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Abstract. This article addresses the problem of blind source separation, in which the source 
signals are most often of the convolutive mixtures, and moreover, the source signals cannot satisfy 
independent identical distribution generally. One kind of prevailing and representative approaches 
for overcoming these difficulties is joint block diagonalization (JBD) method. To improve present 
JBD methods, we present a class of simple Jacobi-type JBD algorithms based on the LU or QR 
factorizations. Using Jacobi-type matrices we can replace high dimensional minimization 
problems with a sequence of simple one-dimensional problems. The novel methods are more 
general i.e. the orthogonal, positive definite or symmetric matrices and a preliminary whitening 
stage is no more compulsorily required, and further, the convergence is also guaranteed. The 
performance of the proposed algorithms, compared with the existing state-of-the-art JBD 
algorithms, is evaluated with computer simulations and vibration experimental. The results of 
numerical examples demonstrate that the robustness and effectiveness of the two novel algorithms 
provide a significant improvement i.e., yield less convergence time, higher precision of 
convergence, better success rate of block diagonalization. And the proposed algorithms are 
effective in separating the vibration signals of convolutive mixtures. 
Keywords: joint block diagonalization (JBD), convolutive blind source separation (CBSS), 
non-orthogonal matrix, convergence, LU and QR. 

1. Introduction 

Blind source separation (BSS) deals with the problem of finding both the unknown input 
sources and unknown mixing system from only observed output mixtures. BSS has recently 
become the focus of intensive research work due to its high potential in many applications such 
as antenna processing, speech processing and pattern recognition [1-3]. The recent successes of 
BSS might be also used in mechanical engineering [4-7]. In these reported applications for 
tackling the BSS, there were two kinds of BSS models i.e., instantaneous and convolutive mixture 
models. The instantaneous mixture models with a simple structure have been described in many 
papers and books [8-10]. However, when it came to deal with convolutive mixture signals, BSS 
might face a number of difficulties which seriously hindered its feasibility [11, 12]. There is 
currently an endeavor of research in separating convolutive mixture signals, yet no fully satisfying 
algorithms have been proposed so far. 

Many approaches have been proposed to solve the convolutive BSS (CBSS) problem in recent 
years. One kind of prevailing and representative approaches is joint block diagonalization (JBD) 
which can produce potentially more elegant solution for CBSS in time domain [13]. In the article, 
we focus on the JBD problem, which has been firstly treated in [14] for a set of positive definite 
symmetric matrices. And then the same conditions also mentioned in [15]. To solve the JBD 
problem, Belouchrani have sketched several Jacobi strategies in [16-18]: the JBD problem was 
turn into a minimization problem which was processed by iterative methods; as a product of 
Givens rotations, each rotation made a block-diagonality criterion minimum around a fixed axis. 
Févotte and Theis [19, 20] have pointed out that the behavior of Jacobi approach was very much 
dependent on the initialization of the orthogonal basis and also on the choice of the successive 
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rotations. Then they proposed some strategies to improve the efficiency of JBD. But there are also 
several critical constraints: the joint block-diagonalizer is an orthogonal (unitary in the complex 
case) matrix; the spatial pre-whitening is likely to lead to a larger error and, moreover, this error 
is unable to correct in the subsequent analysis. In [21] a gradient-based JBD algorithm have been 
used to achieve the same task but for non-unitary joint block-diagonalizers. This approach suffers 
from slow convergence rate since the iteration criteria possesses a fixed step size. To improve this 
shortcoming, some gradient-based JBD algorithms with optimal step size have been provided and 
studied in [22-24]. However, these algorithms are apt to converge to a local minimum and have 
low computational efficiency. To eliminate the degenerate solutions of the nonunitary JBD 
algorithm, Zhang [25] optimized a penalty term based weighted least-squares criterion. In [26], a 
novel tri-quadratic cost function was introduced, furthermore, an efficient algebraic method based 
on triple iterations has been used to search the minimum point of the cost function. Unfortunately, 
this method exists redundancy value and arises error when the mixture matrix is inversed. Some 
new Jacobi-like algorithms [27, 28] for non-orthogonal joint diagonalization have been proposed, 
but unfortunately cannot be used to solve the problem of block diagonalization. 

Our purpose, here, is not only to tackle the problem of the approximate JBD by discard the 
orthogonal constraint on the joint block-diagonalizer i.e., impose as few assumptions as possible 
on the matrix set, but also to propose the JBD algorithms characterized by the merits of simplicity, 
effectiveness, and computational efficiency. Subsequently, we suggest two novels non-orthogonal 
JBD algorithms as well as the Jacobi-type schemes. The new methods are an extension of joint 
diagonalization (JD) algorithms [29] based on LU and QR decompositions mentioned in [30, 31] 
to the block diagonal case.  

This article is organized as follows: the JBD problem is stated in Section 2.1. The two proposed 
algorithms are derived in section 2.2, whose convergence is proved in Section 2.3. In Section 3, 
we show how to apply the JBD algorithms to tackle the CBSS problem. Section 4 gives the results 
of numerical simulation by comparing the proposed algorithms with the state-of-the-art 
gradient-based algorithms introduced in [23]. In Section 5, the novel JBD algorithms are proved 
to be effective in separating vibration source of convolutive type, which outperforms JBDOG and 
JRJBD algorithms [19]. 

2. Problem formulation and non-orthogonal JBD algorithms 

2.1. The joint block diagonalization problem 

Let ሼ܀ሽୀଵ ∈ ெ×ெܥ  be a set of ܭ  matrices (the matrices are square but not necessarily 
Hermitian or positive definite), that can be approximately diagonalized as: ܀ = ுۯ۲ۯ + , (1)ۼ

where ۯ ∈ ۼ ெ×ெ is a general mixing matrix and the matrixܥ ∈ ݇)ெ×ெ denotes residual noise, (⋅)ு denotes complex conjugate transpose (replace it by (⋅)் in real domain). ۲ܥ = 1,⋅⋅⋅,  is (ܭ
an ܯ ×  block diagonal matrix where the diagonal blocks are square matrices of any size and ܯ
the off-diagonal blocks are zeros matrices i.e.: 

۲ = ൦۲,ଵଵ ⋯ ଵଶଵ ⋯ ଶ⋮ ⋱ ⋮ଵ ⋯ ۲,൪, (2)

where ۲, denotes the ݅th diagonal block of the size ݊ × ݊ such that ݊ଵ + ݊ଶ +⋅⋅⋅ +݊ =  In .ܯ
general case, e.g. in the context of CBSS, the diagonal blocks are assumed to be the same size, i.e. ܯ = ݊ × ݎ  and where   denotes the ݊ × ݊  null matrix. The JBD problem consists of the 
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estimation of ۯ and ۲ (݇ = 1,⋅⋅⋅, ሽୀଵ܀when the matrices ሼ (ܭ  are given. It can be noticed that 
the JBD model remains unchanged if one substitute ۯ by ۯΛ۾ and ۲ by ି۾ଵΛିଵ۲(ି۾ଵΛିଵ)ு, 
where Λ  is a nonsingular block diagonal matrix in which the arbitrary blocks are the same 
dimensions as ۲. ۾ is an arbitrary block-wise permutation matrix. The JBD model is essentially 
unique when it is only subject to these indeterminacies of amplitude and permutation [24].  

To this end, our aim is to present a new algorithm to solve the problem of the non-orthogonal 
JBD. The cost function with neglecting the noise term suggested in [23] is considered as follows: 

(۰)ܥ = ‖ܱ݂݂݃ܽ݅݀ܤ(܀۰۰ு)‖ிଶ
ୀଵ . (3)

The above cost function can be regarded as the off-diagonal-block-error, our aim is to find a 
non-singular ۰ such that the ܥ(۰) is as minimum as possible. Where ‖⋅‖ி  is the Frobenius 
norm and ۰ stands for inverse of the matrix ۯ (in BSS context, ۰ serves as the separating matrix). 
Considering the square matrix ܀ = (,܀) ∈  :ெ×ெܥ

܀ = ێێێۏ
,ଵଵ܀ۍ ⋯ ,ଶଵ܀,ଵ܀ ⋯ ⋮,ଶ܀ ⋱ ,ଵ܀⋮ ⋯ ,܀ ۑۑۑے

 ,ې
where ܀, for all ݅, ݆ = 1,⋅⋅⋅, are ݊ ݎ × ݊ matrices (and ݊ଵ + ݊ଶ +⋅⋅⋅ +݊ =  and two matrix (ܯ
operators Bdiag(⋅) and OffBdiag(⋅) can be respectively defined as: 

(܀)݃ܽ݅݀ܤ = ൦܀,ଵଵ ⋯ ଵଶଵ ⋯ ଶ⋮ ⋱ ⋮ଵ ⋯ ,൪܀ (܀)݃ܽ݅݀ܤ݂݂ܱ     , = ܀ −  .(܀)۰݀݅ܽ݃
2.2. Two novel joint block diagonalization algorithms based LU and QR factorizations 

Any non-singular matrix ۰ admits the LU factorization [30]: ۰ = (4) ,܃ۺ۾

where ۺ and ܃ are ܯ ×  unit lower and upper triangular matrices, respectively. A unit triangular ܯ
matrix represents a triangular matrix with diagonal elements of one. ۰  also admits the QR 
factorization: ۰ = (5) ,܃ۿ

where ۿ is ܯ ×  orthogonal matrix. Considering the JBD model’s indeterminacies, we note that ܯ
any non-singular square separating matrix can be represented as these two types of decomposition. 
Here, we will implement the JBD in real domain (which is the problem usually encountered in 
BSS) i.e., in a real triangular and orthogonal basis. It is reasonable to consider the decompositions 
Eq. (4) or (5) and hence replace the minimization problem represented in Eq. (3) by two alternating 
stages involving the following sub-optimization: 

෩܃ = argmin ‖ܱ݂݂݃ܽ݅݀ܤ(܀܃்܃)‖ிଶ
ୀଵ , (6)
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ሚۺ = argmin ‖ܱ݂݂܀ۺ)݃ܽ݅݀ܤᇱ ிଶ‖(்ۺ ,
ୀଵ  (7a)

෩ۿ = argmin ‖ܱ݂݂܀ۿ)݃ܽ݅݀ܤᇱ ிଶ‖(்ۿ
ୀଵ , (7b)

where ܀ᇱ =  respectively. Moreover, we ,ۿ and ܃ ,ۺ ෩ denote the estimates ofۿ ෩ and܃ ,෨ܮ ,෩்܃܀෩܃
adopt the Jacobi-type scheme to solve Eq. (6) and 7(a), 7(b) via a set of rotations.  

The Jacobi matrix of lower unit triangular is denoted as ۺ(ܽ) , where the parameter ܽ 
corresponding to the position (݅, ݆) (݅ > ݆) i.e., ۺ(ܽ) equals the identity matrix except the entry 
indexed (݅, ݆) is ܽ. In a similar fashion, we define the Jacobi matrix of unit upper triangular ܃(ܽ) 
with parameter ܽ corresponding to the position (݅, ݆) (݅ > ݆). In order to solve Eq. (6) and 7(a), we 
will firstly find the optimal ۺ(ܽ) and ܃(ܽ) in each iteration. For fixed ܽ, one iteration of the 
method consists of  

1. Solving Eq. (6) with respect to ܽ of ܷ(ܽ), and. 
Updating ܀ ← ܷ(ܽ)܃܀(ܽ)் for all ݇ (U-stage) 
2. Solving Eq. (7a) with respect to ܽ of ۺ(ܽ), and. 
Updating ܀ ←  (ܽ)் for all ݇ (L-stage)ۺ܀(ܽ)ܮ
We herein note that the proposed two non-orthogonal JBD algorithms are all of above-

mentioned Jacobi-type, with the only differences on the adopted decompositions (LU or QR) and 
implementation details. Next, we give the details of the proposed algorithms. Following the  
Eq. (6), we have: 

݂(ܽ) = argmin ฮܱ݂݂݃ܽ݅݀ܤ(܃(ܽ)܀܃(ܽ)்)ฮிଶ  
ୀଵ  

 
           = argminܽଶܴଵ + 2ܴܽଶ + ݅    ,ݏ݊ܿ > = or     ,ܮ argminܽଶܴଷ + 2ܴܽସ + ݅    ,ݏ݊ܿ ≤ (8) ,ܮ

where ܮ is the block dimension, ݅, ݆ = 1, … , ݅ and ܯ < ݆. 

ܴଵ = ‖܀([ܮ: ݅ − 1, ݅ + 1: ,[ܯ ݆)‖ிଶ
ୀଵ + ,݆)܀‖ :ܮ] ݅ − 1, ݅ + 1: ிଶ‖([ܯ , 

ܴଶ =  ,݅)܀ :ܮ] ݅ − 1, ݅ + 1: ([ܯ
ୀଵ ,݆)܀ :ܮ] ݅ − 1, ݅ + 1: ்([ܯ

      +  :ܮ])܀ ݅ − 1, ݅ + 1: ,[ܯ ݅)
ୀଵ :ܮ])܀ ݅ − 1, ݅ + 1: ,[ܯ ݆)், 

ܴଷ = ‖܀([ܮ + 1: ,[ܯ ݆)‖ிଶ
ୀଵ + ,݆)܀‖ ܮ] + 1: ிଶ‖([ܯ , 

ܴସ =  ,݅)܀ ܮ] + 1: ([ܯ
ୀଵ ,݆)܀ ܮ] + 1: ்([ܯ +  ܮ])܀ + 1: ,[ܯ ݅)

ୀଵ ܮ])܀ + 1: ,[ܯ ݆)்.     
For matrix ܀ ,܀(݅,  ܀ denotes a row-vector whose elements are from the ݅th row of (ݔ݁݀݊݅

indexed by ݅݊݀݁ݔ, the ܣ is a row vector ݔ݁݀݊݅)܀, ݆) is defined similarly. 
The computation of the optimal ܽ in Eq. (8) is: 
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ܽ = − ܴଶܴଵ ,    (݅ > −    or    (ܮ ܴସܴଷ ,    (݅ ≤ (9) .(ܮ

If ܴଵ = 0 or ܴଷ = 0 set ܽ = 0, i.e. ܥ(܃) cannot be reduced by the particular ܷ(ܽ).  
As for the lower triangular matrices ۺ(ܽ), we have similar result: 

݃(ܽ) = argmin ฮܱ݂݂ۺ)݃ܽ݅݀ܤ(ܽ)܀ᇱ (ܽ)்)ฮிଶۺ


ୀଵ            = argminܽଶܴଵᇱ + 2ܴܽଶᇱ + ݅     ,ݏ݊ܿ > = or     ,ܮ argminܽଶܴଷᇱ + 2ܴܽସᇱ + ݅    ,ݏ݊ܿ ≤ (10) ,ܮ

where ܮ is the block dimension, ݅, ݆ = 1, … , ݅ and ܯ > ݔ݁݀݊݅ :݆ = [1: ݅ − 1, ݅ + 1: ᇱݔ݁݀݊݅ ,[ܯ = :ܮ)ݔ݁݀݊݅ ܯ − 1),    ݅ ≤ ᇱᇱݔ݁݀݊݅ ,ܮ = ݅    ,(݈)ݔ݁݀݊݅ > is a row vector in which element ݈ଵsatisfy ቒభ ݈ .ܮ ቓ ≠ ቒቓ ݈ଵ ∈ [1: ݅ − 1, ݅+:  rounds the ۀܺڿ ,[ܯ
elements of ܺ to the nearest integers towards infinity: 

ܴଵᇱ = ‖܀ᇱ ,ᇱݔ݁݀݊݅) ݆)‖ிଶ +
ୀଵ ᇱ܀‖ (݆, ᇱ)‖ிଶݔ݁݀݊݅ , 

ܴଶᇱ =  ᇱ܀ (݆, ᇱ܀(ᇱݔ݁݀݊݅ (݅, ்(ᇱݔ݁݀݊݅ + ᇱ܀ ,ᇱݔ݁݀݊݅) ᇱ܀்(݆ ,ᇱݔ݁݀݊݅) ݅)
ୀଵ , 

ܴଷᇱ = ‖܀ᇱ ,ᇱᇱݔ݁݀݊݅) ݆)‖ிଶ +
ୀଵ ᇱ܀‖ (݆, ᇱᇱ)‖ிଶݔ݁݀݊݅ , 

ܴସᇱ =  ᇱ܀ (݆, ᇱ܀(ᇱᇱݔ݁݀݊݅ (݅, ்(ᇱᇱݔ݁݀݊݅ + ᇱ܀ ,ᇱᇱݔ݁݀݊݅) ᇱ܀்(݆ ,ᇱᇱݔ݁݀݊݅) ݅)
ୀଵ . 

The computation of the optimal ܽvalue in Eq. (10): 

ܽ = − ܴଶᇱܴଵᇱ ,   (݅ > −  or  (ܮ ܴସᇱܴଷᇱ ,   (݅ ≤ (11) .(ܮ

If ܴଵᇱ = 0 or ܴଷᇱ = 0 set ܽ = 0, i.e. ܥ(ۺ) cannot be reduced by the particular ۺ(ܽ). The 
computation of the optimal parameter ܽ requires solving a polynomial of degree 2 in the real 
domain, which is more effective than other JBD methods that need to solve a polynomial of degree 
4, such as JBDOG, JBDORG and JBD-NCG, etc. [22-24]. 

In the QR algorithm, we consider the QR decomposition of Β, hence the sub-optimization 
problem in the Q-stage in Eq. 7(b) is indeed an orthogonal JBD problems which can be solved by 
Févotte’s Jacobi-type algorithm [19]. Févotte indicated that the behavior of the Jacobi approach 
was very much dependent on the initialization of the orthogonal basis, and also relied on the choice 
of the successive rotations. Here, the algorithm is initialized with the matrix ۿ provided by joint 
diagonalization of ܀ , and consists of choosing at each iteration the couple (,  ensuring a (ݍ
maximum decrease of criterion ܥ(ۿ).  

Now that we have obtained the U-stage and L-stage (Q-stage) for the proposed algorithm, we 
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loop these two stages until convergence is reached. In addition, we note that there would be several 
ways to control the convergence of the JBD algorithms. For example, we could stop the iterations 
when the parameter values in each iteration of the U-stage or L-stage (Q-stage) are small enough, 
which indicates a minute contribution from the elementary rotations, and hence convergence. We 
may as well monitor the sum off-diagonal squared norms ܥ(۰) in iteration, and stop the loops 
when the change in it is smaller than a preset threshold. The values of ‖܃ۺ − ۷‖ிଶ <  between ߝ
two successive complete runs of U-stage and L-stage are usually used as a terminate criteria. Here, 
we stop the iteration when the values ܫ = ∑ ிଶୀଵ‖(܀)݃ܽ݅݀ܤ݂݂ܱ‖ ∑ ⁄ிଶୀଵ‖(܀)݃ܽ݅݀ܤ‖ <  ,ߝ
which can reflect relative change between off-block diagonal and block diagonal. And this 
criterion can be adapted to all of iterative methods for solving JBD problem, which can also give 
a more intuitive comparison between these methods. Therefore, this terminate criteria is much 
more rational and effective. In the following context of our manuscript, we will use one of the 
following terminate criteria 

(st1) ܫ < 10ି; 
(st2) หܥ௧ାଵ − ௧ܥ ห ௧ൗܥ < 10ି; 
(st3) |ܫ௩௧ାଵ − ௩௧ܫ | < 10ିହ (mentioned at section 4). 
We name the novel JBD approaches based on LU and QR factorizations as LUJBD and 

QUJBD, respectively, and summarize them as following: 
1. Set ۰ = ۷.  
2. U-stage (R-stage): set ܃ = ۷, for 1 ≤ ݅ < ݆ ≤  ܯ
    Find ܽ = argmi݊ܥ(܃(ܽ)) from Eq. (9) 
    Update ܀ ← )܃ ܽ)܀܃( ܽ)் and ܃ ← )܃ ܽ)܃ 
3. L-stage (Q-stage): set ۺ = ۿ)ܫ = ), for 1ۿ ≤ ݆ < ݅ ≤  ܯ
Find ܽ = argmi݊ܥ(ۺ(ܽ)) from Eq. (11) ( ߠ = argmi݊ఏܥ(܃(ߠ)) from [20]) 
   Update ܀ ← )ۺ ܽ)܀ۺ( ܽ)் (܀ ← ۵(ߠ)܀۵(ߠ)்)  
and ۺ ← )ۺ ܽ)ۿ) ۺ ← ۵(ߠ)ۿ) 
4. If the terminate criteria from (st1), (st2) or (st3) isn’t satisfied completely, then  ۰ ← ۰)۰܃ۺ ←  .and go to 2, else end (۰܃ۿ
We replace each of these ܯ)ܯ − 1) 2⁄  dimensional minimization problems by a sequence of 

simple one-dimensional problems via using triangular and orthogonal Jacobi matrices. Note that 
for updating ܀, the matrix multiplications can be realized by few vectors scaling and vector. In 
additions, this will cost fewer time than other method of non-orthogonal JBD [22-24]. And the 
existence and uniqueness of joint block diagonalization of this cost function has been proved  
in [20]. 

2.3. Convergence of the algorithm 

By construction, the algorithm ensures decrease of criterion ܥ(۰)  at iteration process. 
According to Eq. (8) or (10), we have: ܥ(܃௧ାଵ) − (௧܃)ܥ = ܽଶܴ + 2 ܴܽௗ. 

Respectively ܴ = ܴଵ, ܴଷ, ܴଵᇱ , ܴଷᇱ , ܴௗ = ܴଶ, ܴସ, ܴଶᇱ , ܴସᇱ  and ܴ > 0. 
Replace ܽ from Eqs. (9) or (11): 

(ܷ௧ାଵ)ܥ − (ܷ௧)ܥ = ܽଶܴ + 2 ܴܽௗ = − ܴௗଶܴ ≤ 0. (12)

Only ܴ = 0  or ܴௗ = 0  set ܽ = 0 , Eq. (12) is putted equal sign, but usually ܴ ≠ 0  and  ܴௗ ≠ 0 in CBSS mentioned in Section 3. 
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Similarly, ܥ(ۺ௧ାଵ) − (௧ۺ)ܥ ≤ 0,  or ܥ(ۿ௧ାଵ) − (௧ۿ)ܥ ≤ 0  has been proved  
in [20]. 

At each iteration of the algorithm, the matrix ܀௧ାଵ obtained after rotations is thus ‘at least as 
diagonal as’ matrix ܀௧  at previous iteration. Since every bounded monotonic sequence in real 
matrix domain, the convergence of our algorithm is guaranteed.  

3. Application to CBSS 

The problems of convolutive BSS (CBSS) occur in various applications. One typical 
application is in blind separation of vibration signals, which is fully studied in this paper for 
detecting the solution of the CBSS problems. The CBSS consists of estimating a set of unobserved 
source signals from their convolutive mixtures without requiring a priori knowledge of the sources 
and corresponding mixing system. Then the CBSS can be identified by means of JBD of a set of 
covariance matrices. We consider the following discrete-time MIMO model [25]: 

(ݐ)܆ =  ۶ᇲ
ᇲୀ (݈ᇱ)ݐ)܁ − ݈ᇱ) + (13) ,(ݐ)ۼ

where ݐ  is the discrete time index, ݈ᇱ = 1, … , ,ᇱܮ ᇱܮ  denotes FIR filter’s length.  (ݐ)܁ = ,⋅⋅⋅,(ݐ)ଵݏ] ்[(ݐ)ݏ  denotes source signal vector with the source numbers are ݉ , and (ݐ)܆ = ,⋅⋅⋅,(ݐ)ଵݔ] ்[(ݐ)ݔ  is the mixing signal vector obtained by݊observation signals. In the 
mixing linear time-invariant system, the matrix-type impulse response ۶(݈ᇱ) = ,⋅⋅⋅,ଵ(݈ᇱ)ܐ] ℎ(݈ᇱ)]  consists of channel impulse responses ℎ(݈ᇱ)  (݅ = 1, … , ݊,  ݆ = 1, … , ݉). Aiming to the received signal on the ݅th array element, we take the ܲ + 1 sliding 
window and constitute a column vector: ܠ(ݐ) = ,(ݐ)ݔ] ݐ)ݔ − 1),⋅⋅⋅, ݐ)ݔ − ܲ)]்,     ݅ = 1,2, … , ݊. 

Then putting the array element processed by sliding window together and defining the 
observed signal vector: ܆ഥ(ݐ) = ,(ݐ)ଵܠ] ,⋅⋅⋅,(ݐ)ଶܠ  .்[(ݐ)ܠ

Hence: ܆ഥ(ݐ) = (ݐ)ത܁۶ + (14) ,(ݐ)ۼ

where ܁ത(ݐ) = ,(ݐ)ଵܛ] ,⋅⋅⋅,(ݐ)ଶܛ (ݐ)ܛ :and ,்[(ݐ)ܛ = ,(ݐ)ݏ] ݐ)ݏ − 1),⋅⋅⋅, ݐ)ݏ − ᇱܮ − ܲ + 1)]், 
۶ = ൦۶ଵଵ ⋯ ۶ଵ۶ଶଵ ⋯ ۶ଶ⋮ ⋱ ⋮۶ଵ ⋯ ۶൪. 

۶ is block element of ۶ which matrix dimension is (ܲ + 1) × ᇱܮ) + ܲ), and: 

۶ = ێێۏ
ℎ(0)ۍ ℎ(1) ⋯ ℎ(ܮᇱ − 1) 0 ⋯ 00 ℎ(0) ⋯ ℎ(ܮᇱ − 2) ℎ(ܮᇱ − 1) ⋯ 0⋮ ⋱ ⋮ ⋱ ⋱ ⋱ ⋮0 ⋯ 0 ℎ(0) ⋯ ℎ(ܮᇱ − 2) ℎ(ܮᇱ − ۑۑے(1

 .ې
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The following assumptions concerning the above mixture model Eq. (14) have to be made to 
ensure that it is possible to apply the proposed algorithms to CBSS [25]. 

Assumption 1. The source signals are zero mean, individually correlated in time but mutually 
uncorrelated, i.e., for all time delay ߬, the cross correlation functions ݎ௦௦ೕ(ݐ, ߬) = 0, ∀݅ ≠ ݆, and 
the auto-correlation functions ݎ௦௦(ݐ, ߬) ≠ 0, ݅ = 1, … , ݉. Meanwhile, the source signals have a 
different auto-correlation function. 

Assumption 2. The sensor noises (ݐ)ۼ are zero mean, independent identically distributed with 
the same power ߪேଶ. The noises are assumed to be independent with the sources. 

Assumption 3. The mixing matrix ۶ is assumed as column full rank. This requires that the 
length of the sliding window ܲ satisfies ݊(ܲ + 1) ≥ ݉(ܲ +  .(ᇱܮ

Assumption 1 is the core assumption. As is shown in [25], this assumption enables us to 
separate the sources from their convolutive mixtures by diagonalizing the second-order statistic 
of the reformulated observed signals (this will be addressed below). Assumption 2 enables us to 
easily deal with the noise and Assumption 3 guarantees that the mixing system is invertible, 
therefore it is a necessary condition that the source signals can be completely separated. 

Under these assumptions, the spatial covariance matrices of the observations satisfy: ܀௫̅(ݐ, ݐ − ߬) = ݐ)ത்ܠ(ݐ)തܠ൫ܧ − ߬)൯ = ,ݐ)௦̅܀۶ ݐ − ߬)۶் + ,ݐ)ே܀ ݐ − ߬), (15)

where ߬ ∈ [0,1,2, … , ݍ − 1] (݇ = 1, … , (ܭ  is the successive time delays, ܀ே(ݐ, ݐ − ߬)  is 
computed according to [26]. It can be deduced from the above assumptions that in Eq. (15) the 
matrices take the following forms, respectively: 

௫̅(߬)܀ = ێێێۏ
௫భ௫మ(߬)܀௫భ௫భ(߬)܀ۍ ⋯ ௫మ௫మ(߬)܀௫మ௫భ(߬)܀௫భ௫(߬)܀ ⋯ ⋮௫మ௫(߬)܀ ⋱ ௫௫మ(߬)܀௫௫భ(߬)܀⋮ ⋯ ۑۑۑے௫௫(߬)܀

ې ∈ ܴ(ାଵ)×(ାଵ), 
௦̅(߬)܀ = ێێێۏ

௦భ௦భ(߬)܀ۍ  ⋯  ௦మ௦మ(߬)܀ ⋯ ⋮ ⋮ ⋱ ⋮  ⋯ ۑۑۑے௦௦(߬)܀
ې ∈ ܴ൫ାᇲ൯×൫ାᇲ൯, 

where the block matrices in ܀௫̅(߬) and ܀௦̅(߬) have the following form: ܀௫௫ೕ(߬) = ்ܠ(ݐ)ܠ)ܧ ݐ) − ߬)) 
൦ ,0)ݎ −߬) ,0)ݎ −߬ − 1) ⋯ ,0)ݎ −߬ − ,1−)ݎ(ܲ −߬) ,1−)ݎ −߬ − 1) ⋯ ,1−)ݎ −߬ − ܲ)⋮ ⋮ ⋱ ,ܲ−)ݎ⋮ −߬) ,ܲ−)ݎ −߬ − 1) ⋯ ,ܲ−)ݎ −߬ − ܲ)൪ ∈ ܴ(ାଵ)×(ାଵ),  

where ݎ(−ܽ, −ܾ) = ݐ)ݔ)ܧ − ்ݔ(ܽ ݐ) − ܾ)) ௦௦(߬)܀ ,  have the similar form, which is the (ܮᇱ + ܲ) × ᇱܮ) + ܲ)  matrix. According to the Eq. (15), a group of matrices ܀ = ሼ܀, ݇ = 1, … , ሽܭ  which can be block diagonalized, and satisfy ܀ = ்ۯ۲ۯ , ۲  have 
diagonalization structure. Hence, The JBD method mentioned in section 2.2 can be used to solve 
CBSS problem. Once the joint block diagonalizer ۰ is determined, the recovered signals are 
obtained up to permutation and a filter by: ܁(ݐ) = (16) .(ݐ)ഥ܆۰

It is worth mentioning that the indeterminacies of amplitude and permutation exist in JBD 
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algorithms correspond to the well-known indeterminacies in CBSS. The correlation matrices ܀௫̅(߬) is actually replaced by their discrete time series estimate. To acquire a good estimate of 
the discrete correlation matrices, we may divide the observed sequences (the output of the 
reformulated model (15)) into the appropriate length of the sample. 

4. Numerical simulations 

Simulations are now provided to illustrate the behavior and the performance of the proposed 
JBD algorithms (LUJBD, QRJBD). We will also compare the proposed algorithms with the  
JBDOG, JBDORG in the robustness and efficiency by generating random dates. To achieve these 
purposes, a set of real block-diagonal matrices ۲ (for all ݇ = 1, … ,  are devised from random (ܭ
entries with a Gaussian distribution of zero mean and unit variance. Then, random noise entries 
with a Gaussian distribution of zero mean and variance ߪேଶ  will be added on the off-diagonal 
blocks of the previous matrices ۲. A signal to noise ratio can be defined as ܴܵܰ = 10log(1/ߪேଶ). 

To measure the quality of the different algorithms, the following performance index is  
used [22]: 

௩(۵)ܫ = ݎ)ݎ1 − 1)  ቌ ฮ۵ฮிଶ݉ܽݔ‖۵‖ிଶ − 1
ୀଵ ቍ

ୀଵ +  ቌ ฮ۵ฮிଶ݉ܽݔฮ۵ฮிଶ − 1
ୀଵ ቍ

ୀଵ , 
where ۵ (݅, ݆ ∈ ሼ1,⋅⋅⋅, ,݅) ሽ) denotes theݎ ݆)th block matrix of ۵ = ۰෩ۯ. This index will be used in 
the CBSS, which can take into account the inherent indetermination of the BSS problem. It is 
clearly that the smaller the index performance ܫ௩(۵) , the better the separation quality. 
Regarding to the charts, ܫ௩(۵) is often given in dB i.e., ܫ௩(۵)݀ܤ = 10log(ܫ௩(۵)). In all 
the simulations, the true mixing matrix ۯ or ۶ has been randomly chosen with zero mean and unit 
variance. 

In Fig. 1 and Fig. 2, we focus on the exactly determined case ܯ = ܮ ,9  = ܭ ,3  =  20,  ܴܵܰ = 60 dB, the results have been averaged over 100 runs. Fig. 1 represents the percentage of 
successful runs, where a run is declared successful w.r.t. the following criteria satisfy: ܫ௩ < 10ି, (st1), (st2). Fig. 2 represents the average running time per successful convergence. 
Comparing the LUJBD and QRJBD approaches with the state-of-the-art JBDOG, and JBDORG., we 
can confirm that the approaches proposed in Section 2.2 improve the performance of JBD better 
than the gradient-based methods: the LUJBD and QRJBD methods converge to the global 
minimum more frequently, see Fig. 1, and faster see Fig. 2 than JBDOG, JBDORG. Under the same 
terminated criteria, it can be observed that the LUJBD and QRJBD methods also outperform the 
JBDOG, JBDORG methods, and the LUJBD method show the best performance. We can also 
conclude that the sensitivity of the different convergence termination criteria for different JBD 
methods is diverse and, moreover, the percentage of successful runs and average running time are 
also varying. In other words, we should choose appropriate terminate criteria which is able to 
obtain the accuracy of block diagonalization, goodness of success rate and convergence speed. 

In Fig. 3 we focus on the exactly determined case ܯ ܮ ,9 = ܭ ,3 = = 20, ܴܵܰ = 60 dB, the 
results have been averaged over 100 runs. Because various approaches have different iteration 
time of each step, Here, we consider all methods converge to the same time, which is more 
reasonable than converge to certain iteration steps mentioned in [23, 25]. The evolution of the 
performance index versus the convergence time shows that the convergence performance of the 
LUJBD and QRJBD methods is better than the JBDOG and JBDORG method. The LUJBD and 
QRJBD algorithms cost less time when performance index ܫ௩ reaches a stable convergence 
level, and have smaller value of performance index ܫ௩ when all algorithms converge to same 
time. In other words, the BSS methods proposed in this paper possess less convergence time, 
higher precision of convergence, faster convergence speed. 
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Fig. 1. The percentage  

of successful runs 

 
Fig. 2. The average running time  

per successful convergence 

 
Fig. 3. Average performance index ܫ௩ versus the convergence time 

for LUJBD, QLJBD, JBDOG, JBDORG algorithms. ܴܵܰ =60 and ܭ = 20 matrices 

In Fig. 4, we discuss the number of the matrices how to affect the performance. The results 
have been averaged over 100 runs. We devise the same stop criteria i.e., one of the terminate 
criteria (st1), (st2) and (st3) is satisfied. We set ܯ ܮ ,9 = = 3, ܴܵܰ = 60 dB. The following 
observations can be made: the more matrices to be joint block-diagonalized, the better 
performance we can obtain. But the computational cost also increases when the number of matrix 
rises. Therefore, the choice of matrix number should combine the accuracy of JBD algorithms 
with complexity of JBD algorithms. From Fig. 4, the matrix number 20 is a better choice. The 
LUJBD algorithm with better convergence turned out to be slightly superior to other JBD 
algorithms. 

 
Fig. 4. Average ܫ௩ versus the number of matrices 
for LUJBD, QLJBD, JBDOG, JBDORG algorithms. ܴܵܰ = 60 and avarage 100 runs 

 
Fig. 5. Average ܫ௩ versus SNR for LUJBD, 

QLJBD, JBDOG, JBDORG algorithms.  ܭ = 20 and avarage 100 runs 
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With the same stop criteria and other assumptions in Fig. 4, one can observe from Fig. 5 that 
when the SNR grows, the average performance of each algorithm becomes better except few 
fluctuation points. The noise sensitivity of LUJBD is slightly higher that the remaining three kinds 
of methods, however, for a given value of SNR, the average performance index of LUJBD and 
QLJBD is always better than that of two gradient-based methods. 

Finally, in Fig. 6 and Fig. 7, we study separation performance versus matrix dimension ܯ and 
the block dimension ܮ  for both algorithms ( ܭ =  20, ܴܵܰ =  60 dB), the results have been 
averaged over 100 runs. One can observe that in the same block dimension ܮ case, the larger the 
matrix dimension ܯ, the weaker the estimation accuracy of mixing matrix. And in the same matrix 
dimension ܯ case, the larger the block dimension ܮ, the better the estimation accuracy of mixing 
matrix. Therefore, we can improve the performance index by increasing the number of the matrix ܭ and the block dimension ܮ when the dimension of target matrix increases. 

 
Fig. 6. Average ܫ௩ versus the convergence time 

with different M and L for LUJBD algorithms. ܴܵܰ =60 and ܭ = 20 matrices 

 
Fig. 7. Average ܫ௩ versus the convergence time 

with different M and L for QLJBD algorithms. ܴܵܰ =60 and ܭ = 20 matrices 

5. Applying CBSS to the vibration source separation  

The experimental model is a double-stiffened cylindrical shell depicted in Fig. 8, which is used 
to simulate the cabin model. Underwater vibration tests of the double-stiffened cylindrical shell 
were carried out in anechoic water pool with a length of 16 meters, a width of 8 meters and a 
height of 8 meters. In the double-stiffened cylindrical shell, three exciters were arranged in the 
front part (No. 1 excitation source), middle part (No. 2 excitation source), rear part  
(No. 3 excitation source), respectively, which were used to simulate vibration sources of the 
internal equipment. Twenty-nine vibration acceleration sensors were arranged in the inner shell, 
and four accelerometers containing abundant vibration information were arranged in the vicinity 
of each excitation point. The location of exciters and acceleration sensors were shown in Fig. 9. 
Only the vertical excitation and response were considered in this test, and the model was located 
underwater 3.75 m. During the test, three exciters were controlled on the shore, and each exciter 
was turned on separately or multiple exciters were operated simultaneously according to different 
test requirements. Three exciters launched a continuous sinusoidal signal with different excitation 
frequencies and same energy, the frequency was 5 kHz, 4 kHz, 3 kHz, corresponding to No. 1 
exciter, No. 2 exciter and No. 3 exciter. The vibration data was collected when the exciter was in 
stable operation. The sampling frequency was 16384 Hz and the sampling time was 10 s.  

Fig. 11(d), (e), (f) show the mixture signals obtained by three sensors (17, 20, 23) on the inner 
shell when all of the exciters act simultaneously. It is obvious that the mix-signals with mutual 
spectrum aliasing are not able to represent real vibration characteristics and be utilized directly. 
We can also demonstrate that a mixture of vibrations is most often of the convolutive type which 
is not prone to be tackled, and moreover, the independence among the vibration sources is often 
not satisfactory strictly. Therefore, it is difficult to separate mechanical vibration source using 
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traditional source separation methods. However, we propose the Jacobi-type JBD algorithms 
based on the LU or QR factorizations in this article, which can overcome above shortcomings 
effectively. 

To ensure the stability of the solution, the terminate criteria ߝ = ௧ା௧భܫ)ݏܾܽ − (௧ା௧భାଵܫ < 10ି (ݐଵ = 0, … ,9) is selected. We select observed signals ݊ = 5 i.e., sensors 17, 20, 23, 26, 29，and 
source signals ݉ = 3. The model parameters including ܮᇱ, ܲ, ܭ are selected to guarantee that the 
solution accuracy satisfy ܫ ≤ –35 dB. The filter length ܮᇱ = 13, the sliding window ܲ = 17 and 
a set of covariance matrices ܭ = 30 with a time lag ߬ taking linearly spaced valued.  

In Fig. 10, the evolution of the performance index ܫ versus the convergence time shows that 
the convergence performance of the LUJBD and QRJBD methods are superior to the JBDOG and 
JRJBD methods [20]. The LUJBD and QRJBD algorithms cost less time when ܫ < –20 dB, 
and have smaller performance index ܫ when the convergence time is same. In other words, the 
BSS methods proposed in this paper possess higher precision of convergence, faster convergence 
speed. The low computational accuracy and efficiency of the latter two algorithms are mainly due 
to following reasons: (1) the JBDOG algorithm generally suffers from slow convergence rate and 
is apt to converge to a local minimum; and the accuracy of blind source separation is often 
hindered by the inversion of ill-conditioned matrices. (2) the joint block-diagonalizer of JRJBD 
algorithm is an orthogonal matrix, the spatial pre-whitening which is likely to lead to a larger error 
need to be applied. Moreover, this error is unable to correct in the subsequent analysis. 

Fig. 11(a), (b), (c) represents source signals acquired by the acceleration sensors near 
excitation point (Here, we choose acceleration sensors 1, 8, 14 which have a higher signal-to-noise 
ratio) when each of the exciter act respectively. Comparison between the recovered primary 
sources – see Fig. 11(g), (h), (i) for LUJBD model and (j), (k), (l) for QRJBD model – with the 
true one shows that the proposed separation algorithms only subjected to indeterminacies of the 
permutation and amplitude are effective.  

 
Fig. 8. The experimental cabin model 

 
Fig. 9. The location of exciters  

and acceleration sensors 
 

 
Fig. 10. Average performance index ܫ௩ versus  

the convergence time for four algorithms.  ܭ ᇱܮ ,30 = = 13, ܲ = 17 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

 
i) 

 
j) 

 
k) 

 
l) 

Fig. 11. Separation results for known channel-Sources: a) ݏଵ, b) ݏଶ, c) ݏଷ.  
Mixtures: d) ݔଵ, e) ݔଶ, f) ݔଷ. Separation sources for LUJBD: g) ݏଵᇱ , h) ݏଶᇱ , i) ݏଷᇱ .  

Separation sources for QLJBD: j) ݏଵᇱᇱ, k) ݏଶᇱᇱ, l) ݏଷᇱᇱ 
6. Conclusions 

In this article, to solve the convolutive BSS (CBSS) problem, we present a class of simple 
Jacobi-type JBD algorithms based on the LU or QR factorizations. Using Jacobi-type matrices we 
can replace high dimensional minimization problems with a sequence of simple one-dimensional 
problems. The two novel methods named LUJBD and QRJBD are no more necessarily orthogonal, 
positive definite or symmetric matrices. In addition, we propose a novel convergence criteria 
which can reflect relative change between off-block diagonal and block diagonal. And this 
criterion can be adapted to all of iterative methods for solving JBD problem, which can also give 
a more intuitive comparison between different methods. The computation of the optimal parameter 
requires solving a polynomial of degree 2 in the real domain in LUJBD and QRJBD methods, 
which is more effective than other JBD methods that need to solve polynomial of degree 4. 
Therefore, the two new algorithms will cost fewer times than other non-orthogonal JBD methods, 
and moreover, the convergence of these two algorithms is also guaranteed. 

A series of comparisons of the proposed approaches with the state-of-the-art JBD approaches 
(JBDOG and JBDORG) based on gradient algorithms are implemented by varieties of numerical 
simulations. The results show that the LUJBD and QRJBD methods converge to the global 
minimum more frequently, and faster than JBDOG, JBDORG. Choosing appropriate terminate 
criteria is beneficial to obtain the accuracy of block diagonalization, goodness of success rate and 
convergence speed. It can be readily observed that the more target matrices selected to be joint 
block-diagonalized, the better performance we can obtain. But the computational cost also 
increases when the number of matrix rises. Therefore, the choice of matrix number should 
combine algorithm accuracy with complexity. We can also improve the performance index by 
increasing the block dimension and decreasing the matrix dimension. Then the two novel JBD 
algorithms and the JBDOG, JRJBD methods for separating practical vibration sources are studied. 
We can conclude that the convergence performance and accuracy of the LUJBD and QRJBD 
methods are superior to the JBDOG and JRJBD methods. Finally, Comparison the recovered 

0 2 4 6 8
-50

0

50

100

Frequency(KHz)

M
ag

ni
tu

de
(d

B)

0 2 4 6 8
-40
-20

0
20
40

Frequency(KHz)

M
ag

ni
tu

de
(d

B)

0 2 4 6 8
-20

0

20

40

Frequency(KHz)

M
ag

ni
tu

de
(d

B)

0 2 4 6 8

50

100

Frequency(KHz)

M
ag

ni
tu

de
(d

B)

0 2 4 6 8
60

80

100

120

Frequency(KHz)

M
ag

ni
tu

de
(d

B)

0 2 4 6 8

50

100

Frequency(KHz)

M
ag

ni
tu

de
(d

B)

0 2 4 6 8
-50

0

50

100

Frequency(KHz)

M
ag

ni
tu

de
(d

B)

0 2 4 6 8
-60
-40
-20

0
20

Frequency(KHz)

M
ag

ni
tu

de
(d

B)

0 2 4 6 8
-50

0

50

100

Frequency(KHz)

M
ag

ni
tu

de
(d

B)

0 2 4 6 8
-100

-50

0

50

Frequency(KHz)

M
ag

ni
tu

de
(d

B)

0 2 4 6 8
-50

0

50

100

Frequency(KHz)

M
ag

ni
tu

de
(d

B)

0 2 4 6 8
-50

0

50

100

Frequency(KHz)

M
ag

ni
tu

de
(d

B)



2539. NON-ORTHOGONAL JOINT BLOCK DIAGONALIZATION BASED ON THE LU OR QR FACTORIZATIONS FOR CONVOLUTIVE BLIND SOURCE 
SEPARATION. LEI ZHANG, YUEYUN CAO, ZICHUN YANG, LEI WENG 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. AUG 2017, VOL. 19, ISSUE 5. ISSN 1392-8716 3393 

primary sources with the true one demonstrates the validity of the proposed algorithms for 
separating the vibration signals of convolutive mixtures. 
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