 78.3415 92.0045 107.1652 125.5181 

10000 62.8365 70.6388 80.2648 93.9278 109.0885 127.4414 
1E+06 63.2495 71.0518 80.6778 94.3408 109.5015 127.8544 

CCFF 

50 19.5928 32.0466 47.4112 69.2194 93.4182 122.7123 
150 32.1058 44.5596 59.9242 81.7324 105.9312 135.2253 
400 43.2931 55.7469 71.1115 92.9197 117.1185 146.4127 
750 52.5170 64.9707 80.3353 102.1436 126.3424 155.6365 
1500 59.9187 72.3725 87.7371 109.5453 133.7442 163.0383 
2500 64.9748 77.4286 92.7932 114.6014 138.8002 168.0944 
5000 68.2310 80.6848 96.0494 117.8576 142.0564 171.3505 

10000 70.1543 82.6081 97.9727 119.7809 143.9797 173.2738 
1E+06 70.5673 83.0211 98.3857 120.1939 144.3927 173.6868 

4. Conclusions 

The work reported in this paper employs an efficient semi-analytical method for analysing the 
free vibration of thin basalt fiber reinforced polymer (FRP) laminated variable thickness 
rectangular plates with intermediate elastic support. A singular value decomposition algorithm has 
been employed to treat the intermediate support and reduce the dependence of the solutions at the 
intermediate elastic support. It is observed that the first six frequencies increase with increasing 
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values of elastic restraint coefficient (்ܭ) of intermediate elastic support, and the rate of increasing 
is different. It was found that the increasing rates of frequencies with a small elastic restraint 
coefficient (்ܭ) are higher than the increasing rates of frequencies with highest one, and the 
frequencies at high values of elastic restraint coefficient are almost constant. On other hand, it 
observed that the frequencies values were influenced with change of the plate edges support 
between four different support conditions, for all first six frequencies are showing higher and 
lower value at fully clamped (CCCC) and semi-simply supported (SSFF) condition, respectively, 
the other two boundary conditions (SSSS and CCFF) are showing an intermediate value. Accuracy 
and convergence of solution was examined by comparing the numerical results obtained by the 
present method with those previously published. The results are in excellent agreement with 
results from the literature. 
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Appendix 

In this appendix the plate thickness function ℎ(ݕ) in ݕ-direction will be investigated of the as 
shown in the Fig. 8 is given. 

 
Fig. 8. The plate thickness ℎ(ݕ) in ݕ-direction 

By similarity between the triangles (ABG) and (ACF): ℎ(ݕ) = ℎ ቀ1 + ቁ. (23)ݕܿ

By similarity between the triangles (ABG) and (ADE): ℎܿ = ℎܿ + ܾ. (24)

From Eqs. (23) and (24) the plate thickness function is: 

ℎ(ݕ) = ℎ + (ℎ − ℎ)ܾ (25) ,ݕ

where: ℎ(ݕ) = ℎ at ݕ = 0, ℎ(ݕ) = ℎ at ݕ = ܾ, ℎ(ݕ) = ℎ + (್ି) ݕ at ݕ = (ݕ)and ℎ ,ݕ = ℎ 
at ℎ = ℎ. 

Using the assumed solution, Eq. (13), the thickness of the plate ℎ(ݕ) can be given by the 
following equation: ℎ(ߟ) = ℎ + (ℎ − ℎ)(26) .ߟ
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