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Abstract. In order to effectively monitor condition and detect fault types of high nonlinear system, 
and extract the features of system state under strong noise background, this paper proposes a novel 
fault detection and diagnosis (FDD) method based on modified particle filter (PF). The artificial 
neural network is incorporated in PF for adaptively adjusting weight of particle. In the modified 
PF, the large weight particles are split into several small weight particles, the particles with smaller 
weight is adjusted by using artificial neural network. By which the particles in the low probability 
density region are adjusted to the high probability density region, and the problem of particle 
leanness is solved effectively. Moreover, this paper also uses time-varying auto regressive 
(TVAR) and Akaike information criterion (AIC) methods to establish state space model for state 
estimation. Finally, the proposed method is implemented for fault diagnosis on a roller bearing. 
Good results are obtained, and the bearing faults, such as the outer race, the inner race and the 
roller element defects, have been effectively discriminated. 
Keywords: fault detection and diagnosis, particle filter, time-varying auto regressive, state 
estimation. 

1. Introduction 

Fault detection and diagnosis (FDD) have vast importance to improve production efficiency, 
ensure production safety, and reduce maintenance costs of plant. FDD based on vibration analysis 
techniques are most common and effective method, which are widely used in mechanical fault 
diagnosis and condition monitoring. However, due to the complexity of the plant structure and the 
noise interference in the work locale, the vibration signals measured for mechanical fault diagnosis 
and condition monitoring are highly nonlinear, and often contain stronger noise components  
[1-3]. The information that can reflect mechanical condition is buried via noise components. In 
these cases, mechanical status cannot be effectively detected, and even may lead to  
misrecognition. Therefore, how to effectively remove the noise and extract the features of the fault 
signals are very important for mechanical fault diagnosis and condition monitoring. 

Many studies based on vibration signal processing technology for mechanical fault diagnosis 
purpose have been carried out. Signal filtering techniques based on Fourier transform have been 
the dominating signal processing tool for condition diagnosis [4-9], and widely applied in 
engineering practice. Sadly, Fourier transform has some limitations, such as the signal to be 
processed must satisfy periodicity and stationary requirements. Thus, Fourier transform is not 
applicable to nonstationary or nonlinear signals, and unable to reveal the intrinsic features of 
nonstationary and nonlinear signals [10, 11]. Wavelet Transform (WT) is a power tool for 
analyzing nonstationary signals, and has become a hot spot in the research of modern signal 
processing. WT method shows a good picture in the joint time-frequency domain, and clearly 
describe the change of frequency vary with time. In [12] the discrete WT was used to decompose 
the vibration signal of the rolling bearing, and spalling failure of rolling bearing was successfully 
predicted online. In [13] wavelet packet and support vector machine were integrated to detect 
faults of a rolling bearing. However, the results of signal de-noising largely depend on the 
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selection of wavelet basis functions. Only selecting the appropriate basis function, the features of 
signal can be well to detect. In addition, because of the limited length of the wavelet basis function, 
the leakage of signal energy is inescapable. Kalman filter is an optimal recursive data processing 
algorithm, which often be used to estimate system state for linear systems with Gaussian noise. In 
[14] a Kalman filter based on the methodology of the maximum likelihood estimation was 
established, by which sensor fault was correctly estimated. Reference [15] used Kalman filter to 
predict the future state, so as to realize the preventive maintenance of DC motor. In order to extend 
Kalman filter to the nonlinear system, extended Kalman filter (EKF) [16] and unscented Kalman 
filter (UKF) [17] were proposed. However, when the system is strongly nonlinear, filtering 
accuracy of these improved Kalman filter will be greatly reduced, and even lead to output 
divergence of system filtering.  

PF is recursive Bayesian filtering estimation based on sequential Monte Carlo algorithm. It is a 
nonlinear filtering method, and provides an effective way to solve the state estimation of nonlinear 
system under non Gauss noise. In the last decade, PF has been widely applied in many fields, such 
as tracking problem, mobile robot navigation, mechanical fault diagnosis and machinery life 
prediction [18-23]. In [19] authors combined PF with ܯ-algorithm, by which sensor faults were 
detected accurately and effectively. In [20] authors proposed a new PF based on genetic operator’s 
algorithm, which called intelligent PF. This method was used for fault diagnosis of a nonlinear 
system, and got good results. In [21] PF and UKF method were integrated for FDD, and two 
numerical examples verified the effectiveness of this method. 

In the fault diagnosis of rotating machinery, the vibration response is obviously nonlinear due 
to the changes of stiffness, friction, fault excitation and external excitation and so on. Multiple 
vibrations are coupled to each other and fault characteristic signal is buried under strong noise 
background. Although the traditional PF can be used as an effective means to solve the nonlinear 
problem, but the algorithm still has some problems. The traditional PF suffer from a loss of 
diversity among particles after resampling and cannot accurately characterize posterior probability 
density. To solve FDD of high nonlinear system, and extract the features of machinery state under 
strong noise background, this paper proposes a novel FDD method based on modified PF. The 
artificial neural network is incorporated in PF for adaptively adjusting weight of particle, by which 
the particles in the low probability density region are adjusted to the high probability density 
region, and the problem of particle leanness is solved effectively. 

The structure of this paper is organized as follows, Section 2 introduces the theory of the 
general PF, and expounds the problem in the general PF; In Section 3, the modified PF based on 
artificial neural network is described detailed, and the example that commonly used in PF testing is 
presented; In Section 4, the practical example of mechanical fault diagnosis for a bearing is 
designed to verify the effectiveness of the proposed method, and we also compared the proposed 
method with the WT technique. Section 5 summarizes and concludes this paper. 

2. Theory of particle filter 

PF is recursive Bayesian filtering estimation based on Monte Carlo algorithm [24]. The essence 
of PF is to approximate the posterior probability density by a set of weighted random samples. 

In general, the system of state equation and measurement equation can be expressed as: ݔ௧ = ௧݂(ݔ௧ିଵ) + ߱௧ିଵ, (1)ݖ௧ = ℎ(ݔ௧) + ௧, (2)ߝ

where, ݔ௧  express the system state variable at time ݐ , and ݖ௧  is the observed value of ݔ௧  
at time ݐ;  ߱௧  and ߝ௧  indicate system noise and measurement noise, respectively; ݂(·):  ܴೣ × ܴఠೣ → ܴೣ  indicates state transition function, and ℎ(·): ܴೣ × ܴఌೣ → ܴ  expresses the 
measurement function. 

The recursive Bayesian filtering includes two steps: prediction and updating. 
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Prediction: (ݔ௧|ݖଵ:௧ିଵ) = න ) ,௧ିଵݔ|௧ݔ =௧ିଵݔ݀(ଵ:௧ିଵݖ|௧ିଵݔ)(ଵ:௧ିଵݖ න ) ௧ିଵ. (3)ݔ݀(ଵ:௧ିଵݖ|௧ିଵݔ)(௧ିଵݔ|௧ݔ

Updating: 

(ଵ:௧ݖ|௧ݔ) = (ଵ:௧ିଵݖ|௧ݖ)(௧ݔ|௧ݖ)(ଵ:௧ିଵݖ|௧ݔ) , (4)

where: (ݖ௧|ݖଵ:௧ିଵ) = න ) ௧. (5)ݔ݀(௧ݔ|௧ݖ)(ଵ:௧ିଵݖ|௧ݔ

For non-linear and non-Gaussian systems, it is difficult to obtain posterior probability (ݔ௧|ݖଵ:௧) by the analytic solution. Therefore, the sequential importance sampling (SIS) method 
is applied in PF. SIS algorithm transforms integral operation into sum operation of samples, and 
approximates the state posterior probability density by a set of weighted particles ൛ݔ:௧ , ߱௧ ൟୀଵே  that 
sampled from an importance probability density function. The posterior probability (ݔ:௧|ݖଵ:௧) at 
time ݐ can be approximated by the particles as follows: 

(ଵ:௧ݖ|:௧ݔ) =  ߱௧ :௧ݔ)ߜ − :௧ேݔ
ୀଵ ), (6)

where, ܰ is the number of the particles. 
The importance probability density function: ݍ(ݔ:௧|ݖଵ:௧) = ,,௧ିଵݔ௧หݔ൫ݍ (7) .(ଵ:௧ିଵݖ|:௧ିଵݔ)ݍ௧൯ݖ

The weight ߱௧  for each particle: 

߱௧ = (ଵ:௧ݖ|:௧ݔ)ݍ(ଵ:௧ݖ|:௧ݔ) ∝ ߱௧ିଵ ௧ିଵݔ௧หݔ൫௧൯ݔ௧หݖ൫ ൯ݍ൫ݔ௧หݔ:௧ିଵ , ଵ:௧൯ݖ , (8)

where, the symbol ∝ indicates to be proportional to. 
The normalized weight ߱௧  is: 

߱௧ = ߱௧∑ ߱௧ேୀଵ . (9)

The posterior probability (ݔ:௧|ݖ:௧) is rewritten as: 

(ଵ:௧ݖ|:௧ݔ) =  ߱௧ :௧ݔ)ߜ − :௧ேݔ
ୀଵ ), (10)

where, ߜ(·) is Dirac-delta function. 
The state ݔ௧ can be estimated as: 
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ො௧ݔ ≈  ߱௧ே
ୀଵ ௧. (11)ݔ

In SIS，after a few iterations, most of particles have negligible weights, PF algorithm occurs 
particle degeneracy [25]. To deal with the particle degeneracy problem, this study adopts 
multinomial resampling technique, and its procedure is shown in Table 1.  

Table 1. Multinomial resampling 
Step 1: For ݅ = 1, 2, …, ܰ, draw a sample set ሼݑሽ from the uniformly distribution (0, 1] 
Step 2: For ݅ = 1, 2, …, ܰ, find the variable quantity ݆ (݆ = 1, 2, …, ܰ) that satisfies   ߱ିଵ

ୀଵ < ݑ ≤  ߱
ୀଵ . 

Step 3: Store the ݔ௧ as a new particle, and the weight of the new particle ߱௧ = 1/ܰ 

The degree of particle degeneracy can be appraised using the effective sample size ܰ [26]: 

ܰ = 1∑ ( ߱௧)ଶேୀଵ . (12)

From Eq. (12), the smaller value of the effective sample size ܰ, the more serious the problem 
of particle degradation will be. Setting the threshold of effective sample ܰ, ܰ = ݉ × ܰ, ݉ ∈ (0, 
1). If ܰ < ܰ particle degradation is serious, PF system performs resampling. After resampling 
process, the particles that have small weight are knocked out, and many new particles are obtained 
by the particles that have big weight, as shown in Fig. 1. The procedure of PF is presented as  
Table 2. 

Table 2. The procedure of PF 
Step 1: Set time ݐ = 0, for ݅ = 1, 2,…, ܰ, draw the particles ݔ  from the prior probability density, and all 
of the particles have same weight 1/ܰ 
Step 2: For ݅ = 2, 3,…, ܰ, draw the particles ݔ௧ from the importance probability density, calculate and 
normalize the particles weight ߱௧  by Eqs. (8) and Eq. (9) 
Step 3: Calculate the effective sample size ܰ. If ܰ < ܰ, resampling is carried out, the new particle 

set ൛ݔ:௧ ൟୀଵே
 is produced. If ܰ < ܰ, PF go to step 4, directly 

Step 4: Estimate the state by Eq. (11) 
Step 5: Set ݐ  and obtain the new measurement data, return to step (2) ,1+ݐ =

 
Fig. 1. Illustration of resampling 

In resampling procedure, only the particles that have big weight are selected as copy samples, 
the new particles are replicas of them, and the particles with small weight are eliminated. In most 
cases, all the resampling operations are focused on a few particles with big weight, the particles lose 
diversity. This problem is also called particle leanness. The simple method to solve particle leanness 
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problem is to increase the number of particle. However, computing burdens of PF will be increased. 
If computing time of PF is too long, PF is difficult to be applied in practical engineering.  

For above the problems, this study proposed a novel PF algorithm based on BPNN, which is 
described in the next section. 

3. Modified particle filter based on NN 

In this section, an improved PF which is named AWPF is presented. The inspiration of this 
method is from back propagation neural network (BPNN).  

3.1. Brief of BPNN 

BPNN is a kind of multi layer feed-forward network which is trained by the error back 
propagation algorithm, and consist of input layer, hidden layer and output layer [27]. The gradient 
descent method is used to adjust the weight and threshold between each layer of BP-NN, to minimize 
sum of the squared errors. Let input data is ܽ (݅ = 1, 2,…, ܰ), and corresponding teacher data is ݔ (݅  : is actual output. The network error function is as followsݕ ,(ܰ ,…,2 ,1 =

ܧ = 12 (ݔ − )ଶ.ݕ
ୀଵ  (13)

The weight adjustment function is as Eq. (15): 

Δݓ = ߟ− , (14)ݓ߲ܧ߲

where, ߟ is learning rate of BPNN; ݓ indicates the weight between each layer; Δݓ expresses 
modified quantity of the weight. 

3.2. AWPF 

In AWPF algorithm, abruption and adjustment of particle weight are two basic and important 
operations, which are described as follows. 

Particles abruption: 
(1) Obtain the particles ݔ௧, ݅ = 0, 1,…, ܰ from the importance posterior probability density, and 

calculate the particles weight ߱௧  by Eq. (8), and normalize the particles weight ߱௧  by Eq. (9); 
(2) Divide all of the particles into large weight particles and small weight particles by the 

strategy instructed as follows: 

௧ݔ ∈ ቊ ܰ, ߱௧ ≥ ܴ,௦ܰ, ߱௧ < ܴ, (15)

where, ܰ and ௦ܰ are large weight and small weight particle sets, respectively; ܴ is a threshold 
for separating the particles. 

(3) Split every large weight particle in set ܰ൛ݔ௧, ߱௧ ൟୀଵ  into two new particles, and the new 
particles weights equal to half of the before. 

(4) After step (3) the number of particle has been increased to ܰ +  In order to keep the .
number of particle unchanged,  particles with the minimum weight in set ௦ܰ are eliminated. 

Weight adjustment: 
(1) Sort the particles with the weight values in descending order; 
(2) Select ݍ particles with the minimum weight, and adjust their weights by using BPNN. The 



2540. FAULT DETECTION AND DIAGNOSIS OF ROTATING MACHINERY USING MODIFIED PARTICLE FILTER.  
KE LI, YIYA LIU, JINGJING WU, LEI SU, PENG CHEN 

3400 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. AUG 2017, VOL. 19, ISSUE 5. ISSN 1392-8716  

network error function is: 

ߝ = 12 (ݖ − )ଶݕ
ୀଵ = 12 (݁)ଶ,

ୀଵ  (16)

where, ݍ is the number of input and output unit of the BPNN; ݖ is the measurement value, and 
used as teacher data; ݕ is output of the BPNN.  

Fig. 2 is the BPNN diagram for PF algorithm. In Fig. 2, the input units are the state values of 
the particle with the minimum weight, and the corresponding weight of the particles are used as 
the initial weights of BPNN, the output units are the new particle weight values after adjustment, 
the number of hidden layer is set to eight. 

After particles abruption and weight adjustment steps, the particles in the low probability 
density region are adjusted to the high probability density region, and the particle diversity is 
increased. The flowchart of AWPF is shown in Fig. 3. 

 
Fig. 2. BPNN diagram for PF algorithm 

3.3. Simulation 

In order to verify the effectiveness of AWPF, an example that commonly used in PF testing is 
presented, and described as follows: 

௧ݔ = ௧ିଵݔ0.5 + ௧ିଵ1ݔ25 + ଶ(௧ିଵݔ) + 8cos1.2(ݐ − 1) + ߱௧ିଵ, (17)ݕ௧ = ଶ(௧ݔ)0.05 + ௧, (18)ݒ

where, ߱௧ିଵ is state noise, and ߱௧ିଵ~(ܰ, ௪ଶߪ ,ܰ)~௧ݒ ௧ is measurement noise, andݒ ;(  ௩ଶ); in presentߪ
test, ߪ௪ଶ  and ߪ௩ଶ are 0.1 and 0.01, respectively; initial probability density function (ݔ)~ܰ(0,2); 
the number of the particle is set to 1000. This model is strong nonlinear and bimodal. 

Root mean square error (RMSE) as shown in Eq. (20) is chosen to estimate the performance 
of AWPF: 

ܧܵܯܴ = ඨ1݊  − ݔ) ො )ଶ,ୀଵݔ  (19)

where ݔ is the simulation data. ݔො  indicates estimate data. ݊ expresses length of the data. 
The simulations for the general PF and AWPF are performed on same test condition. Fig. 4 

and Fig. 5 show the state estimate results and RMSE curve of the general PF and AWPF, 
respectively. Comparison of simulation data is listed in Table 3. As shown in Table 3, the mean 
accuracy of the general PF and AWPF are 0.568 and 0.292, the available samples of the general 
PF and AWPF are 192 and 405, respectively. The mean accuracy and the available samples of 
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AWPF are greater than the general PF. That is to say AWPF can improve particle diversity and 
state estimate accuracy. 

 
Fig. 3. flowchart of AWPF 

 
a) 

 
b) 

Fig. 4. State estimate results using general PF and AWPF 

 
a) 

 
b) 

Fig. 5. RMSE curve of general PF and AWPF 
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Table 3. Comparison of simulation 
 Mean accuracy Available samples 

PF 0.568 192 
AWPF 0.292 405 

4. Application to Fault Detection 

4.1. Experimental System 

In this section, the performances of AWPF are verified via fault detection of a rolling bearing. In 
order to better interpretation of the performances of AWPF, WT method is introduced for 
comparison. 

Fig. 6 shows the experimental platform for fault detection and diagnosis of a rolling bearing. 
As shown in Fig. 6, the power of the experimental platform is provided by a servo motor 
(Mitsubishi HG-SR352BJ), with output power 3.5 kW, rated speed 3000 rpm, rated voltage 380 V. 
The loading equipment (Shizuoka RCS2-RA13R) with 300 kg load is used to exert pressure on 
the rotating shaft. Two types of rolling bearing (N205 and NU205) are used for obtaining the 
vibration data of rolling bearing in each state. N205 that outer ring can be disassembled is used 
for normal, outer-race defect and roller element defect test. NU205 that inner-race can be 
disassembled is used for inner-race defect state. Fig. 7 shows the three kind of bearing faults, 
which are artificially processed by using Wire cutting machine, and fault width is 0.3 mm, and 
fault depth is 0.025 mm. 

In present work, data acquisition system includes an accelerometer, signal conditioner, signal 
recorder and computer. The raw vibration signals are measured via the accelerometer at constant 
speed 1000 rpm, with 50 Hz sampling frequency. The sapling time is about 20 s. After amplified 
by the signal conditioner, the signals are transferred into the signal recorder. The raw signals 
measured in each state are shown in Fig. 8. 

 
a) 

 
b) 

Fig. 6. Illustrate of the experimental setup for test 

   
Fig. 7. Bearing defects: a) outer race defect, b) inner race defect, c) rolling defect 
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a) Normal 

 
b) Outer-race defect 

 
c) Inner-race defect 

 
d) Rolling element defect 

Fig. 8. Raw vibration signals of the bearing 

4.2. State-space model of vibration signal 

4.2.1. State Equation 

To use PF technique for FDD, the state model and measurement model described in Eqs. (1) 
and (2) need to be established firstly. Due to the complexity of mechanism and the diversity of 
mechanical failures, it is difficult to construct accurate vibration signal model. Thus, time-varying 
auto regressive (TVAR) method is used to construct the vibration signal model in this paper. 
Assuming ݔ௧ is vibration signal, the TVAR model of vibration signal is as follows: 

௧ݔ = −  ܽ(ݐ)ݔ௧ି + ݁௧
ୀଵ , (20)

where, ܽ  indicates time-varying coefficient;  denotes model order; ݁௧  is residual error of the 
model: 

ܽ(ݐ) = −  ܽ݃(ݐ)
ୀ , (21)

where, ݉  is extended dimension; ܽ  is weight of basic function; ݃(ݐ)  express time basic 
function. According to the vibration signal characteristic of rolling bearing, this study choice DCT 
basic function shown in Eq. (23) to estimate time-varying coefficient of TVAR model: 

݃(ݐ) = cos(ݐ)ܽ ቆ݆2݇)ߨ + 1)2ܰ ቇ, (22)

(ݐ)ܽ = ቊඥ1/ܰ, ݐ = 0,ඥ2/ܰ, ݐ ≠ 0. (23)

Define:  ்ܣ = ൣܽଵ, ܽଵଵ … ܽଵ … ܽ, ܽଵ … ܽ൧, (24)ܺ௧் = (ݐ)௧ିଵ݃ݔൣ … (ݐ)௧ିଵ݃ݔ … (ݐ)௧ି݃ݔ … ൧. (25)(ݐ)௧ି݃ݔ

According to least square principle, Eq. (21) can be rewritten as: 
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௧ݔ = −ܺ௧் ܣ + ݁௧. (26)

Thus, the least square estimates of ܣ is: 

መܣ = − ቌ  ܺ௧ܺ௧்ே
௧ୀାଵ ቍିଵ  ܺ௧ݔ௧ே

௧ୀାଵ . (27)

The least square estimates of the variance of ݁௧: 

ොଶߪ = 1ܰ −   ݔ௧ +  ܽ(ݐ)ݔ௧ି
ୀଵ ൩ே

௧ୀାଵ
ଶ. (28)

In this paper, Akaike Information Criterion (AIC) method is introduced for determining model 
order , and mathematical expression of AIC is given as follows. A detailed description about 
AIC method can be found in reference [28]: ()ܥܫܣ = lnߪොଶ + ܰ2 − (29) ,ݎ

where, ܰ is the length of signal; ݎ indicates pre-order of the model. 

4.2.2. Measurement equation 

Firstly, the original vibration signals measured by the accelerometer are decomposed into 5 
layers by using WT with db1 wavelet function. Secondly, the threshold is extracted by ddencpm 
function. The wavelet coefficients that less than the threshold is retained, and the wavelet 
coefficients that greater than the threshold value are removed. Lastly, the remaining wavelet 
coefficients are reconstructed by the waverec function, and the reconstructed signal is the 
measurement noise. 

Measurement equation: ݖ௧ = ௧ݔ + ௧, (30)ݓ

where, ݔ௧ and ݖ௧ express state and measurement values at time ݐ, respectively; ݓ௧ is measurement 
noise obtained by WT. 

4.3. Calculation of characteristic frequency 

Condition diagnosis of roller element bearing depends largely on analysing the vibration 
signals generated by localized defects. Fault types can be identified base on the characteristic 
frequencies which estimate by the geometry parameters of roller element bearing [29]. The 
characteristic frequencies of bearing defects can be calculated by the theoretical equation [30]. 

The characteristic frequencies of the outer race ( ை݂): 

݂ = 12 ݊ ௦݂ ൬1 − ܦܦ cosߠ൰. (31)

The characteristic frequencies of the inner race ( ூ݂): 
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ூ݂ = 12 ݊ ௦݂ ൬1 + ܦܦ cosߠ൰. (32)

The characteristic frequencies of the roller ( ா݂): 

ா݂ = ܦܦ ௦݂ ቆ1 − ଶܦଶܦ cosߠቇ, (33)

where ݊ is the number of balls in rolling elements bearing, ݂  indicates rotating frequency of 
motor, ܦ and ܦ are the ball diameter and the pitch circle diameter, respectively. ߠ represents 
the bearing contact angle of roller bearing. 

Above the characteristic frequencies are based on the ideal condition. However, in practice, 
some sliding motion may occur, which causes slight deviation of the characteristic frequency 
locations. In this work, the characteristic frequencies of the outer race defect, the inner race defect 
and the roller element defect are 88.76 Hz, 128.3 Hz, and 94.8 Hz, respectively. 

4.4. Fault detection by the proposed method 

Procedure of fault detection by AWPF is given as follows. Firstly, the vibration signals in each 
state are measured. Secondly, state-space models of the vibration signal are set up by the method 
described in Section 4.2, and AWPF is used to estimate the probability density function of the 
system to achieve the purpose of vibration signal denoising. Thirdly, the envelope spectrum 
information waves in each state were obtained. Finally, we detect the roller bearing state by the 
extracted spectra. Figs. 9-11 show parts of the verification results. 

 
a) In time domain 

 
b) In frequency domain 

Fig. 9. Signal of the out-race defect after AWPF 

 
a) In time domain 

 
b) In frequency domain 

Fig. 10. Signal of the Inner race defect after AWPF 

From Fig. 9(b), the impact repetition frequency ை݂ is 89.8 Hz and its harmonics 2 ை݂, 3 ை݂ and 
4 ை݂ are about 180.1 Hz, 270.2 Hz and 360.1 Hz, respectively. ை݂ approaches the outer race defect 
characteristic frequency at 88.7 Hz that calculated by Eq. (20); therefore, we judge the fault type 
as the outer race defect. Similarly, in Fig. 10(b) the impact repetition frequency ூ݂  is about  
129.7 Hz and its harmonics 2 ூ݂ , 3 ூ݂  and 4 ூ݂  are about 259.4 Hz, 387.6 Hz and 517.3 Hz, 
respectively. ூ݂  approaches the Inner race defect characteristic frequency at 128.3 Hz that 
calculated by Eq. (21); therefore, it was identified as the inner race defect by these spectra. On the 
basis of Fig. 11(b), the characteristic frequency ா݂  is about 96.1 Hz, and close to the rolling 
element defect pass-frequency at 94.8 Hz that calculated by Eq. (22); its harmonics 2 ா݂ is about 
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192.5 Hz. Although there are not any obviously characteristic at harmonics 3 ா݂ and 4 ா݂, the rolling 
element defect of the bearing can be identified by the characteristic frequency ா݂ and 2 ா݂. 

As shown in Figs. 10 and 11, the repetition of harmonics and sidebands throughout the spectra 
of the inner race defect and the rolling element defect, which make the inner race and the roller 
defects are not easy to identify as the outer race defect. However, those defects can be identified 
by the corresponding bearing characteristic frequencies. 

 
a) In time domain 

 
b) In frequency domain 

Fig. 11. Signal of the roller element defect after AWPF 

4.5. Fault diagnosis by traditional PF 

In order to verify the effectiveness of the proposed method, several popular signal processing 
methods such as traditional PF, WT and Empirical Mode Decomposition (EMD) are used to 
compare with the proposed method in this paper. 

Figs. 12-14 show the diagnosis results by using traditional PF. From the Fig. 12 the impact 
repetition frequencies are 90.1 Hz, 180.1 Hz and 270 Hz respectively, and close to the 
characteristic frequency of the outer race defect and its harmonics. Hence, it was identified as the 
outer race defect. However, as shown in the Figs. 13 and 14, it is difficult to find the fault 
characteristic frequencies of inner race defect and rolling element defect. 

 
a) In time domain 

 
b) In frequency domain 

Fig. 12. Signal of the out-race defect after traditional PF 

 
a) In time domain 

 
b) In frequency domain 

Fig. 13. Signal of the inner race defect after traditional PF 

 
a) In time domain 

 
b) In frequency domain 

Fig. 14. Signal of the roller element defect after traditional PF 
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4.6. Fault diagnosis by wavelet transform 

WT is a time-frequency signal analysis method, which can divide signal into different 
frequency regions and carry out signal decomposition and information extraction [31].  

In this work, the wavelet function ReverseBior 2.8 is chosen for fault diagnosis, and diagnosis 
flowchart is as follows. Firstly, the raw signal measured in each defect state is decomposed into 
four levels in low-frequency regions (0-25 kHz, 0-12.5 kHz, 0-6.25 kHz and 0-3.125 kHz) and 
high-frequency regions (25-50 kHz, 12.5-25 kHz, 6.25-12.5 kHz and 3.125-6.25 kHz) by 
ReverseBior 2.8. Secondly, the signal components at each level are reconstructed in the time 
domain by reconstruction function. Lastly, the envelope spectra at each level are obtained by the 
FFT technique. The vibration caused by bearing defect is appeared in the high-frequency region 
generally. Hence, in present work we only analysis the signals in high-frequency levels. The 
envelope spectra of each high-frequency level are shown in Figs. 15-18. From the Figs. 15-18(b) 
the impact repetition frequency approaches to the twice outer race pass-frequency at about 180 Hz, 
they approach the twice outer race characteristic frequency 178 Hz, hence, it was identified as the 
outer race defect. However, as shown in the Figs. 15-18(c) and (d), it is difficult to find the fault 
characteristic frequencies of inner race defect and rolling element defect at each level, because the 
signal contains strong noise, the fault characteristic frequencies caused by the defective bearing 
and its harmonics are buried. 

 
a) Normal 

 
b) Outer-race defect 

 
c) Inner-race defect 

 
d) Rolling element defect 

Fig. 15. Envelope spectra in 25-50 kHz level 

 
a) Normal 

 
b) Outer-race defect 

 
c) Inner-race defect 

 
d) Rolling element defect 

Fig. 16. Envelope spectra in 12.5-25 kHz level 
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a) Normal 

 
b) Outer-race defect 

 
c) Inner-race defect 

 
d) Rolling element defect 

Fig. 17. Envelope spectra in 6.25-12.5 kHz level 

 
a) Normal 

 
b) Outer-race defect 

 
c) Inner-race defect 

 
d) Rolling element defect 

Fig. 18. Envelope spectra in 3.125-6.25 kHz level 

4.7. Fault diagnosis by EMD 

EMD is a non-stationary signal adaptive decomposition method proposed by Huang. 
According to the characteristics of the signal, EMD can adaptively select the frequency band, and 
determine the signal in different frequency resolution. In the last 10 years EMD has made great 
progress and has been successfully applied in mechanical fault diagnosis [32]. In this work, we 
also compare the proposed method with EMD method, and diagnosis procedure is as follows. 
Firstly, the vibration signal that measured in each state is decomposed into the different 
characteristic scale intrinsic mode function (IMF) by EMD. Secondly, the envelope spectra of 
each IMF are obtained by the FFT technique. Finally, the condition and fault type of the bearing 
are determined by analyzing envelope spectra of each IMF. As the high-frequency signal is 
distributed on the first few IMF components, in present work we only analysis the first four IMF 
components. The envelope spectra of IMFs in each state are shown in Figs. 19-21. 

From Fig. 19(a), we can find the impact repetition frequency at about 89.3 Hz and 180.1 Hz, which 
approaches to the outer race defect characteristic frequency and the twice outer race defect 
characteristic frequency. Therefore, we judge the fault type as the outer race defect. Similarly, in 
Fig. 20(c) the impact repetition frequency at about 130.2 Hz can be find, and it approaches the Inner 
race defect characteristic frequency. Therefore, it was identified as the inner race defect by this 
spectrum. However, in Fig. 21 it is difficult to find the fault characteristic frequencies of the rolling 
element defect at each IMF.  
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a) 

 
b) 

 
c) 

 
d) 

Fig. 19. Signal of the out-race defect after EMD 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 20. Signal of the Inner race defect after EMD 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 21. Signal of the roller element defect after EMD 

On the basis of above verification results, three types bearing defects were effectively and 
accurately identified via the method proposed in this study. This shows that the method proposed 
in this study is the most efficacious for diagnosing bearing faults and eliminate much noise from 
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the signal. Although the outer race defect of the bearing can be identified by using WT and 
traditional PF, it is difficult to identify the inner race and roller element defects. In add cation, the 
outer race and inner defects of the bearing can be identified with EMD method. However, the 
roller element defect cannot be identified, because the signal contains strong noise, the fault 
characteristic frequencies caused by the defective bearing and its harmonics are buried. 

Ke Li, Peng Chen and Jingjing Wu conceived and designed the experiments; Ke Li and Peng 
Chen performed the experiments; Ke Li, Yiya Liu and Su Lei analyzed the data; Ke Li wrote the 
paper. 

5. Conclusions 

In order to effectively monitor condition and detect fault types of high nonlinear system, and 
extract the features of system state under strong noise background, this paper proposed a novel 
FDD method based on the modified PF which called AWPF. The BPNN was incorporated in PF 
for adaptively adjusting weight of particle. In AWPF, the large weight particles were split into two 
small weight particles, the particles with smaller weight was adjusted by using artificial neural 
network. By which the particles in the low probability density region were adjusted to the high 
probability density region, and particle diversity was increased. The problem of particle leanness 
was solved effectively. Moreover, TVAR and AIC methods were presented to establish state space 
model for state estimation. Finally, the proposed method was implemented for fault diagnosis on 
a roller bearing. We also compared the proposed method with traditional PF, WT and EMD 
techniques. The verification results shown that three types bearing fault had been effectively 
identified by the proposed method. However, these bearing faults were difficult to detect using 
traditional PF, WT and EMD techniques. 
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