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Abstract. An adaptive neural network (ANN) control method for a continuous damping control 
(CDC) damper is used in vehicle suspension systems. The control objective is to suppress 
positional oscillation of the sprung mass in the presence of road irregularities. To achieve this, a 
boundary model is first applied to depict dynamic characteristics of the CDC damper based on 
experimental data. To overcome nonlinearity issues of the model system and uncertainties in the 
suspension parameters, an adaptive radial basis function neural network (RBFNN) with online 
learning capability is utilized to approximate unknown dynamics, without the need for prior 
information related to the suspension system. In addition, particle swarm optimization (PSO) 
technique is adopted to determine and optimize the parameters of the controller. Closed loop 
stability and asymptotic convergence performance are guaranteed based on Lyapunov stability 
theory. Finally, simulation results demonstrate that the proposed controller can effectively regulate 
the chassis vertical position under different road excitations. Furthermore, the control performance 
is determined to be better than that of the typical Skyhook controller. 
Keywords: adaptive neural networks, semi-active suspension system, CDC damper. 

1. Introduction 

Suspension systems are among the most critical components that ensure ride comfort along 
with good road handing and safety in ground vehicles. A vehicle is always subjected to random 
excitation due to an irregular road profile. Vehicle suspension systems are designed to absorb the 
energy and mitigate uncomfortable vibrations due to this random excitation. These suspension 
systems can be broadly classified into three categories based on their energy consumption:  
passive, active and semi-active suspension systems. In the case of passive suspension systems, 
parameters cannot be changed once fixed [1]. Thus, active and semi-active suspension systems 
are the current focus of extensive research for creating adaptive suspensions to improve vehicle 
ride comfort and road handing [2]. In active suspension systems, separate actuators are used to 
effectively regulate motion of the vehicle body over a wide frequency spectrum. Unfortunately, 
the high cost and complexity of such a system limit its commercial applications. Ride comfort 
with semi-active suspension is comparatively lower compared to their active counterparts. 
However, performance benefits in semi-active systems exceed those of passive systems without 
the need for large power supplies and expensive hardware as in the case of active systems [3]. 
Furthermore, if semi-active suspension fails for any reason, the system functions as a passive 
system and remains stable. 

A variety of dampers can be used to generate damping force in vehicle suspensions. However, 
for semi-active vehicle suspensions, CDC dampers and magneto-rheological (MR) fluid dampers 
are mostly utilized as the controllable shock absorbers [4]. A CDC damper varies the size of an 
orifice in the hydraulic flow valve, which can give continuously variable damping characteristics 
[5]. On the other hand, the MR damper uses magnetic fields to vary viscosities of the MR fluid, 
and electro-rheological fluids exhibit rheological changes when an electric field is applied to the 
fluid [6-8]. Compared with magneto-rheological and electro-rheological dampers, the CDC 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2017.18045&domain=pdf&date_stamp=2017-06-30


2489. ADAPTIVE NEURAL NETWORK CONTROL FOR SEMI-ACTIVE VEHICLE SUSPENSIONS.  
ZHUSHUN DING, FENG ZHAO, YECHEN QIN, CHENG TAN 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. JUN 2017, VOL. 19, ISSUE 4. ISSN 1392-8716 2655 

damper is much simpler in design and less expensive. It also has the advantage of reliability and 
durability. The CDC damper made by ZF SACHS has been successfully applied in commercial 
vehicles such as VW-Phaeton, Ford-Mondeo, GM-Lacrosse. Several models are discussed in this 
paper to characterize the performance of semi-active dampers in terms of their dynamic behavior. 
Generally, the dynamic models for CDC dampers can be broadly categorized as parametric and 
nonparametric models. The Bouc-Wen hysteresis model [9] and NARX model [10] are parametric 
models, whereas, the neural network model [11] and fuzzy model [12] are nonparametric models. 
Briefly, parametric models can be identified based on their use of mechanical elements, which are 
tested using experimental studies [13]. Non-parametric models use mathematical methods, which 
are not correlated to any physical elements. In this paper, constraints for output forces using a 
CDC damper are described. Upper and lower bounds are introduced to restrict desired forces in 
the controller design. 

CDC dampers, used as the actuators in semi-active suspension systems require proper control. 
Thus, an increasing number of researches reported in literature have focused on control of semi-
active suspension systems. A wide array of methods has proposed ranging from a simple on-off 
control technique to advanced techniques for linear and nonlinear control, such as 
LQG/H∞ control [14], LPV control [15], backstepping control [16] and quantitative feedback 
theory [17]. The Skyhook control strategy, first proposed by Karnopp [18], is a classical 
semi-active control approach, which has been demonstrated to be effective in reducing vertical 
oscillations of the chassis. Since then, a number of modified Skyhook control methods [19-21] 
have been developed. Groundhook [22] and hybrid control approaches [23] resolve issues due to 
unsprung mass vibrations, thereby achieving better road holding ability and improving vehicle 
stability. In a previous study [24], a sliding mode control has been proposed to design a sliding 
surface, which included sprung mass acceleration and tire deflection. Energy-Flow-Driven [25] 
has been proposed as a control method, which allows energy transfer between the vehicle chassis 
and tire. Recently, some studies have attempted to combine road estimation and semi-active 
suspension system to provide better controller and observer performance [26, 27]. Typically, most 
control algorithms aim at evaluating trade-off of semi-active control laws in terms of ride comfort 
and road holding. Moreover, with the recent trend of self-driving ground vehicles, which are 
equipped with mounted cameras, vertical vibration amplitude of the camera needs to be reduced 
to remove unwanted motion from dynamic camera sequences. Therefore, in this paper, larger 
emphasis is on vertical body displacement when evaluating performance indices of suspension 
systems in unmanned or self-driving ground vehicles. 

Recently, intelligence control algorithms based on fuzzy logic control and neural network 
control have been proposed. Establishing reasonable fuzzy rules is one of the challenging aspects 
in the design of a fuzzy controller. The number of fuzzy rules and parameters for membership 
functions is determined automatically using genetic algorithm operations [28]. The controller 
design methodology used in previous works did not need accurate models of the suspension 
system. Conversely, neural networks have received increasing attention, with application in a 
number of research fields [29, 30]. This is mainly due to the advantages associated with 
approximating uncertain nonlinear functions in a dynamic system. In a previous study [31], a 
neural networks control for semi-active suspension system has been described, which includes an 
error back propagation algorithm with quadratic momentum of the multilayer forward neural 
networks. A neural networks scheme employed an adaptive tuning law to control a bus suspension 
system [32]. A semi-active suspension with the CDC damper is a nonlinear dynamic system, thus 
traditional control strategies based on mathematical models with random road roughness cannot 
be easily applied. This is due to it is difficulty in obtaining accurate models of vehicle suspension 
for practical applications. An adaptive neural network control can be used in this case as prior 
system information is not required. This is a promising approach that can guarantee good 
performance of semi-active suspension systems. 

In this paper, an adaptive neural network control of a quarter-car model of a semi-active 
suspension with the CDC damper is developed. The main objective of the algorithm is to suppress 
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vertical oscillation amplitude of the sprung mass in the presence of road irregularities. For this 
purpose, a boundary model with nine straight envelope lines is proposed to depict dynamic 
characteristics of the CDC damper based on the experimental data. Next, an adaptive RBFNN is 
designed to deal with unknown nonlinear dynamics of the semi-active suspension system. RBFNN 
can approximate any continuous function to any desired accuracy with proper weights of neural 
networks. Also, the weights of the RBFNN can be adaptively adjusted online. It could improve 
the robustness of the closed-loop system. PSO technique is used to optimize parameters of the 
control law according to the overall performance indices. Finally, effectiveness of the proposed 
control approach is validated by three typical road excitations, and performance of ANN control 
is compared with the typical Skyhook control and the passive suspension case in the simulations. 

The remainder of this paper is organized as follows. In Section 2, the dynamic model of a 
semi-active suspension system with nonlinear stiffness and the friction is described. In Section 3, 
the detailed design procedure of the boundary model of CDC damper is given. Section 4 develops 
the adaptive neural network controller and describes the PSO algorithm to obtain the control 
design parameters. The results of computer simulations of the controller are presented in  
Section 5. Finally, Section 6 summarizes the results and presents the conclusions of this work. 

2. Nonlinear semi-active suspension system 

A quarter-car semi-active suspension model with two degrees of freedom (2-DOF) is shown 
in Fig. 1. The term ݉ represents the sprung mass of the car body. While the unsprung mass is 
given by ݉௪. Variables ݔ ݔ ௪ andݔ ,  represent the absolute displacement of the body, wheel 
profile and road profile, respectively. The tire is modeled as a linear spring with stiffness ݇௧. 
Suspension damping coefficient is manipulated as a variable of the control system. The 
polynomial nonlinear stiffness model of suspension system [33] is given as: 

௦݂(ݔ) = ݇௦ଵ(ݔ − (௪ݔ + ݇௦ଶ(ݔ − ௪)ଶݔ + ݇௦ଷ(ݔ − ௪)ଷ. (1)ݔ

 
Fig. 1. Quarter-car model with the semi-active suspension 

Here, suspension nonlinearities including stiffness and the friction force ݂  are taken into 
consideration. Friction force occurs between the damper’s piston and cylinder. Dynamic friction 
force is defined as ߤ, and ݒఌ  represents critical velocity when the static friction becomes the 
dynamic friction. Friction force can be described by the below equation [34]: 

݂ = ቐߤsin ൬ݔሶ − ఌݒሶ௪ݔ 2൰ߨ , ሶݔ| − |ሶ௪ݔ < ሶݔ)sgnߤ,ఌݒ − ,(ሶ௪ݔ ሶݔ| − |ሶ௪ݔ ≥ ఌ. (2)ݒ

Nonlinear dynamic equations of the suspension system can be expressed as: 
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݉ݔሷ + ݂ + ௦݂ + ݂ = 0, (3)݉௪ݔሷ௪ + ݇௧(ݔ௪ − (ݔ − ݂ − ௦݂ − ݂ = 0, (4)

where ݂ is a function of the relative velocity ݔሶ −  ሶ௪ and current input. Sprung mass dynamicsݔ
can be simplified as: ݔሷ = (ݔ)݂ + (ݔ)ߩ ݂, (5)

where ݂(ݔ) is an unknown bounded function and (ݔ)ߩ is the uncertain parameter, which is easily 
varied according to the vehicle load. From Eq. (3), the unknown bounded function can be  
given as: 

(ݔ)݂ = − ௦݂ + ݂݉ (ݔ)ߩ   , = − 1݉. (6)

In a vehicle system, nonlinearity of suspension model and uncertainties in suspension system 
affect the vibration mitigation performance. For example, properties of the damper vary with time 
due to the heating of the fluid. Influence of uncertainties should be taken into account in the design 
of the controller. 

To facilitate the design of proper control schemes, the following assumption and lemma are 
used throughout the paper. 

Assumption: Road profile disturbance ݔ is bounded.  
Lemma [35]: Let ݂(ݔ) be a continuous function, which is defined over a compact set ܦ. Then, 

there exists a neural networks system ்ܹ(ݔ)ݖ  which can approximate ݂(ݔ)  with arbitrary 
accuracy, such that: ݂(ݔ) = (ݔ)ݖ்ܹ + (7) ,(ݔ)ߝ

where ܹ = ሾݓଵ, ,ଶݓ ⋯ , ேሿ்ݓ  is the ideal constant weight vector,  (ݔ)ݖ = ሾݖଵ(ݔ), ,(ݔ)ଶݖ ⋯ , ሿ்(ݔ)ேݖ  is the RBFs vector, ܰ > 1 is the number of neurons, (ݔ)ߝ is 
approximation error which is minimized by the ideal vector ܹ: ܹ: = argminௐ∈ℝ ൜sup௫∈ (ݔ)݂| −  .ൠ|(ݔ)ݖ்ܹ

Assuming (ݔ)ߝis bounded, |(ݔ)ߝ| < ∗ߝ < ∞ with ߝ∗ being an unknown constant. ݖ(ݔ) is a 
Gaussian function as described below: 

(ݔ)ݖ = exp ቈ−(ݔ − ݔ)்(ߤ − ଶߟ(ߤ . (8)

With ߤ = ሾߤଵ, ,ଶߤ ⋯ , ேሿ்ߤ  is the center of the receptive field and ߟ  is the width of the 
Gaussian function. 

3. Boundary CDC damper model 

In this work, the CDC damper has a solenoid valve inside, which is used to generate damping 
force. The direction of the damping force is opposite to the direction of relative velocity of the 
suspension, and it can only produce forces in the first and third quadrants in the force-velocity 
graph. In other words, force distribution in the force-velocity graph is the intrinsic passivity 
constraint due to characteristics of CDC dampers. Since, this research focuses on the overall 
performance evaluation of control strategy for semi-active suspension systems, the hysteresis 
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effect is not taken into consideration and only peak damping forces at individual peak velocities 
in the velocity-force map are recorded. In this case, the boundary model is obtained from 
experimental data. 

A photograph of the structure containing CDC damper and coil spring is shown in Fig. 2. The 
working characteristics of the CDC damper are tested on a MTS load frame. Force and 
displacement are measured using a load cell and LVDT sensor. Relative velocities are calculated 
using the central difference method [36, 37]. When the control algorithm is applied, the suspension 
system state (relative velocity) can be obtained by a variety of observers, such as the high gain 
observer [38] and higher order sliding mode observer [39]. Sinusoidal excitations with amplitude 
of 50 mm, and calculated frequencies of 0.17 Hz, 0.41 Hz, 0.83 Hz, 1.24 Hz, 1.72 Hz, 2.45 Hz, 
3.31 Hz and 4.77 Hz are applied. The resulting peak velocities are 0.052 m/s, 0.13 m/s, 0.26 m/s, 
0.39 m/s, 0.54 m/s, 0.77 m/s, 1.04 m/s and 1.5 m/s for each of the frequencies respectively. Control 
current is varied from 0 A to 1.8 A at internals of 0.2 A. The velocity-force map for the adopted 
CDC damper is shown in Fig. 3. 

Fig. 2. Photograph of CDC damper and MTS load frame 

 
Fig. 3. Velocity-force map of CDC damper 

Damping force increases with increase in the relative velocity. However, it can be seen that 
slope is steeper as the current input decreases. Damping force is determined by the input current 
and the input velocity to the CDC damper. This means that there are upper and lower bounds on 
the force. The boundary model primarily focuses on the maximum and minimum output force of 
CDC damper for each value of ݔሶ −  ሶ௪. Boundary force corresponding to the control currents ofݔ
0 A and 1.8 A can be fitted piece-wise into nine straight lines, such as: 

݂ = ሶݔ)ߙ − (ሶ௪ݔ + ݅)   ,ߚ = 1, … ,9). (9)

The boundary area and the nine lines of the adopted CDC damper are shown in Fig. 4. The 
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parameters for each of these nine lines are estimated by the least squares method and tabulated in 
Table 1. 

 
Fig. 4. Boundary model of CDC damper 

Table 1. Parameters of boundary damper model ݔሶ − ሶݔ) ሶ௪ ଵ݂ ଶ݂ ଷ݂ ସ݂ ହ݂ݔ − (ሶ௪ݔ >  ହߚ ହߙ ସߚ ସߙ ଷߚ ଷߙ ଶߚ ଶߙ ଵߚ ଵߙ 0
ሶݔ 337 587 0 3181 1850 1473 1077 4447 0 25154 − ଼݂ ሶ௪ ݂ ݂ݔ  ଽ݂   (ݔሶ − (ሶ௪ݔ ≤    ଽߚ ଽߙ ଼ߚ ଼ߙ ߚ ߙ ߚ ߙ 0
381 0 6592 0 1409 –674 351 –1489   

4. Control system 

The adaptive neural network controller generates a desired damping force according to the 
control law. In order to improve the performance of the semi-active suspension system, PSO 
method is used to select parameters of the controller and weighting update laws. Since, the 
semi-active damper has upper and lower bounds on the force. The actual force is calculated using 
the boundary CDC damper model based on the derivative of suspension deflection. Desired value 
of the body displacement ݔ_ௗ௦ௗ is set as zero. Then, the CDC damper produces the actual 
damping force for the quarter car model of vehicle suspension. The structure diagram of the 
semi-active controller for vehicle suspension is depicted in Fig. 5. 

 
Fig. 5. Structure diagram of the semi-active controller for vehicle suspension 

4.1. Adaptive neural network full state feedback controller design 

A generalized tracking error is used here which is defined as ݁ = _ௗ௦ௗݔ − ݔ , where ݔ_ௗ௦ௗ is a reference trajectory, as well as an auxiliary error vector which is given as: ݎ = ሶ݁ + (10) .݁ߣ

The derivative with respect to time is given as: 
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ሶݎ = ሷ݁ + ߣ ሶ݁ = ሷௗݔ − ሷݔ + ߣ ሶ݁ . (11)

Using Eq. (11), the subsystem dynamic Eq. (5) can rewritten as: ݎሶ = ሷௗݔ − (ݔ)݂ − (ݔ)ߩ ݂ + ߣ ሶ݁. (12)

However, semi-active suspension systems are complicated by nonlinearities and uncertainties 
in the system dynamic. In this case, both ݂(ݔ) and ߩ may not be known exactly. Radial basis 
function neural network (RBFNN) is used to approximate parameters in the dynamic model, 
according to the Lemma, and can be written as: ିߩଵ(ݔሷௗ − (ݔ)݂ + ߣ ሶ݁) = ்ܹ(ݖ)ݏ + (13) .(ݐ)ߝ

Substituting Eq. (13) into Eq. (12): ݎሶ = −ൣ(ݔ)ߩ ݂ + ்ܹ(ݖ)ݏ + ൧. (14)(ݐ)ߝ

Now, we propose the following control as: 

݂ = ݇ଵݎ + ்ܹ(ݖ)ݏ + , (15)ݑ

where, ܹ is the estimation of the unknown vector ܹ: ෩ܹ = ܹ − ܹ . (16)

The RBFNN updating law is defined as: ܹሶ  = Γൣݎ(ݖ)ݏ + ௪ߪ ܹ൧, (17)̂ߝሶ = ̂ߝߟఌߪ− + ݇ଶߟsign(ݎ)(18) ,ݎ

where, ߪ௪ > ఌߪ ,0 > 0, ݇ଵ > 0, ݇ଶ > ߟ ,0 > 0 are chosen by design, and Γ = Γ் ∈ ܴ× is the 
matrix related to adaption rate, and ߝ is the unknown bounded value. A robust term ݑ is designed 
as ݑ = ݇ଶsign(ݎ)ߝ̂ to overcome the effects caused by approximation error. 

The adaptive neural network control development can be summarized in the following theorem. 
Theorem: Considering semi-active suspension system (3-4) satisfies the assumption, with the 

lemma and control input Eq. (15) is governed by the adaptive laws Eqs. (17) and (18), given that 
the full state information is available. For bounded initial conditions, ݎ, ෩ܹand ߝ̃ in closed loop 
system are uniformly ultimately bounded (UUB). 

Proof: 
Considering the effect of error ෩ܹ  and ߝ̃  into the system’s stability, a Lyapunov function 

candidate can be proposed as: 

ଵܸ = ߩ12 ଶݎ + 12 ෩்ܹΓିଵ ෩ܹ + ߟ12 ̃ଶ. (19)ߝ

Taking derivative of ଵܸ with respect to time, the following expression is obtained: ሶܸଵ = ߩ1 ሶݎݎ + ଶߩሶ2ߩ ଶݎ + ෩்ܹΓିଵ ෩ܹሶ + ߟ1 ሶ̂ߝ̃ߝ . (20)

A closed loop system is obtained by integrating the control law Eq. (15) into Eq. (14): 
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ሶݎ = ߩ ቂ−݇ଵݎ − ෩்ܹ(ݖ)ݏ − ݇ଶsign(ݎ)ߝ̂ + ቃ. (21)(ݐ)ߝ

Substituting Eq. (21) into Eq. (20): ሶܸଵ = −݇ଵݎଶ − ෩்ܹݎ(ݖ)ݏ − ݇ଶsign(ݎ)ߝݎ̂ + ݎ(ݐ)ߝ − ଶߩሶ2ߩ ଶݎ + ෩்ܹΓିଵ ෩ܹሶ + ߟ1 ሶ̂ߝ̃ߝ . (22)

With the updated laws stated in Eq. (16) and Eq. (17), it follows that: ሶܸଵ = − ൬݇ଵ + ଶ൰ߩሶ2ߩ ଶݎ + ௪ߪ ෩்ܹ ܹ + ݎ(ݐ)ߝ − ݇ଶsign(ݎ)ߝݎ̂ + ߟ1 =      ሶ̂ߝ̃ߝ − ൬݇ଵ + ଶ൰ߩሶ2ߩ ଶݎ + ௪ߪ ෩்ܹ ܹ − ̂ߝ̃ߝఌߪ + ߝ   (ݐ)ݎ − ݇ଶsign(ݎ)ߝݎ̂ + ݇ଶsign(ݎ)ߝݎ̃      = − ൬݇ଵ + ଶ൰ߩሶ2ߩ ଶݎ + ௪ߪ ෩்ܹ൫ ܹ − ෩ܹ൯ − ̃ߝ)̃ߝఌߪ + (ߝ + ݎߝ − ݇ଶsign(ݎ)ߝݎ      ≤ − ൬݇ଵ + ଶ൰ߩሶ2ߩ ଶݎ − ௪2ߪ ฮ ෩ܹฮଶ − ఌ2ߪ ̃ଶߝ + ௪2ߪ ‖ ܹ‖ଶ + ఌ2ߪ ଶߝ − ሾ݇ଶ|ݎ| −  .ߝሿݎ
(23)

To guarantee closed loop stability, Lyapunov function candidate should be negative. Therefore, 
the following expression is satisfied: ߪ௪2 ‖ ܹ‖ଶ + ఌ2ߪ ଶߝ − ሾ݇ଶ|ݎ| − ߝሿݎ ≤ 0. (24)

It can be rewritten as: 

‖ ܹ‖ଶ ≤ 2ሾ݇ଶ|ݎ| − ߝሿݎ − ௪ߪଶߝఌߪ . (25)

Then, the derivative of the Lyapunov function becomes: ሶܸଵ ≤ − ൬݇ଵ + ଶ൰ߩሶ2ߩ ଶݎ − ௪2ߪ ฮ ෩ܹฮଶ − ఌ2ߪ ̃ଶߝ ≤ 0. (26)

Inequality Eq. (26) shows that ෩ܹ and ߝ̃ are bounded as ݐ → ∞. The proof has been finished. 

4.2. Particle swarm optimization 

The ANN controller performance discussed in the preceding section is mainly influenced by 
the following control parameters: ߟ ,ߣ, ݇ଵ, ݇ଶ, ߪ௪ and ߪఌ. Consequently, PSO is widely used for 
optimizing the controller parameters and is believed to perform better than the ‘trial and error’ 
method [40-42]. This method is a random optimization method based on swarm intelligence. 
Control parameters in this method are referred to as the particles, each with their own position and 
velocity. Starting with a random initialization, particles efficiently search a space to minimize an 
objective function which is also called the fitness function. The operation of the PSO in the ݇th 
iteration is described by the following equations [43]: ݒ(݇ + 1) = ℎݒ(݇) + ܿଵݎଵ ቀ௦௧(݇) − (݇)ቁݔ + ܿଶݎଶ൫݃௦௧(݇) − ݇)ݔ(݇)൯, (27)ݔ + 1) = (݇)ݔ + ݇)ݒ + 1), (28)

where, ݔ is the position of the particle, ݒ is the present particle velocity, ℎ is the inertia weight, 
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ଵݎ  and ݎଶ  are uniform random numbers in the range of [0 1], ܿଵ  and ܿଶ  are acceleration  
coefficients, namely cognitive and social scaling parameters. ݃௦௧  is the group-best (global) 
solution found up to the current iteration and ௦௧  is the personal-best solution found by 
individual particles from their search history. 

In many applications, a larger inertia weight ℎ is favorable for global search, and a smaller 
inertia weight ℎ is suitable for local search. To balance the ability between the global and the local 
search, ℎ is proposed [44] as: 

ℎ = (ℎௗ − ℎ௦௧௧)(݇୫ୟ୶ − ݇)݇୫ୟ୶ + ℎ௦௧௧, (29)

where, ݇୫ୟ୶  is the maximum number of iteration, ℎ௦௧௧  and ℎௗ  have the typical values of ℎ௦௧௧ = 0.9, ℎௗ = 0.4. 
The objective function for PSO includes different performance criteria, such as  

root-mean-square (RMS) value of the vehicle body displacement, suspension deflection, tire 
deflection and sprung mass acceleration. It can be shown as: 

ி௧௦௦ܬ = ଵඩ1ܰݍ  ଶேݔ
ୀଵ + ଶඩ1ܰݍ (ݔ − ௪)ଶேݔ

ୀଵ + ଷඩ1ܰݍ (ݔ௪ − )ଶேݔ
ୀଵ + ସඩ1ܰݍ  ሷଶேݔ

ୀଵ , (30)

where, ݍଵ, ݍଶ, ݍଷ and ݍସ are terms which act as weights for the different system outputs. In the 
case of self-driving or unmanned vehicles, vehicle body position stabilization in vertical direction 
is more important than ride comfort. Thus, for this study values for the weights are selected as ݍଵ = 800, ଶݍ  = ଷݍ ,10  = 100  and ݍସ = 1.  Smaller value of ܬி௧௦௦  implies better overall 
performance of the vehicle suspension. 

5. Simulations 

To evaluate the efficacy of the proposed control strategy, numerical simulations are performed 
for the quarter-car model equipped with CDC damper. The CDC damper used in the experiments 
is manufactured by ZF Sachs Company, which develops and produces damper and suspension 
strut modules. The suspension deflection should not exceed the limit of CDC damper working 
spaces, as it could damage the suspension components when the mechanical displacement 
restrictor is working. In this paper, value of the rattle space constraint is set as 120 mm. The 
parameters of the vehicle suspension are listed in Table 2. 

Table 2. Parameter values of the semi-active suspension system 
Parameter Description Value ݉ Sprung mass 410 kg ݉௪ Unsprung mass 39 kg ݇௦ଵ Linear suspension stiffness 16812 N/m ݇௦ଶ Nonlinear suspension stiffness –73696 N/m2 ݇௦ଷ Nonlinear suspension stiffness 3170400 N/m3 ݇௧ Tire stiffness 190000 N/m ܿ Passive system damping 1100 N/m/s ݒఌ Critical velocity 0.01 m/s ߤ The dynamic friction 30 N 

The initial condition of the system is set as (0)ݔ = ሾ0 0 0 0ሿ் , and the number of 
neurons in the hidden layer are 16. Initial weighting vectors are selected as  
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ܹ ்(0) = ሾ0.1 0.1 ⋯ 0.1ሿ் and the center of Gaussian function is set as ߤ = −1 + 2݊ 50⁄  
and ߟ = 5 (݊ = 1, 2, 3,…, 16). The final parameter values optimized by PSO for the design 
controller in three typical cases are listed in Table 3. 

Table 3. Controller parameters of the ANN 
Parameter ݇ଵ ݇ଶ ߪ௪ ߪఌ ߣ ߟ 

Case 1 872.5 3.1 0.097 0.052 3.5 137 
Case 2 1353 2.7 0.13 0.037 0.01 215 
Case 3 2057 1.2 0.1 0.015 0.017 306 

In simulations, a classical semi-active control approach known as the Skyhook controller is 
adopted for comparing and validating the performance of the designed controller. The continuous 
Skyhook controller defines the desired damping force as: 

݂_௦௬ = ൜ܭ௦௬ݔሶ, ሶݔ)ሶݔ − (ሶ௪ݔ ≥ 0,0, ሶݔ)ሶݔ − (ሶ௪ݔ < 0, (31)

where, ݂_௦௬  is the Skyhook damping force and ܭ௦௬ = 3000  is the Skyhook gain. The 
Skyhook control gain selection is important for the controller comparison. Here, the gain is 
selected as 3000 Ns/m by weighting 0.5 to 0.5 for ride comfort and road handling. Also, readers 
could use the continuously variable skyhook control as a contrast algorithm. 

5.1. Model of road profiles and road roughness 

To evaluate the performance of the designed controller, three typical cases are considered. 
Case 1: As resonance frequency of the car body is about 1 Hz [45-46], an external excitation 

close to this frequency may induce unwanted oscillation. Then, to verify control performance near 
the system resonance frequency, the road profile is defined as: ݔଵ(ݐ) = 0.025sin2(32) .ݐߨ

Case 2: Consider a sinusoidal bump in an otherwise smooth road surface. Mathematical 
description of this type of ground displacement is given by: 

(ݐ)ଶݔ = ቐ0.5ℎ ቆ1 − cos ൬2ܮݒߨ ൰ቇݐ , ݐ ≤ ݐ ≤ ,,0ݐ otherwise,  (33)

where, ℎ  and ܮ  are height and length of the bump, and ݒ  is the vehicle velocity. Suppose,  ℎ = 0.5 m, ܮ = 2.5 m and ݒ = 20 km/h. The corresponding road excitation is shown in Fig. 6. 

 
Fig. 6. Bump road profile 
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process with a ground displacement power spectral density (PSD) given by: 

(݊)ܩ = (݊)ܩ ൬ ݊݊൰ିௐ, (34)ܩ(݂) = ݒ1 (݊), (35)ܩ

where, ݊ is the spatial frequency in ݉ିଵ, ܩ(݂) stands for PSD in time domain, and ݊ is the 
reference spatial frequency. Road roughness is given as ܩ(݊) = 256×10-6m3 , ݊ =  0.1,  ܹ = 2 and ݒ = 40 km/h. This PSD indicates that the road profile can be obtained by integrating 
white noise in time domain [47]. The resulting displacement of the road excitation in time domain 
is shown in Fig. 7. 

 
Fig. 7. Random road profile 

5.2. Comparison of controller performance 

The closed-loop system responses for the sinusoidal road excitation are plotted in Fig. 8 to 10, 
which show vehicle body displacement, body acceleration and tire deflection, respectively. It can 
be clearly seen that body displacement and body acceleration have relatively lower magnitude 
with ANN control compared to Skyhook control. Numerically, the RMS value of the body 
displacement is 0.021 with ANN control and 0.025 with Skyhook control. In the case of the  
former, the RMS decreases by 61 % compared to passive suspension systems. ANN control can 
suppress 66 % RMS value of sprung acceleration, which is an improvement of 54 % compared to 
Skyhook control. The peak-to-peak value of tire deflection with proposed ANN control is 5.9 mm, 
which is smaller than the 6.7 mm obtained using Skyhook control. Thus, ANN control with CDC 
damper improves performance over Skyhook control. 

 
Fig. 8. Body displacement (Case 1) 

 
Fig. 9. Body acceleration (Case 1) 

For a vehicle crossing a bumpy terrain, dynamic responses of the sprung mass position, body 
acceleration and tire deflection using ANN and Skyhook control are shown in Figs. 11 to 13. It 
can be observed that the amplitudes of body displacement and sprung mass acceleration diminish 
much faster for both ANN and Skyhook control compared to passive suspension. Maximum value 
of body displacement is 29 mm with ANN control, which is significantly lower than 46 mm with 
Skyhook control. Peak-to-peak value of the tire deflection is reduced from 8.2 mm to 6.8 mm 
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compared to Skyhook control. Damping forces produced by CDC damper for both controllers are 
compared in Fig. 12. In particular, chattering with Skyhook controller causes undesirable 
switching for force outputs, which may affect body acceleration when crossing a bump in the road. 
This effect can be seen at around 0.6 s. 

 
Fig. 10. Tire deflection (Case 1) Fig. 11. Body displacement (Case 2) 

 

 
Fig. 12. Body acceleration (Case 2) 

 
Fig. 13. Tire deflection (Case 2) 

Dynamic response of the sprung mass displacement with random excitation is shown in  
Fig. 14. For Skyhook control, the RMS value is 0.0182, whereas in the case of ANN control, it is 
equal to 0.01. Sprung mass stability is significantly improved using ANN control with RMS 
decreasing to approximately 47 %. Peak value of the vertical body displacement is 41 mm using 
Skyhook control and is only 31 mm with ANN control. The curve between 6 second and 8 second 
dynamic response of the tire deflection is shown in Fig. 15, the RMS value of tire deflection with 
ANN control is 0.0032, which is slightly smaller than a value of 0.0035 obtained using Skyhook 
control. However it can be seen that the value of tire deflection with Skyhook control has 
deteriorated compared to that of the passive suspension. Frequency domain analysis of the PSD 
curves of the vehicle body acceleration is shown in Fig. 16. From the figure, it can be seen that 
PSD of ANN is considerably lower compared to Skyhook in the body resonance frequency range 
(1-1.5 Hz). 

 
Fig. 14. Body displacement (Case 3) 

 
Fig. 15. Tire deflection (Case 3) 

Optimal control design parameters can be obtained using the proposed PSO algorithm, which 
allows for significant improvement in the performance of semi-active vehicle suspension. 
Parameters for PSO algorithm in case 3 are set as ܿଵ = 1.5 and ܿଶ = 1.5. In Fig. 17, it can be seen 
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that the fitness function converges after 40 iterations. 
The further simulations with senor noise are presented to demonstrate that ANN control 

scheme can withstand the additive noise. Sensor noise was added to the measured suspension 
stroke and performance is evaluated [48]. The performance of sprung mass displacement, sprung 
mass acceleration and tire deflection for random road excitation has been presented in Table 4. 

 
Fig. 16. PSD of vehicle body acceleration (Case 3) 

 
Fig. 17. Convergence of fitness function (Case 3) 

Based on the proposed method, further researches can be made with combination of road 
estimation and form road adaptive ANN semi-active suspension system for further improvement 
under varying road conditions. For road estimation methods, [49] can be used to guideline for 
controller parameters tuning. 

Table 4. Performance evaluation over senor noise 

Senor Noise RMS Sprung mass displacement 
RMS (m) 

Sprung mass acceleration 
RMS (m/s2) 

Tire deflection 
RMS (mm) 

1.1×10-5 0.012 0.92 3.38 
3.3×10-5 0.014 0.98 3.32 

6. Conclusions 

In this paper, an adaptive neural network controller for a nonlinear suspension system using a 
CDC damper is proposed. A semi-active control design is considered using a boundary model of 
the CDC damper. The boundary model is constructed piece-wise using nine straight lines based 
on the experimental data. The adaptive controller is designed to meet control objectives and 
RBFNN is used to approximate the nonlinear uncertain part of the suspension system. Moreover, 
parameters for control law are optimized using PSO. The closed loop stability along with 
asymptotic convergence performance are proved using Lyapunov theory. Finally, the performance 
of this controller is validated by numerical simulations under three different road conditions. 
Improvement in RMS values is achieved using the proposed controller and values for body 
displacement are lower compared to Skyhook controller. These results validate the efficacy of the 
proposed controller to achieve better performance for semi-active suspension systems in 
comparison to both Skyhook control and passive suspension systems. 
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